1
|
Song S, Cheng Y, Li W, Yu H, Li Z, Li J, Li M, Huang Q, Liu Y, Ling S. Irradiated umbilical cord mesenchymal stem cell-coated high oxygen-permeable hydrogel lenses inhibit corneal inflammation and neovascularization after corneal alkali burns. Sci Rep 2025; 15:10401. [PMID: 40140459 PMCID: PMC11947097 DOI: 10.1038/s41598-025-95007-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Accepted: 03/18/2025] [Indexed: 03/28/2025] Open
Abstract
Corneal alkali burns can cause persistent inflammation and corneal neovascularization. In this study, we divided corneal alkali burned rabbits into the untreated group, the blank lens group, the radiation-treated umbilical cord mesenchymal stem cells (UCMSC) lens group, and the UCMSC I.V. group, and then measured corneal inflammation, neovascularization and corneal injury repair via slit lamp microscopy, captured anterior segment optical coherence tomography (AS-OCT), and performed hematoxylin-eosin staining. Compared with those in the other experimental groups, radiation-treated UCMSC lenses significantly decreased inflammatory index (IF) scores, areas of corneal blood vessels and corneal epithelial injury. The expression of interleukin (IL)-17 in corneas treated with radiation-treated UCMSC lenses was lower than that in corneas treated with blank lenses, and radiation-treated UCMSC lenses exhibited greater expression of IL-4 and signal transducer and activator of transcription 1 (STAT1), while the expression of cluster of differentiation-3G (CD3G), a linker for the activation of T cells (LAT), IL-6, IL-1B, CC chemokine receptor 6 (CCR6) and IL-23 exhibited the opposite effects (all P < 0.05). Our findings demonstrated that irradiated UCMSC-coated high oxygen-permeable hydrogel lenses on the ocular surface inhibited corneal angiogenesis and inflammation after corneal alkaline burns. The downregulation of Th17 cell differentiation might be responsible for these effects.
Collapse
Affiliation(s)
- Siqi Song
- Department of Ophthalmology, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, P.R. China
| | - Yaqi Cheng
- Department of Ophthalmology, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, P.R. China
| | - Weihua Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-sen University, Guangzhou, 510060, China
| | - Huan Yu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-sen University, Guangzhou, 510060, China
| | - Zhiquan Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-sen University, Guangzhou, 510060, China
| | - Jianbing Li
- Department of Ophthalmology, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, P.R. China
| | - Meng Li
- Department of Ophthalmology, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, P.R. China
| | - Qunai Huang
- Department of Ophthalmology, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, P.R. China
| | - Yingjie Liu
- Department of Ophthalmology, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, P.R. China
| | - Shiqi Ling
- Department of Ophthalmology, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, P.R. China.
| |
Collapse
|
2
|
Mansoorabadi Z, Kheirandish M. The upregulation of Gata transcription factors family and FOG-1 in expanded and differentiated cord blood-derived CD34 + hematopoietic stem cells to megakaryocyte lineage during co-culture with cord blood mesenchymal stem cells. Transfus Apher Sci 2022; 61:103481. [PMID: 35690555 DOI: 10.1016/j.transci.2022.103481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 05/26/2022] [Accepted: 06/03/2022] [Indexed: 11/26/2022]
Abstract
BACKGROUND Umbilical cord blood (UCB) has improved into an attractive and alternative source of allogeneic hematopoietic stem cells (all-HSCs) in clinics and, research for three decades. Recently, it has been shown that the limited cell dose of, this valuable source can be enhanced by the ex vivo expansion of cells in many, ways. We evaluated the expression of the Gata transcription factors family and FOG-1, in expanded and differentiated cord blood-derived CD34 + hematopoietic stem cells to, megakaryocytes lineage., Methods: Separated mononuclear cells were cultured in DMEM complete medium., Harvested cells as a mesenchymal stem cell at 85 % confluency were cultured with, trypsin/EDTA and in 24-well plates. The characteristic analyses of isolated UCB- MSCs, were done by flow cytometry and adipogenic, chondrogenic, and osteogenic, differentiation assays. MACS purified UCB-CD34 + hematopoietic cells cultivated and, differentiated to megakaryocyte progenitor cells in the presence of cytokine cocktail, with UCB-MSCs. Then, the GATA1, GATA2, GATA3, and FOG-1 genes expression, after differentiation to megakaryocyte progenitor cells were performed by quantitative, real-time polymerase chain reaction (PCR)., Results: In this study, the results of real-time-PCR showed that the fold change, expression of GATA-1, FOG-1, and GATA-2 genes after co-culturing with UCB-MSCs, significantly increased to 7.3, 4.7, and 3.3-fold in comparison with control groups;respectively., Conclusion: UCB-MSCs can increase the expansion and differentiation of UCBCD34 + , to megakaryocyte progenitor cells through upregulation of GATA-1, GATA-2, and FOG-1 gene expression.
