1
|
Kerkhove L, Geirnaert F, Dufait I, De Ridder M. Ferroptosis: Frenemy of Radiotherapy. Int J Mol Sci 2024; 25:3641. [PMID: 38612455 PMCID: PMC11011408 DOI: 10.3390/ijms25073641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/11/2024] [Accepted: 03/15/2024] [Indexed: 04/14/2024] Open
Abstract
Recently, it was established that ferroptosis, a type of iron-dependent regulated cell death, plays a prominent role in radiotherapy-triggered cell death. Accordingly, ferroptosis inducers attracted a lot of interest as potential radio-synergizing drugs, ultimately enhancing radioresponses and patient outcomes. Nevertheless, the tumor microenvironment seems to have a major impact on ferroptosis induction. The influence of hypoxic conditions is an area of interest, as it remains the principal hurdle in the field of radiotherapy. In this review, we focus on the implications of hypoxic conditions on ferroptosis, contemplating the plausibility of using ferroptosis inducers as clinical radiosensitizers. Furthermore, we dive into the prospects of drug repurposing in the domain of ferroptosis inducers and radiosensitizers. Lastly, the potential adverse effects of ferroptosis inducers on normal tissue were discussed in detail. This review will provide an important framework for subsequent ferroptosis research, ascertaining the feasibility of ferroptosis inducers as clinical radiosensitizers.
Collapse
Affiliation(s)
| | | | | | - Mark De Ridder
- Department of Radiotherapy, UZ Brussel, Vrije Universiteit Brussel, Laarbeeklaan 101, 1090 Brussels, Belgium; (L.K.); (F.G.); (I.D.)
| |
Collapse
|
2
|
Ouellette MM, Zhou S, Yan Y. Cell Signaling Pathways That Promote Radioresistance of Cancer Cells. Diagnostics (Basel) 2022; 12:diagnostics12030656. [PMID: 35328212 PMCID: PMC8947583 DOI: 10.3390/diagnostics12030656] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/26/2022] [Accepted: 03/02/2022] [Indexed: 12/20/2022] Open
Abstract
Radiation therapy (RT) is a standard treatment for solid tumors and about 50% of patients with cancer, including pediatric cancer, receive RT. While RT has significantly improved the overall survival and quality of life of cancer patients, its efficacy has still been markedly limited by radioresistance in a significant number of cancer patients (intrinsic or acquired), resulting in failure of the RT control of the disease. Radiation eradicates cancer cells mainly by causing DNA damage. However, radiation also concomitantly activates multiple prosurvival signaling pathways, which include those mediated by ATM, ATR, AKT, ERK, and NF-κB that promote DNA damage checkpoint activation/DNA repair, autophagy induction, and/or inhibition of apoptosis. Furthermore, emerging data support the role of YAP signaling in promoting the intrinsic radioresistance of cancer cells, which occurs through its activation of the transcription of many essential genes that support cell survival, DNA repair, proliferation, and the stemness of cancer stem cells. Together, these signaling pathways protect cancer cells by reducing the magnitude of radiation-induced cytotoxicity and promoting radioresistance. Thus, targeting these prosurvival signaling pathways could potentially improve the radiosensitivity of cancer cells. In this review, we summarize the contribution of these pathways to the radioresistance of cancer cells.
Collapse
Affiliation(s)
- Michel M. Ouellette
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA;
| | - Sumin Zhou
- Department of Radiation Oncology, University of Nebraska Medical Center, Omaha, NE 68198, USA;
| | - Ying Yan
- Department of Radiation Oncology, University of Nebraska Medical Center, Omaha, NE 68198, USA;
- Correspondence:
| |
Collapse
|
3
|
Wei C, Wang B, Chen ZH, Xiao H, Tang L, Guan JF, Yuan RF, Yu X, Hu ZG, Wu HJ, Dai Z, Wang K. Validating RRP12 Expression and Its Prognostic Significance in HCC Based on Data Mining and Bioinformatics Methods. Front Oncol 2022; 12:812009. [PMID: 35178347 PMCID: PMC8844371 DOI: 10.3389/fonc.2022.812009] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 01/11/2022] [Indexed: 12/26/2022] Open
Abstract
RRP12 (ribosomal RNA processing 12 homolog) is a nucleolar protein involved in the maturation and transport of eukaryotic ribosomal subunits and is a type of RNA binding protein. In recent years, considerable research has indicated that RRP12 is associated with the occurrence and development of multiple cancers. However, there is no research on RRP12 in hepatocellular carcinoma. Herein, we aimed to explore the role and significance of RRP12 in hepatocellular carcinoma.We used the TIMER and GEPIA databases to perform pan-cancer analyses of RRP12. The impact of RRP12 on the prognosis was analyzed through the GEPIA database. The relationship between RRP12 and immune cell infiltration was investigated by TIMER and GEPIA databases. Moreover, the expression of RRP12 in various liver cancer cells was evaluated by Western Blot to determine the cell line for the next experiment. Scratch test, Transwell test, and Edu tests were applied to validate the effects of RRP12 on the function of liver cancer cells. And the data were statistically analyzed.Pan-cancer analysis found that RPP12 was significantly upregulated in many cancers. Moreover, the prognostic analysis revealed that the difference in the expression of RRP12 has statistical significance for the overall survival rate and disease-free survival rate of liver cancer patients. In order to analyze the correlation between the expression level of RRP12 and clinical parameters, it was found that there was a significant negative correlation with tumor stage, tumor grade and tumor size. Univariate and multivariate analysis showed that RRP12 could be used as an independent prognostic factor for patients with hepatocellular carcinoma. Cellular experiments have proved that knocking down RRP12 can inhibit the proliferation, invasion, and metastasis of liver cancer cells.Therefore, RRP12 significantly affects the occurrence and development of HCC. Hence, RRP12 can become a potential target and prognostic biomarker for the treatment of hepatocellular carcinoma.
