1
|
Beura SK, Dhapola R, Panigrahi AR, Yadav P, Reddy DH, Singh SK. Redefining oxidative stress in Alzheimer's disease: Targeting platelet reactive oxygen species for novel therapeutic options. Life Sci 2022; 306:120855. [DOI: 10.1016/j.lfs.2022.120855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 07/18/2022] [Accepted: 07/28/2022] [Indexed: 10/16/2022]
|
2
|
Zhang Y, Li CB, Xu HS, Lin BH, Chen JC, Zhao YM, Yang JX, Zhang XF, Shi YS. Pterosin sesquiterpenes and lignans from Pteris laeta Wall. and their neuroprotective bioactivity. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
3
|
Thonda S, Puttapaka SN, Kona SV, Kalivendi SV. Extracellular-Signal-Regulated Kinase Inhibition Switches APP Processing from β- to α-Secretase under Oxidative Stress: Modulation of ADAM10 by SIRT1/NF-κB Signaling. ACS Chem Neurosci 2021; 12:4175-4186. [PMID: 34647720 DOI: 10.1021/acschemneuro.1c00582] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The sequential cleavage of full-length amyloid precursor protein (APP) by secretases has been at the center of efforts for understanding the onset of Alzheimer's disease (AD). A decrease in α-secretase activity was observed during the progression of AD; however, the precise molecular mechanism involved in the downregulation of α-secretase under oxidative stress is not fully understood. In the present study, we have demonstrated that pharmacological inhibition of mitogen-activated protein kinase/extracellular-signal-regulated kinase (MAPK/ERK) by mitogen-activated protein kinase kinase-1 (MEK-1) inhibitor (PD98059) restored the expression of a disintegrin and metalloproteinase 10 (ADAM10) with a concomitant decrease in β-site APP cleavage enzyme 1 (BACE1) under oxidative stress. Silent mating-type information regulation 2 homologue 1 (SIRT1) activation by resveratrol also mitigated alterations in secretase levels through MAPK/ERK signaling. Intracerebroventricular (ICV) administration of streptozotocin in rats showed amyloidogenic processing of APP and altered the SIRT1/ERK axis in the hippocampus. We also observed that the ADAM10 expression is controlled at the transcriptional level by oxidative stress. Using the luciferase reporter activity of ADAM10 promoter deletion constructs, we have identified the region 290 bp upstream of the transcription start site (TSS) possessing regulatory elements responsible for ADAM10 downregulation with hydrogen peroxide (H2O2) treatment. Further, bioinformatics analysis revealed the presence of putative nuclear factor kappa B (NF-κB) binding sites in the ADAM10 promoter region. Treatment of cortical neurons with the NF-κB inhibitor (Bay 11-7082) mitigated the transcriptional upregulation of ADAM10 by PD98059. Overall, our findings suggest that SIRT1/ERK/NF-κB axis contributes to the downregulation of ADAM10, resulting in the shift from nonamyloidogenic to amyloidogenic processing of APP under oxidative stress.
Collapse
Affiliation(s)
- Swaroop Thonda
- Department of Applied Biology, CSIR─Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Srinivas N. Puttapaka
- Department of Applied Biology, CSIR─Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Swathi V. Kona
- Department of Applied Biology, CSIR─Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Shasi V. Kalivendi
- Department of Applied Biology, CSIR─Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
4
|
Ferrer-Raventós P, Beyer K. Alternative platelet activation pathways and their role in neurodegenerative diseases. Neurobiol Dis 2021; 159:105512. [PMID: 34537329 DOI: 10.1016/j.nbd.2021.105512] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 09/08/2021] [Accepted: 09/14/2021] [Indexed: 12/24/2022] Open
Abstract
PURPOSE OF THE REVIEW The study of platelets in the context of neurodegenerative diseases is intensifying, and increasing evidence suggests that platelets may play an important role in the pathogenesis of neurodegenerative disorders. Therefore, we aim to provide a comprehensive overview of the role of platelets and their diverse activation pathways in the development of these diseases. RECENT FINDINGS Platelets participate in synaptic plasticity, learning, memory, and platelets activated by exercise promote neuronal differentiation in several brain regions. Platelets also contribute to the immune response by modulating their surface protein profile and releasing pro- and anti-inflammatory mediators. In Alzheimer's disease, increased levels of platelet amyloid precursor protein raise the production of amyloid-beta peptides promoting platelet activation, triggering at the same time amyloid-beta fibrillation. In Parkinson's disease, increased platelet α-synuclein is associated with elevated ROS production and mitochondrial dysfunction. SUMMARY In this review, we revise different platelet activation pathways, those classically involved in hemostasis and wound healing, and alternative activation pathways recently described in the context of neurodegenerative diseases, especially in Alzheimer's disease.