Collapse
Affiliation(s)
- Zahra Mansoorabadi
- Department of Immunology, Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine (IBTO), Tehran, Iran
| | - Maryam Kheirandish
- Department of Immunology, Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine (IBTO), Tehran, Iran.
| |
Collapse
|
3
|
Rahmani-Moghadam E, Zarrin V, Mahmoodzadeh A, Owrang M, Talaei-Khozani T. Comparison of the Characteristics of Breast Milk-derived Stem Cells with the Stem Cells Derived from the Other Sources: A Comparative Review. Curr Stem Cell Res Ther 2021; 17:71-90. [PMID: 34161214 DOI: 10.2174/1574888x16666210622125309] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/14/2021] [Accepted: 03/28/2021] [Indexed: 11/22/2022]
Abstract
Breast milk (BrM) not only supplies nutrition, but it also contains a diverse population of cells. It has been estimated that up to 6% of the cells in human milk possess the characteristics of mesenchymal stem cells (MSC). Available data also indicate that these cells are multipotent and capable of self-renewal and differentiation with other cells. In this review, we have compared different characteristics, such as CD markers, differentiation capacity, and morphology of stem cells, derived from human breast milk (hBr-MSC) with human bone marrow (hBMSC), Wharton's jelly (WJMSC), and human adipose tissue (hADMSC). Through the literature review, it was revealed that human breast milk-derived stem cells specifically express a group of cell surface markers, including CD14, CD31, CD45, and CD86. Importantly, a group of markers, CD13, CD29, CD44, CD105, CD106, CD146, and CD166, were identified, which were common in the four sources of stem cells. WJMSC, hBMSC, hADMSC, and hBr-MSC are potently able to differentiate into the mesoderm, ectoderm, and endoderm cell lineages. The ability of hBr-MSCs todifferentiate into the neural stem cells, neurons, adipocyte, hepatocyte, chondrocyte, osteocyte, and cardiomyocytes has made these cells a promising source of stem cells in regenerative medicine, while isolation of stem cells from the commonly used sources, such as bone marrow, requires invasive procedures. Although autologous breast milk-derived stem cells are an accessible source for women who are in the lactation period, breast milk can be considered as a source of stem cells with high differentiation potential without any ethical concern.