Collapse
Affiliation(s)
- Chao Wei
- Hepato-Biliary-Pancreatic Surgery Division, Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Second Affiliated Hospital of Nanchang University, Jiangxi Province Key Laboratory of Molecular Medicine, Nanchang, China.,Second Affiliated Hospital of Nanchang University, Jiangxi Province Engineering Research Center of Hepatobiliary Disease, Nanchang, China
| | - Ben Wang
- Hepato-Biliary-Pancreatic Surgery Division, Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Second Affiliated Hospital of Nanchang University, Jiangxi Province Key Laboratory of Molecular Medicine, Nanchang, China.,Second Affiliated Hospital of Nanchang University, Jiangxi Province Engineering Research Center of Hepatobiliary Disease, Nanchang, China
| | - Zhong-Huo Chen
- Hepato-Biliary-Pancreatic Surgery Division, Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Second Affiliated Hospital of Nanchang University, Jiangxi Province Key Laboratory of Molecular Medicine, Nanchang, China.,Second Affiliated Hospital of Nanchang University, Jiangxi Province Engineering Research Center of Hepatobiliary Disease, Nanchang, China
| | - Han Xiao
- Department of Hepato-Biliary-Pancreatic Surgery, Jiujiang First People's Hospital, Jiujiang, China
| | - Lei Tang
- Hepato-Biliary-Pancreatic Surgery Division, Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Second Affiliated Hospital of Nanchang University, Jiangxi Province Key Laboratory of Molecular Medicine, Nanchang, China.,Second Affiliated Hospital of Nanchang University, Jiangxi Province Engineering Research Center of Hepatobiliary Disease, Nanchang, China
| | - Jia-Fu Guan
- Hepato-Biliary-Pancreatic Surgery Division, Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Second Affiliated Hospital of Nanchang University, Jiangxi Province Engineering Research Center of Hepatobiliary Disease, Nanchang, China
| | - Rong-Fa Yuan
- Hepato-Biliary-Pancreatic Surgery Division, Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Second Affiliated Hospital of Nanchang University, Jiangxi Province Engineering Research Center of Hepatobiliary Disease, Nanchang, China.,Second Affiliated Hospital of Nanchang University, Jiangxi Provincial Clinical Research Center for General Surgery Disease, Nanchang, China
| | - Xin Yu
- Hepato-Biliary-Pancreatic Surgery Division, Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Second Affiliated Hospital of Nanchang University, Jiangxi Province Engineering Research Center of Hepatobiliary Disease, Nanchang, China.,Second Affiliated Hospital of Nanchang University, Jiangxi Provincial Clinical Research Center for General Surgery Disease, Nanchang, China
| | - Zhi-Gang Hu
- Hepato-Biliary-Pancreatic Surgery Division, Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Second Affiliated Hospital of Nanchang University, Jiangxi Province Engineering Research Center of Hepatobiliary Disease, Nanchang, China.,Second Affiliated Hospital of Nanchang University, Jiangxi Provincial Clinical Research Center for General Surgery Disease, Nanchang, China
| | - Hua-Jun Wu
- Hepato-Biliary-Pancreatic Surgery Division, Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Second Affiliated Hospital of Nanchang University, Jiangxi Province Engineering Research Center of Hepatobiliary Disease, Nanchang, China.,Second Affiliated Hospital of Nanchang University, Jiangxi Provincial Clinical Research Center for General Surgery Disease, Nanchang, China
| | - Zhi Dai
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Kai Wang
- Hepato-Biliary-Pancreatic Surgery Division, Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Second Affiliated Hospital of Nanchang University, Jiangxi Province Engineering Research Center of Hepatobiliary Disease, Nanchang, China.,Second Affiliated Hospital of Nanchang University, Jiangxi Provincial Clinical Research Center for General Surgery Disease, Nanchang, China
| |
Collapse
|
4
|
Willers H, Pan X, Borgeaud N, Korovina I, Koi L, Egan R, Greninger P, Rosenkranz A, Kung J, Liss AS, Parsels LA, Morgan MA, Lawrence TS, Lin SH, Hong TS, Yeap BY, Wirth L, Hata AN, Ott CJ, Benes CH, Baumann M, Krause M. Screening and Validation of Molecular Targeted Radiosensitizers. Int J Radiat Oncol Biol Phys 2021; 111:e63-e74. [PMID: 34343607 DOI: 10.1016/j.ijrobp.2021.07.1694] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 07/18/2021] [Indexed: 11/16/2022]
Abstract