Collapse
Affiliation(s)
- Paula Ferrer-Raventós
- Memory Unit, Neurology Department and Sant Pau Biomedical Research Institute, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain; Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Katrin Beyer
- Department of Pathology, Germans Trias i Pujol Research Institute (IGTP), Universitat Autònoma de Barcelona (UAB), 08916 Badalona, Barcelona, Spain.
| |
Collapse
|
5
|
Wong KY, Roy J, Fung ML, Heng BC, Zhang C, Lim LW. Relationships between Mitochondrial Dysfunction and Neurotransmission Failure in Alzheimer's Disease. Aging Dis 2020; 11:1291-1316. [PMID: 33014538 PMCID: PMC7505271 DOI: 10.14336/ad.2019.1125] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 11/25/2019] [Indexed: 12/12/2022] Open
Abstract
Besides extracellular deposition of amyloid beta and formation of phosphorylated tau in the brains of patients with Alzheimer's disease (AD), the pathogenesis of AD is also thought to involve mitochondrial dysfunctions and altered neurotransmission systems. However, none of these components can describe the diverse cognitive, behavioural, and psychiatric symptoms of AD without the pathologies interacting with one another. The purpose of this review is to understand the relationships between mitochondrial and neurotransmission dysfunctions in terms of (1) how mitochondrial alterations affect cholinergic and monoaminergic systems via disruption of energy metabolism, oxidative stress, and apoptosis; and (2) how different neurotransmission systems drive mitochondrial dysfunction via increasing amyloid beta internalisation, oxidative stress, disruption of mitochondrial permeabilisation, and mitochondrial trafficking. All these interactions are separately discussed in terms of neurotransmission systems. The association of mitochondrial dysfunctions with alterations in dopamine, norepinephrine, and histamine is the prospective goal in this research field. By unfolding the complex interactions surrounding mitochondrial dysfunction in AD, we can better develop potential treatments to delay, prevent, or cure this devastating disease.
Collapse
Affiliation(s)
- Kan Yin Wong
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.
| | - Jaydeep Roy
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.
| | - Man Lung Fung
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.
| | - Boon Chin Heng
- Peking University School of Stomatology, Beijing, China.
| | - Chengfei Zhang
- Endodontology, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China.
| | - Lee Wei Lim
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
6
|
Tereshkina EB, Boksha IS, Prokhorova TA, Savushkina OK, Burbaeva GS, Morozova MA, Mukaetova-Ladinska EB. Decrease in 130 kDa- amyloid protein precursor protein (APP) and APP protein ratio in schizophrenia platelets. Neurosci Lett 2020; 725:134914. [PMID: 32194134 DOI: 10.1016/j.neulet.2020.134914] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 03/05/2020] [Accepted: 03/15/2020] [Indexed: 11/17/2022]
Abstract
Cognitive dysfunction is common among people with schizophrenia. The molecular substrates underlying this remain poorly understood. To address this, we analyzed changes in amyloid precursor protein (APP) in platelets of people with acute schizophrenia (n=24) and control subjects (n=20) by ECL-immunoblotting. APP bands corresponding to molecular masses of ∼130, ∼110 and ∼100 kDa, and the APP ratio (APPr: highest APP molecular mass vs lowest APP molecular mass bands) were quantified. The intensity of 130 kDa-APP and the APPr were significantly reduced in schizophrenia patients compared to control subjects. The age-associated decreases in the 130 kDa, ∼110 kDa proteins and APPr were present in patients, but not controls. Our results confirm peripheral APP metabolism is altered in people with schizophrenia. Further work is now warranted on a larger sample of diseased subjects with detailed cognitive assessment to determine the APP role in cognitive processing in schizophrenia, how it is related to severity and disease progression, as well as outcomes.