Collapse
Affiliation(s)
- Ebrahim Rahmani-Moghadam
- Department of Anatomical sciences, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Vahideh Zarrin
- Laboratory for Stem Cell Research, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amir Mahmoodzadeh
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Marzieh Owrang
- Department of Anatomical sciences, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Tahereh Talaei-Khozani
- Department of Anatomical sciences, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
4
|
Wang W, Han ZC. Heterogeneity of Human Mesenchymal Stromal/Stem Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1123:165-177. [DOI: 10.1007/978-3-030-11096-3_10] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
5
|
Michalicka M, Boisjoli G, Jahan S, Hovey O, Doxtator E, Abu-Khader A, Pasha R, Pineault N. Human Bone Marrow Mesenchymal Stromal Cell-Derived Osteoblasts Promote the Expansion of Hematopoietic Progenitors Through Beta-Catenin and Notch Signaling Pathways. Stem Cells Dev 2017; 26:1735-1748. [PMID: 29050516 DOI: 10.1089/scd.2017.0133] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Coculture of hematopoietic stem cells (HSC) with primary stromal cells from HSC niches supports the maintenance and expansion of HSC and progenitors ex vivo. However, a major drawback is the availability of primary human samples for research and clinical applications. We investigated the use of in vitro derived osteoblasts as a new source of feeder cells and characterized the molecular pathways that mediate their growth-promoting activities. First, we compared the growth and differentiation modulating activities of mesenchymal stromal cells (MSC)-derived osteoblasts (M-OST) with those of their undifferentiated precursor on umbilical cord blood (UCB) progenitors. Feeder-free cultures were also included as baseline control. Cell growth and expansion of hematopoietic progenitors were significantly enhanced by both feeder cell types. However, progenitor cell growth was considerably greater with M-OST. Coculture also promoted the maintenance of immature CD34+ progenitor subsets and modulated in a positive fashion the expression of several homing-related cell surface receptors, in a feeder-specific fashion. Serial transplantation experiments revealed that M-OST coculture supported the maintenance of long-term lympho-myeloid reconstituting HSC that provided engraftment levels that were generally superior to those from MSC cocultures. Mechanistically, we found that coculture with M-OST was associated with enhanced beta-catenin (β-Cat) activity in UCB cells and that abrogation of β-Cat/T-cell factor activity blunted the growth-promoting activity of the M-OST coculture. Conversely, Notch inhibition reduced UCB cell expansion, but to a much lesser extent. In conclusion, this study demonstrates that M-OST are excellent feeder cells for HSC and progenitors, and it identifies key molecular pathways that are responsible for the growth-enhancing activities of osteoblasts on UCB progenitors.
Collapse
Affiliation(s)
- Matthew Michalicka
- 1 Canadian Blood Services, Centre for Innovation , Ottawa, Ontario, Canada
| | - Gavin Boisjoli
- 1 Canadian Blood Services, Centre for Innovation , Ottawa, Ontario, Canada
| | - Suria Jahan
- 1 Canadian Blood Services, Centre for Innovation , Ottawa, Ontario, Canada .,2 Biochemistry, Microbiology and Immunology Department, University of Ottawa , Ottawa, Canada
| | - Owen Hovey
- 1 Canadian Blood Services, Centre for Innovation , Ottawa, Ontario, Canada .,2 Biochemistry, Microbiology and Immunology Department, University of Ottawa , Ottawa, Canada
| | - Emily Doxtator
- 1 Canadian Blood Services, Centre for Innovation , Ottawa, Ontario, Canada
| | - Ahmad Abu-Khader
- 1 Canadian Blood Services, Centre for Innovation , Ottawa, Ontario, Canada
| | - Roya Pasha
- 1 Canadian Blood Services, Centre for Innovation , Ottawa, Ontario, Canada
| | - Nicolas Pineault
- 1 Canadian Blood Services, Centre for Innovation , Ottawa, Ontario, Canada .,2 Biochemistry, Microbiology and Immunology Department, University of Ottawa , Ottawa, Canada
| |
Collapse
|
6
|
Du WJ, Chi Y, Yang ZX, Li ZJ, Cui JJ, Song BQ, Li X, Yang SG, Han ZB, Han ZC. Heterogeneity of proangiogenic features in mesenchymal stem cells derived from bone marrow, adipose tissue, umbilical cord, and placenta. Stem Cell Res Ther 2016; 7:163. [PMID: 27832825 PMCID: PMC5103372 DOI: 10.1186/s13287-016-0418-9] [Citation(s) in RCA: 152] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 09/06/2016] [Accepted: 10/04/2016] [Indexed: 01/08/2023] Open
Abstract
