1
|
Hong SH, Singh S, Tripathi BN, Mondal S, Lee S, Jung HS, Cho C, Kaur S, Kim JH, Lee S, Bai HW, Bae HJ, Lee SY, Lee SS, Chung BY. Functional properties and the oligomeric state of alkyl hydroperoxide reductase subunit F (AhpF) in Pseudomonas aeruginosa. PROTOPLASMA 2020; 257:807-817. [PMID: 31909437 DOI: 10.1007/s00709-019-01465-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 11/25/2019] [Indexed: 06/10/2023]
Abstract
Alkyl hydroperoxide reductase subunit F (AhpF) is a well-known flavoprotein that transfers electrons from pyridine nucleotides to the peroxidase protein AhpC via redox-active disulfide centers to detoxify hydrogen peroxide. However, study of AhpF has historically been limited to particular eubacteria, and the connection between the functional and structural properties of AhpF remains unknown. The present study demonstrates the dual function of Pseudomonas aeruginosa AhpF (PaAhpF) as a reductase and a molecular chaperone. It was observed that the functions of PaAhpF are closely linked with its structural status. The reductase and foldase chaperone function of PaAhpF predominated for its low-molecular-weight (LMW) form, whereas the holdase chaperone function of PaAhpF was found associated with its high-molecular-weight (HMW) complex. Further, the present study also demonstrates the multiple function of PaAhpF in controlling oxidative and heat stresses in P. aeruginosa resistance to oxidative and heat stress.
Collapse
Affiliation(s)
- Sung Hyun Hong
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, 29 Geumgu-gil, Jeongeup, 56212, South Korea
- Department of Bioenergy Science and Technology, Chonnam National University, Gwangju, 61186, South Korea
| | - Sudhir Singh
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, 29 Geumgu-gil, Jeongeup, 56212, South Korea
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai, 400085, India
| | - Bhumi Nath Tripathi
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, 29 Geumgu-gil, Jeongeup, 56212, South Korea
- Department of Biotechnology, Indira Gandhi National Tribal University, Amarkantak, 484887, India
| | - Suvendu Mondal
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, 29 Geumgu-gil, Jeongeup, 56212, South Korea
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai, 400085, India
| | - Sangmin Lee
- Department of Biochemistry, College of Natural Sciences, Kangwon National University, Chuncheon, 24341, South Korea
| | - Hyun Suk Jung
- Department of Biochemistry, College of Natural Sciences, Kangwon National University, Chuncheon, 24341, South Korea
| | - Chuloh Cho
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, 29 Geumgu-gil, Jeongeup, 56212, South Korea
| | - Shubhpreet Kaur
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, 29 Geumgu-gil, Jeongeup, 56212, South Korea
- Department of Radiation Science and Technology, University of Science and Technology, Daejeon, 34113, South Korea
| | - Jin-Hong Kim
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, 29 Geumgu-gil, Jeongeup, 56212, South Korea
| | - Sungbeom Lee
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, 29 Geumgu-gil, Jeongeup, 56212, South Korea
- Department of Radiation Science and Technology, University of Science and Technology, Daejeon, 34113, South Korea
| | - Hyoung-Woo Bai
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, 29 Geumgu-gil, Jeongeup, 56212, South Korea
- Department of Radiation Science and Technology, University of Science and Technology, Daejeon, 34113, South Korea
| | - Hyeun-Jong Bae
- Department of Bioenergy Science and Technology, Chonnam National University, Gwangju, 61186, South Korea
| | - Sang Yeol Lee
- Division of Applied Life Science (BK21Plus), Gyeongsang National University, Jinju, 52828, South Korea
| | - Seung Sik Lee
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, 29 Geumgu-gil, Jeongeup, 56212, South Korea.
- Department of Radiation Science and Technology, University of Science and Technology, Daejeon, 34113, South Korea.
| | - Byung Yeoup Chung
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, 29 Geumgu-gil, Jeongeup, 56212, South Korea.