Collapse
Affiliation(s)
| | - I S Boksha
- Mental Health Research Centre, Moscow, Russia; N. F. Gamaleya National Research Center of Epidemiology and Microbiology, Ministry of Health of the Russian Federation, 123098 Moscow, Russia.
| | | | | | | | | | - E B Mukaetova-Ladinska
- Department of Neuroscience, Psychology and Behavior, University of Leicester, Leicester, LE1 7RH, UK; The Evington Centre, Leicestershire Partnership NHS Trust, Leicester General Hospital, Gwendolen Rd, Leicester LE5 4QG, UK
| |
Collapse
|
7
|
Methamphetamine regulates βAPP processing in human neuroblastoma cells. Neurosci Lett 2019; 701:20-25. [PMID: 30771376 DOI: 10.1016/j.neulet.2019.02.023] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 02/05/2019] [Accepted: 02/12/2019] [Indexed: 12/20/2022]
Abstract
Methamphetamine is a potent and highly addictive psychostimulant whose abuse has turned out to be a global health hazard. The multitudinous effects it exerts at the cellular level induces neurotoxic responses in the human brain, ultimately leading to neurocognitive disorders. Strikingly, brain changes, tissue damage and neuropsychological symptoms due to Meth exposure compels and necessitates to link the probability of risk of developing premature Alzheimer's disease, a progressive neurodegenerative disorder characterized by amyloid plaques composed of amyloid-β peptides and clinical dementia. These peptides are derived from sequential cleavages of the β-amyloid precursor protein by β- and γ-secretases. Previous studies reveals evidence for both positive and negative effects of Meth pertaining to cognitive functioning based on the dosage paradigm and duration of exposure revealing a beneficial psychotropic profile under some conditions and deleterious cognitive deficits under some others. In this context, we proposed to examine the effect of Meth on βAPP metabolism and βAPP-cleaving secretases in the human neuroblastoma SH-SY5Y cell line. Our results showed that Meth dose-dependently increases BACE1 expression and catalytic activity, while its effect on the α-cleavage of βAPP and on the expression and catalytic activity of the main α-secretase ADAM10 display a bell-curve shape. To our knowledge, the present study is the first to demonstrate that Meth can control βAPP-cleaving secretases. Moreover, we propose from these findings that the deleterious effect of Meth on cognitive decline might be an outcome of high dosage paradigm whereas acute and short-term drug use which stimulated sAPPα might produce improvements in cognition in disorders such as AD.
Collapse
|
8
|
Finch CE, Shams S. Apolipoprotein E and Sex Bias in Cerebrovascular Aging of Men and Mice. Trends Neurosci 2016; 39:625-637. [PMID: 27546867 PMCID: PMC5040339 DOI: 10.1016/j.tins.2016.07.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 06/30/2016] [Accepted: 07/01/2016] [Indexed: 11/18/2022]
Abstract
Alzheimer disease (AD) research has mainly focused on neurodegenerative processes associated with the classic neuropathologic markers of senile plaques and neurofibrillary tangles. Additionally, cerebrovascular contributions to dementia are increasingly recognized, particularly from cerebral small vessel disease (SVD). Remarkably, in AD brains, the apolipoprotein E (ApoE) ɛ4 allele shows male excess for cerebral microbleeds (CMBs), a marker of SVD, which is opposite to the female excess of plaques and tangles. Mouse transgenic models add further complexities to sex-ApoE ɛ4 allele interactions, with female excess of both CMBs and brain amyloid. We conclude that brain aging and AD pathogenesis cannot be understood in humans without addressing major gaps in the extent of sex differences in cerebrovascular pathology.
Collapse
Affiliation(s)
- Caleb E Finch
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA; Department of Biological Sciences, Dornsife College, University of Southern California, Los Angeles, CA, USA.
| | - Sara Shams
- Department of Clinical Science, Intervention, and Technology, Division of Medical Imaging and Technology, Karolinska Institutet, Stockholm, Sweden; Department of Radiology, Karolinska University Hospital, Stockholm, Sweden.
| |
Collapse
|
9
|
Hajipour S, Sarkaki A, Farbood Y, Eidi A, Mortazavi P, Valizadeh Z. Effect of Gallic Acid on Dementia Type of Alzheimer Disease in Rats: Electrophysiological and Histological Studies. Basic Clin Neurosci 2016; 7:97-106. [PMID: 27303604 PMCID: PMC4892325 DOI: 10.15412/j.bcn.03070203] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Revised: 07/25/2015] [Accepted: 09/01/2015] [Indexed: 12/25/2022] Open
Abstract
INTRODUCTION To study the effect of gallic acid (GA) on hippocampal long-term potentiation (LTP) and histological changes in animal model of Alzheimer disease (AD) induced by beta-amyloid (Aβ). METHODS Sixty-four adult male Wistar rats (300±20 g) were divided into 8 groups: 1) Control (Cont); 2) AD; 3) Sham; 4-7) AD+GA (50, 100, and 200 mg/kg for 10 days, orally) or vehicle, 8) Cont+GA100, Aβ (1μg/μL in each site) was infused into hippocampus bilaterally. Changes of amplitude and slope of LTP induced in hippocampal dentate gyrus (DG) were evaluated by high frequency stimulation (HFS) of perforant path (PP). RESULTS Data showed that LTP amplitude and area under curve significantly impaired in AD rats (P<0.001), while significantly improved in AD rats treated with GA (P<0.05, P<0.01). CONCLUSION Current findings suggest that GA reduces neural damage and brain amyloid neuropathology and improves cognitive function via free radicals scavenging and inhibiting oligomerization of Aβ but with no effect on healthy rats.