Background Mesenchymal stem cells (MSCs) have been widely proven effective for therapeutic angiogenesis in ischemia animal models as well as clinical vascular diseases. Because of the invasive method, limited resources, and aging problems of adult tissue-derived MSCs, more perinatal tissue-derived MSCs have been isolated and studied as promising substitutable MSCs for cell transplantation. However, fewer studies have comparatively studied the angiogenic efficacy of MSCs derived from different tissues sources. Here, we evaluated whether the in-situ environment would affect the angiogenic potential of MSCs. Methods We harvested MSCs from adult bone marrow (BMSCs), adipose tissue (AMSCs), perinatal umbilical cord (UMSCs), and placental chorionic villi (PMSCs), and studied their “MSC identity” by flow cytometry and in-vitro trilineage differentiation assay. Then we comparatively studied their endothelial differentiation capabilities and paracrine actions side by side in vitro. Results Our data showed that UMSCs and PMSCs fitted well with the minimum standard of MSCs as well as BMSCs and AMSCs. Interestingly, we found that MSCs regardless of their tissue origins could develop similar endothelial-relevant functions in vitro, including producing eNOS and uptaking ac-LDL during endothelial differentiation in spite of their feeble expression of endothelial-related genes and proteins. Additionally, we surprisingly found that BMSCs and PMSCs could directly form tubular structures in vitro on Matrigel and their conditioned medium showed significant proangiogenic bioactivities on endothelial cells in vitro compared with those of AMSCs and UMSCs. Besides, several angiogenic genes were upregulated in BMSCs and PMSCs in comparison with AMSCs and UMSCs. Moreover, enzyme-linked immunosorbent assay further confirmed that BMSCs secreted much more VEGF, and PMSCs secreted much more HGF and PGE2. Conclusions Our study demonstrated the heterogeneous proangiogenic properties of MSCs derived from different tissue origins, and the in vivo isolated environment might contribute to these differences. Our study suggested that MSCs derived from bone marrow and placental chorionic villi might be preferred in clinical application for therapeutic angiogenesis. Electronic supplementary material The online version of this article (doi:10.1186/s13287-016-0418-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Wen Jing Du
- The State Key Laboratory of Experimental Hematology, Institute of Hematology and Hospital of Blood Disease, Chinese Academy of Medical Science & Peking Union Medical College, No. 288, Nanjing Road, Heping District, Tianjin, 300020, China
| | - Ying Chi
- The State Key Laboratory of Experimental Hematology, Institute of Hematology and Hospital of Blood Disease, Chinese Academy of Medical Science & Peking Union Medical College, No. 288, Nanjing Road, Heping District, Tianjin, 300020, China
| | - Zhou Xin Yang
- The State Key Laboratory of Experimental Hematology, Institute of Hematology and Hospital of Blood Disease, Chinese Academy of Medical Science & Peking Union Medical College, No. 288, Nanjing Road, Heping District, Tianjin, 300020, China
| | - Zong Jin Li
- Beijing Institute of Health and Stem Cells, No. 1, Kangding Road, BDA, Beijing, 100176, China
| | - Jun Jie Cui
- The State Key Laboratory of Experimental Hematology, Institute of Hematology and Hospital of Blood Disease, Chinese Academy of Medical Science & Peking Union Medical College, No. 288, Nanjing Road, Heping District, Tianjin, 300020, China
| | - Bao Quan Song
- The State Key Laboratory of Experimental Hematology, Institute of Hematology and Hospital of Blood Disease, Chinese Academy of Medical Science & Peking Union Medical College, No. 288, Nanjing Road, Heping District, Tianjin, 300020, China
| | - Xue Li
- The State Key Laboratory of Experimental Hematology, Institute of Hematology and Hospital of Blood Disease, Chinese Academy of Medical Science & Peking Union Medical College, No. 288, Nanjing Road, Heping District, Tianjin, 300020, China
| | - Shao Guang Yang
- The State Key Laboratory of Experimental Hematology, Institute of Hematology and Hospital of Blood Disease, Chinese Academy of Medical Science & Peking Union Medical College, No. 288, Nanjing Road, Heping District, Tianjin, 300020, China
| | - Zhi Bo Han
- The State Key Laboratory of Experimental Hematology, Institute of Hematology and Hospital of Blood Disease, Chinese Academy of Medical Science & Peking Union Medical College, No. 288, Nanjing Road, Heping District, Tianjin, 300020, China.
| | - Zhong Chao Han
- The State Key Laboratory of Experimental Hematology, Institute of Hematology and Hospital of Blood Disease, Chinese Academy of Medical Science & Peking Union Medical College, No. 288, Nanjing Road, Heping District, Tianjin, 300020, China. .,Beijing Institute of Health and Stem Cells, No. 1, Kangding Road, BDA, Beijing, 100176, China.