| |
Collapse
|
2
|
Tata M, Wolfinger MT, Amman F, Roschanski N, Dötsch A, Sonnleitner E, Häussler S, Bläsi U. RNASeq Based Transcriptional Profiling of Pseudomonas aeruginosa PA14 after Short- and Long-Term Anoxic Cultivation in Synthetic Cystic Fibrosis Sputum Medium. PLoS One 2016; 11:e0147811. [PMID: 26821182 PMCID: PMC4731081 DOI: 10.1371/journal.pone.0147811] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 01/08/2016] [Indexed: 01/22/2023] Open
Abstract
The opportunistic human pathogen Pseudomonas aeruginosa can thrive under microaerophilic to anaerobic conditions in the lungs of cystic fibrosis patients. RNASeq based comparative RNA profiling of the clinical isolate PA14 cultured in synthetic cystic fibrosis medium was performed after planktonic growth (OD600 = 2.0; P), 30 min after shift to anaerobiosis (A-30) and after anaerobic biofilm growth for 96h (B-96) with the aim to reveal differentially regulated functions impacting on sustained anoxic biofilm formation as well as on tolerance towards different antibiotics. Most notably, functions involved in sulfur metabolism were found to be up-regulated in B-96 cells when compared to A-30 cells. Based on the transcriptome studies a set of transposon mutants were screened, which revealed novel functions involved in anoxic biofilm growth.In addition, these studies revealed a decreased and an increased abundance of the oprD and the mexCD-oprJ operon transcripts, respectively, in B-96 cells, which may explain their increased tolerance towards meropenem and to antibiotics that are expelled by the MexCD-OprD efflux pump. The OprI protein has been implicated as a target for cationic antimicrobial peptides, such as SMAP-29. The transcriptome and subsequent Northern-blot analyses showed that the abundance of the oprI transcript encoding the OprI protein is strongly decreased in B-96 cells. However, follow up studies revealed that the susceptibility of a constructed PA14ΔoprI mutant towards SMAP-29 was indistinguishable from the parental wild-type strain, which questions OprI as a target for this antimicrobial peptide in strain PA14.
Collapse
Affiliation(s)
- Muralidhar Tata
- Department of Microbiology, Immunobiology and Genetics, Max F. Perutz Laboratories, Center of Molecular Biology, University of Vienna, Dr. Bohr-Gasse 9, 1030 Vienna, Austria
| | - Michael T. Wolfinger
- Center for Integrative Bioinformatics Vienna, Max F. Perutz Laboratories, Center of Molecular Biology, University of Vienna, Dr. Bohr-Gasse 9, 1030 Vienna, Austria
- Institute for Theoretical Chemistry, University of Vienna Währinger Straße 17, 1090 Vienna, Austria
| | - Fabian Amman
- Department of Chromosome Biology, Max F. Perutz Laboratories, Center of Molecular Biology, University of Vienna, Dr. Bohr-Gasse 9, 1030 Vienna, Austria
- Institute for Theoretical Chemistry, University of Vienna Währinger Straße 17, 1090 Vienna, Austria
| | - Nicole Roschanski
- Department of Microbiology, Immunobiology and Genetics, Max F. Perutz Laboratories, Center of Molecular Biology, University of Vienna, Dr. Bohr-Gasse 9, 1030 Vienna, Austria
- Free University Berlin, Institute of Animal Hygiene and Environmental Health, Robert-von-Ostertag-Str. 7–13, 14163 Berlin, Germany
| | - Andreas Dötsch
- Department of Molecular Bacteriology, Helmholtz Center for Infection Research, Inhoffenstraße 7, 38124 Braunschweig, Germany
| | - Elisabeth Sonnleitner
- Department of Microbiology, Immunobiology and Genetics, Max F. Perutz Laboratories, Center of Molecular Biology, University of Vienna, Dr. Bohr-Gasse 9, 1030 Vienna, Austria
| | - Susanne Häussler
- Department of Molecular Bacteriology, Helmholtz Center for Infection Research, Inhoffenstraße 7, 38124 Braunschweig, Germany
- Institute of Molecular Bacteriology, Twincore, Center for Experimental and Clinical Infection Research, Feodor-Lynen-Straße 7, 30625 Hannover, Germany
| | - Udo Bläsi
- Department of Microbiology, Immunobiology and Genetics, Max F. Perutz Laboratories, Center of Molecular Biology, University of Vienna, Dr. Bohr-Gasse 9, 1030 Vienna, Austria
- * E-mail:
| |
Collapse
|
3
|
Protein redox modification as a cellular defense mechanism against tissue ischemic injury. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2014; 2014:343154. [PMID: 24883175 PMCID: PMC4026984 DOI: 10.1155/2014/343154] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Accepted: 04/16/2014] [Indexed: 12/16/2022]
Abstract
Protein oxidative or redox modifications induced by reactive oxygen species (ROS) or reactive nitrogen species (RNS) not only can impair protein function, but also can regulate and expand protein function under a variety of stressful conditions. Protein oxidative modifications can generally be classified into two categories: irreversible oxidation and reversible oxidation. While irreversible oxidation usually leads to protein aggregation and degradation, reversible oxidation that usually occurs on protein cysteine residues can often serve as an “on and off” switch that regulates protein function and redox signaling pathways upon stress challenges. In the context of ischemic tolerance, including preconditioning and postconditioning, increasing evidence has indicated that reversible cysteine redox modifications such as S-sulfonation, S-nitrosylation, S-glutathionylation, and disulfide bond formation can serve as a cellular defense mechanism against tissue ischemic injury. In this review, I highlight evidence of cysteine redox modifications as protective measures in ischemic injury, demonstrating that protein redox modifications can serve as a therapeutic target for attenuating tissue ischemic injury. Prospectively, more oxidatively modified proteins will need to be identified that can play protective roles in tissue ischemic injury, in particular, when the oxidative modifications of such identified proteins can be enhanced by pharmacological agents or drugs that are available or to be developed.
Collapse
|