Collapse
Affiliation(s)
- Somayeh Hajipour
- Physiology Research Center, Department of Physiology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Alireza Sarkaki
- Physiology Research Center, Department of Physiology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Yaghoob Farbood
- Physiology Research Center, Department of Physiology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Akram Eidi
- Department of Biology, Sciences & Research Branch, Islamic Azad University, Tehran, Iran
| | - Pejman Mortazavi
- Department of Pathology, Faculty of Specialized Veterinary Science, Science & Research Branch, Islamic Azad University, Tehran, Iran
| | - Zohreh Valizadeh
- Department of Nursing and Midwifery, Dezfoul Branch, Islamic Azad University, Dezfoul, Iran
| |
Collapse
|
10
|
Plagg B, Marksteiner J, Kniewallner KM, Humpel C. Platelet dysfunction in hypercholesterolemia mice, two Alzheimer's disease mouse models and in human patients with Alzheimer's disease. Biogerontology 2015; 16:543-58. [PMID: 25947203 PMCID: PMC4487346 DOI: 10.1007/s10522-015-9580-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 04/28/2015] [Indexed: 12/22/2022]
Abstract
Alzheimer’s disease (AD) is a severe neurodegenerative disorder characterized mainly by accumulation of amyloid-β plaques and neurofibrillary tangles, synaptic and neuronal loss. Blood platelets contain the neurotransmitter serotonin and amyloid-precursor protein (APP), and may thus be useful as a peripheral biomarker for AD. The aim of the present study was to functionally characterize platelets by FACS, to examine alterations in APP expression and secretion, and to measure serotonin levels in hypercholesterolemia mice with AD-like pathology and in two AD mouse models, the triple transgenic AD model (3xTg) and the APP overexpressing AD model with the Swedish–Dutch–Iowa mutations (APP_SweDI). These data are supplemented with epidermal growth factor (EGF) levels and compared with changes observed in platelets of patients with AD. We observed decreased platelet APP isoforms in 3xTg mice and patients with AD when analysed by means of Western blot. In patients, a significant increase of APP levels was observed when assessed by ELISA. Secreted APPβ proved to be altered amongst all three animal models of AD at different time points and in human patients with AD. Serotonin levels were only reduced in 7 and 14 month old 3xTg mice. Moreover, we found significantly lower EGF levels in human AD patients and could thereby reproduce previous findings. Taken together, our data confirm that platelets are dysfunctional in AD, however, results from AD animal models do not coincide in all aspects, and markedly differ when compared to AD patients. We support previous data that APP, as well as EGF, could become putative biomarkers for diagnosing AD in human platelets.
Collapse
Affiliation(s)
- Barbara Plagg
- Laboratory of Psychiatry and Experimental Alzheimer's Research, Department of Psychiatry and Psychotherapy, Medical University of Innsbruck, Anichstr. 35, 6020, Innsbruck, Austria
| | | | | | | |
Collapse
|
11
|
Affiliation(s)
- Maria Hepel
- Department of Chemistry, State University of New York at Potsdam, Potsdam, New York 13676
- Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, New York 13699-5810
| | - Silvana Andreescu
- Department of Chemistry, State University of New York at Potsdam, Potsdam, New York 13676
- Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, New York 13699-5810
| |
Collapse
|
12
|
Marksteiner J, Humpel C. Platelet-derived secreted amyloid-precursor protein-β as a marker for diagnosing Alzheimer's disease. Curr Neurovasc Res 2014; 10:297-303. [PMID: 23937201 DOI: 10.2174/15672026113109990022] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Revised: 07/31/2013] [Accepted: 08/07/2013] [Indexed: 01/22/2023]
Abstract
A marker of Alzheimer's disease (AD) with a high sensitivity and specificity would facilitate a diagnosis at early stages. Blood platelets may be of particular interest in search of biomarkers, because they express amyloid-precursor protein (APP), and display a dysfunctional processing in AD. The aim of the present study is to establish and validate an assay for secreted amyloid-precursor protein (sAPP)-α and -β in platelets of AD and mild cognitively impaired (MCI) subjects, compared to healthy young and old controls. Freshly isolated platelet extracts (25 µg) were incubated with or without recombinant BACE1 (beta-site APP-Cleaving Enzyme; β-secretase, 8U) at 37°C and low pH and the levels of sAPP-α and sAPP-b were measured by specific ELISAs. Our data show that sAPP-α levels were not different between AD, MCI and control subjects. However, sAPP-β levels in MCI and AD were significantly elevated relative to controls. When recombinant BACE1 was added, no changes were seen in sAPP-α levels, but the processed sAPP-β levels were again markedly increased. The sAPP-β processing was specific and selective after 2.5 hours at 37°C, and was possibly mediated by exogenous BACE1, because it was blocked by a BACE1 inhibitor and BACE1 enzyme levels were enhanced in AD patients. Our data reveal that quantitive analysis of platelet sAPP-β assay by ELISA may be a novel diagnostic biomarker for MCI and AD.