| |
Collapse
|
7
|
Bakondi B, Girman S, Lu B, Wang S. Multimodal Delivery of Isogenic Mesenchymal Stem Cells Yields Synergistic Protection from Retinal Degeneration and Vision Loss. Stem Cells Transl Med 2016; 6:444-457. [PMID: 28191768 PMCID: PMC5442813 DOI: 10.5966/sctm.2016-0181] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 07/28/2016] [Indexed: 12/30/2022] Open
Abstract
We previously demonstrated that subretinal injection (SRI) of isogenic mesenchymal stem cells (MSCs) reduced the severity of retinal degeneration in Royal College of Surgeons rats in a focal manner. In contrast, intravenous MSC infusion (MSCIV ) produced panoptic retinal rescue. By combining these treatments, we now show that MSCIV supplementation potentiates the MSCSRI -mediated rescue of photoreceptors and visual function. Electrophysiological recording from superior colliculi revealed 3.9-fold lower luminance threshold responses (LTRs) and 22% larger functional rescue area from combined treatment compared with MSCSRI alone. MSCIV supplementation of sham (saline) injection also improved LTRs 3.4-fold and enlarged rescue areas by 27% compared with saline alone. We confirmed the involvement of MSC chemotaxis for vision rescue by modulating C-X-C chemokine receptor 4 activity before MSCIV but without increased retinal homing. Rather, circulating platelets and lymphocytes were reduced 3 and 7 days after MSCIV , respectively. We demonstrated MSCSRI -mediated paracrine support of vision rescue by SRI of concentrated MSC-conditioned medium and assessed function by electroretinography and optokinetic response. MSC-secreted peptides increased retinal pigment epithelium (RPE) metabolic activity and clearance of photoreceptor outer segments ex vivo, which was partially abrogated by antibody blockade of trophic factors in concentrated MSC-conditioned medium, or their cognate receptors on RPE. These data support multimodal mechanisms for MSC-mediated retinal protection that differ by administration route and synergize when combined. Thus, using MSCIV as adjuvant therapy might improve cell therapies for retinal dystrophy and warrants further translational evaluation. Stem Cells Translational Medicine 2017;6:444-457.
Collapse
Affiliation(s)
- Benjamin Bakondi
- Board of Governors Regenerative Medicine Institute, Department of Biomedical Sciences, Cedars‐Sinai Medical Center, Los Angeles, California, USA
| | - Sergey Girman
- Board of Governors Regenerative Medicine Institute, Department of Biomedical Sciences, Cedars‐Sinai Medical Center, Los Angeles, California, USA
| | - Bin Lu
- Board of Governors Regenerative Medicine Institute, Department of Biomedical Sciences, Cedars‐Sinai Medical Center, Los Angeles, California, USA
| | - Shaomei Wang
- Board of Governors Regenerative Medicine Institute, Department of Biomedical Sciences, Cedars‐Sinai Medical Center, Los Angeles, California, USA
| |
Collapse
|
8
|
Pineault N, Abu-Khader A. Advances in umbilical cord blood stem cell expansion and clinical translation. Exp Hematol 2015; 43:498-513. [DOI: 10.1016/j.exphem.2015.04.011] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2015] [Revised: 04/23/2015] [Accepted: 04/24/2015] [Indexed: 11/24/2022]
|
9
|
Hatami J, Andrade PZ, Alves de Matos AP, Djokovic D, Lilaia C, Ferreira FC, Cabral JMS, da Silva CL. Developing a co-culture system for effective megakaryo/thrombopoiesis from umbilical cord blood hematopoietic stem/progenitor cells. Cytotherapy 2015; 17:428-42. [PMID: 25680300 DOI: 10.1016/j.jcyt.2014.12.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Revised: 12/18/2014] [Accepted: 12/23/2014] [Indexed: 12/12/2022]
Abstract
BACKGROUND AIMS Platelet transfusion can be a life-saving procedure in different medical settings. Thus, there is an increasing demand for platelets, of which shelf-life is only 5 days. The efficient ex vivo biomanufacturing of platelets would allow overcoming the shortages of donated platelets. METHODS We exploited a two-stage culture protocol aiming to study the effect of different parameters on the megakaryo/thrombopoiesis ex vivo. In the expansion stage, human umbilical cord blood (UCB)-derived CD34(+)-enriched cells were expanded in co-culture with human bone marrow mesenchymal stromal cells (BM-MSCs). The megakaryocytic commitment and platelet generation were studied, considering the