Collapse
Affiliation(s)
- Josef Marksteiner
- Department of Psychiatry and Psychotherapy, Anichstr. 35, A-6020 Innsbruck, Austria.
| | | |
Collapse
|
13
|
Ehrlich D, Humpel C. Effects of ethanol on aggregation, serotonin release, and amyloid precursor protein processing in rat and human platelets. Platelets 2013; 25:16-22. [PMID: 23402285 DOI: 10.3109/09537104.2013.764979] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
It is known that oxidative stress leads to amyloid precursor protein (APP) dysregulation in platelets. Ethanol (EtOH) is a vascular risk factor and induces oxidative stress. The aim of the present study was thus to investigate whether EtOH affects APP processing in rat and human platelets. Platelets were exposed to 50 mM EtOH with and without 2 mM calcium-chloride (CaCl₂) for 20 or 180 minutes at 37°C. Platelet aggregation, serotonin release and APP isoforms 130 and 106/110 kDa were analyzed. As a control, 100 mM H₂O₂ was tested in rat platelets. Our data show that EtOH alone did not affect any of the analyzed parameters, whereas CaCl₂ significantly increased aggregation of rat and human platelets. In addition, CaCl₂ alone enhanced serotonin release in rat platelets. EtOH counteracted CaCl₂-induced aggregation and serotonin release. In the presence of CaCl₂, EtOH reduced the 130 kDa APP isoform in rat and human platelets. In conclusion, this study shows that in the presence of CaCl₂, EtOH affects the platelet function and APP processing in rat and human platelets.
Collapse
Affiliation(s)
- Daniela Ehrlich
- Laboratory of Psychiatry and Exp. Alzheimer's Research, Department of Psychiatry and Psychotherapy, Innsbruck Medical University , Innsbruck , Austria
| | | |
Collapse
|
14
|
Hochstrasser T, Ehrlich D, Sperner-Unterweger B, Humpel C. Antidepressants and anti-inflammatory drugs differentially reduce the release of NGF and BDNF from rat platelets. PHARMACOPSYCHIATRY 2012; 46:29-34. [PMID: 22699957 DOI: 10.1055/s-0032-1314843] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Platelets store serotonin and brain-derived neurotrophic factor (BDNF) as well as amyloid precursor protein and nerve growth factor (NGF), thus platelets are of special interest in depression and Alzheimer's disease, respectively. Both diseases are associated with inflammation and release of NGF or BDNF from platelets may play a potent role. METHODS Platelets were isolated from adult Sprague-Dawley rats and were incubated with anti-inflammatory drugs (ibuprofen and indomethacin) and antidepressants (citalopram, paroxetine and sertraline) (final concentration: 0.3 µM) with or without 2 mM calcium chloride. The release of NGF and BDNF was analyzed in comparison to serotonin release from rat platelets after 10 or 60 min. RESULTS Spontaneous release of serotonin and BDNF was approximately 10-15% of total serotonin or BDNF content in platelets, but nearly all NGF was released within 10 min. All antidepressants increased the serotonin release from rat platelets. NGF release was reduced by sertraline, paroxetine and ibuprofen, but only when calcium was present, except for sertraline after 10 min. BDNF release was only reduced by ibuprofen when calcium was added. CONCLUSION We conclude that antidepressants and anti-inflammatory drugs differentially influence the NGF and BDNF release, in a time-, dose- and calcium-specific pattern.
Collapse
Affiliation(s)
- T Hochstrasser
- Department of Psychiatry and Psychotherapy, Laboratory of Psychiatry and Exp. Alzheimer's Research, Innsbruck Medical University, Innsbruck, Austria
| | | | | | | |
Collapse
|