impact of exogenous addition of thrombopoietin (TPO) in the expansion stage and a cytokine cocktail (Cyt) including TPO and interleukin-3 in the differentiation stage, with the use of different culture medium formulations, and in the presence/absence of BM-MSCs (direct versus non-direct cell-cell contact). RESULTS Our results suggest that an early megakaryocytic commitment, driven by TPO addition during the expansion stage, further enhanced megakaryopoiesis. Importantly, the results suggest that co-culture with BM-MSCs under serum-free conditions combined with Cyt addition, in the differentiation stage, significantly improved the efficiency yield of megakaryo/thrombopoiesis as well as increasing %CD41, %CD42b and polyploid content; in particular, direct contact of expanded cells with BM-MSCs, in the differentiation stage, enhanced the efficiency yield of megakaryo/thrombopoiesis, despite inhibiting their maturation. CONCLUSIONS The present study established an in vitro model for the hematopoietic niche that combines different biological factors, namely, the presence of stromal/accessory cells and biochemical cues, which mimics the BM niche and enhances an efficient megakaryo/thrombopoiesis process ex vivo.
Collapse
Affiliation(s)
- Javad Hatami
- Department of Bioengineering and IBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - Pedro Z Andrade
- Department of Bioengineering and IBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - António Pedro Alves de Matos
- Centro de Estudos do Ambiente e do Mar (CESAM/FCUL)-Faculdade de Ciências da Universidade de Lisboa and Centro de Investigação Interdisciplinar Egas Moniz (CiiEM), Campus Universitário, Quinta da Granja, Monte de Caparica, Caparica, Portugal
| | - Dusan Djokovic
- Department of Obstetrics, Centro Hospitalar Lisboa Ocidental E.P.E., Hospital São Francisco Xavier, Lisboa, Portugal
| | - Carla Lilaia
- Department of Obstetrics, Centro Hospitalar Lisboa Ocidental E.P.E., Hospital São Francisco Xavier, Lisboa, Portugal
| | - Frederico Castelo Ferreira
- Department of Bioengineering and IBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal.
| | - Joaquim M S Cabral
- Department of Bioengineering and IBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - Cláudia L da Silva
- Department of Bioengineering and IBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|
10
|
Ectopic Osteogenesis of Allogeneic Bone Mesenchymal Stem Cells Loading on β-Tricalcium Phosphate in Canines. Plast Reconstr Surg 2014; 133:142e-153e. [DOI: 10.1097/01.prs.0000436841.69752.37] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
11
|
CD106 identifies a subpopulation of mesenchymal stem cells with unique immunomodulatory properties. PLoS One 2013; 8:e59354. [PMID: 23555021 PMCID: PMC3595282 DOI: 10.1371/journal.pone.0059354] [Citation(s) in RCA: 150] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Accepted: 02/13/2013] [Indexed: 01/27/2023] Open
Abstract
Mesenchymal stem cells (MSCs) reside in almost all of the body tissues, where they undergo self-renewal and multi-lineage differentiation. MSCs derived from different tissues share many similarities but also show some differences in term of biological properties. We aim to search for significant differences among various sources of MSCs and to explore their implications in physiopathology and clinical translation. We compared the phenotype and biological properties among different MSCs isolated from human term placental chorionic villi (CV), umbilical cord (UC), adult bone marrow (BM) and adipose (AD). We found that CD106 (VCAM-1) was expressed highest on the CV-MSCs, moderately on BM-MSCs, lightly on UC-MSCs and absent on AD-MSCs. CV-MSCs also showed unique immune-associated gene expression and immunomodulation. We thus separated CD106(+)cells and CD106(-)cells from CV-MSCs and compared their biological activities. Both two subpopulations were capable of osteogenic and adipogenic differentiation while CD106(+)CV-MSCs were more effective to modulate T helper subsets but possessed decreased colony formation capacity. In addition, CD106(+)CV-MSCs expressed more cytokines than CD106(-)CV-MSCs. These data demonstrate that CD106 identifies a subpopulation of CV-MSCs with unique immunoregulatory activity and reveal a previously unrecognized mechanism underlying immunomodulation of MSCs.
Collapse
|
12
|
Celebi B, Mantovani D, Pineault N. Irradiated Mesenchymal Stem Cells improve the ex vivo expansion of Hematopoietic Progenitors by partly mimicking the bone marrow endosteal environment. J Immunol Methods 2011; 370:93-103. [PMID: 21699899 DOI: 10.1016/j.jim.2011.06.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2011] [Revised: 04/19/2011] [Accepted: 06/03/2011] [Indexed: 12/12/2022]
Abstract
Mesenchymal Stem Cells (MSCs) regulate the growth and differentiation of Hematopoietic Progenitor cells (HPCs) through the release of soluble factors or through their differentiation into osteoblasts. We recently demonstrated that expansion of megakaryocyte (MK) progenitors ex vivo had reached a plateau when CD34(+) cells were grown with two optimized cytokine cocktails developed for the growth of MK. Hence, we sought to determine whether co-culture of CD34(+) cells with Bone Marrow (BM) MSCs could further increase the expansion of myeloid and MK progenitors. First, we tested the impact of cell-cell contact and pre-irradiation treatment of the MSCs to identify the condition that best supports HPC expansion. This screen revealed that HPC expansions were generally greater in the non-contact conditions, and that pre-irradiation of the MSCs appeared to be of added benefits. Improved expansion of both myeloid and MK progenitors in co-culture with irradiated MSCs without contact was subsequently confirmed. Next, cytokine array profiling was carried out to investigate why irradiation promoted progenitor expansion. This revealed that the levels of as many as 33 factors were potentially altered. ELISA confirmed the significant up regulation of NT-3 and IGFBP-2. Since, these factors are known to be released by and important for osteogenic and endothelial cells, we investigated and confirmed that irradiation of MSCs induced their rapid differentiation into osteogenic-like cells, but not into endothelial-like cells. Supporting this finding, expansions of myeloid and MK progenitors were increased when CD34(+) cells were co-culture with MSCs-derived osteoblasts. Altogether, these results indicate that the improved expansion of HPCs obtained with irradiated MSCs is due in part to their differentiation into osteoblast-like cells, thereby recreating an endosteal-like environment that provides improved support for HPCs expansion.
Collapse
Affiliation(s)
- Betül Celebi
- Hema-Quebec, Research & Development Department, Quebec City, PQ, Canada, G1V 5C3
| | | | | |
Collapse
|
13
|
Yu J, Zheng C, Ren X, Li J, Liu M, Zhang L, Liang L, Du W, Han ZC. Intravenous administration of bone marrow mesenchymal stem cells benefits experimental autoimmune myasthenia gravis mice through an immunomodulatory action. Scand J Immunol 2010; 72:242-9. [PMID: 20696022 DOI: 10.1111/j.1365-3083.2010.02445.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Mesenchymal stem cells (MSC) are potent in immunomodulation. It has been proven that MSC functioned to correct immune disorder in several immune diseases. Here, we tested the hypothesis that MSC from human bone marrow (hMSC) can provide a potential therapy for experimental autoimmune myasthenia gravis (EAMG). EAMG mice model was established by subcutaneous injection of synthetic analogue of acetylcholine receptor (AchR), then, hMSC were intravenously delivered into these mice repeatedly. The results showed that hMSC could specifically home to spleen tissue and hMSC treatment significantly improved the functional deficits of EAMG mice. In addition, AchR antibody level was dramatically decreased in cell-treated group when compared with untreated control on 10 days after the second cell injection. Moreover, both in vivo and in vitro mixed lymphocyte proliferation assays revealed that hMSC could definitely inhibit the proliferation of AchR-specific lymphocyte. In conclusion, our study demonstrated that hMSC treatment was therapeutically useful in autoimmune myasthenia gravis mice, and the underlying mechanism may relate with their immunomodulatory potential.
Collapse
Affiliation(s)
- J Yu
- State Key Laboratory of Experimental Hematology, Institute of Hematology & Hospital of Blood Diseases, Chinese Academy of Medical Sciences & Peking Union, Medical College (CAMS&PUMC), Tianjin, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|