The development of molecular targeted drugs with radiation and chemotherapy are critically important for improving the outcomes of patients with hard-to-treat, potentially curable cancers. However, too many preclinical studies have not translated into successful radiation oncology trials. Major contributing factors to this insufficiency include poor reproducibility of preclinical data, inadequate preclinical modeling of inter-tumoral genomic heterogeneity that influences treatment sensitivity in the clinic, and a reliance on tumor growth delay instead of local control (TCD50) endpoints. There exists an urgent need to overcome these barriers to facilitate successful clinical translation of targeted radiosensitizers. To this end, we have employed 3D cell culture assays to better model tumor behavior in vivo. Examples of successful prediction of in vivo effects with these 3D assays include radiosensitization of head and neck cancers by inhibiting epidermal growth factor receptor or focal adhesion kinase signaling, and radioresistance associated with oncogenic mutation of KRAS. To address the issue of tumor heterogeneity we leveraged institutional resources that allow high-throughput 3D screening of radiation combinations with small molecule inhibitors across genomically characterized cell lines from lung, head and neck, and pancreatic cancers. This high-throughput screen is expected to uncover genomic biomarkers that will inform the successful clinical translation of targeted agents from the NCI CTEP portfolio and other sources. Screening "hits" need to be subjected to refinement studies that include clonogenic assays, addition of disease-specific chemotherapeutics, target/biomarker validation, and integration of patient-derived tumor models. The chemoradiosensitizing activities of the most promising drugs should be confirmed in TCD50 assays in xenograft models with/without relevant biomarker and utilizing clinically relevant radiation fractionation. We predict that appropriately validated and biomarker-directed targeted therapies will have a higher likelihood than past efforts to be successfully incorporated into the standard management of hard-to-treat tumors.
Collapse
Affiliation(s)
- Henning Willers
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts.
| | - Xiao Pan
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Nathalie Borgeaud
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden - Rossendorf, Dresden, Germany; German Cancer Research Center (DKFZ), Heidelberg, Germany; German Cancer Consortium (DKTK), partner site Dresden
| | - Irina Korovina
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden - Rossendorf, Dresden, Germany; German Cancer Research Center (DKFZ), Heidelberg, Germany; German Cancer Consortium (DKTK), partner site Dresden; Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiooncology - OncoRay, Dresden, Germany
| | - Lydia Koi
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden - Rossendorf, Dresden, Germany; Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany; Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiooncology - OncoRay, Dresden, Germany
| | - Regina Egan
- Center for Cancer Research, Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, Massachusetts
| | - Patricia Greninger
- Center for Cancer Research, Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, Massachusetts
| | - Aliza Rosenkranz
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Jong Kung
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Andrew S Liss
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Leslie A Parsels
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan
| | - Meredith A Morgan
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan
| | - Theodore S Lawrence
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan
| | - Steven H Lin
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Theodore S Hong
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Beow Y Yeap
- Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Lori Wirth
- Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Aaron N Hata
- Center for Cancer Research, Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, Massachusetts
| | - Christopher J Ott
- Center for Cancer Research, Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, Massachusetts
| | - Cyril H Benes
- Center for Cancer Research, Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, Massachusetts
| | - Michael Baumann
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden - Rossendorf, Dresden, Germany; German Cancer Research Center (DKFZ), Heidelberg, Germany; German Cancer Consortium (DKTK), Core center Heidelberg, Germany
| | - Mechthild Krause
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden - Rossendorf, Dresden, Germany; German Cancer Research Center (DKFZ), Heidelberg, Germany; German Cancer Consortium (DKTK), partner site Dresden; Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany; Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiooncology - OncoRay, Dresden, Germany; National Center for Tumour Diseases (NCT), Partner site Dresden, Germany
| |
Collapse
|
5
|
Pérez-Romasanta LA, González-Del Portillo E, Rodríguez-Gutiérrez A, Matías-Pérez Á. Stereotactic Radiotherapy for Hepatocellular Carcinoma, Radiosensitization Strategies and Radiation-Immunotherapy Combination. Cancers (Basel) 2021; 13:cancers13020192. [PMID: 33430362 PMCID: PMC7825787 DOI: 10.3390/cancers13020192] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 01/03/2021] [Accepted: 01/05/2021] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Radiotherapy is rapidly turning into a crucial component of multidisciplinary treatment for liver cancer because many patients are not surgical treatment candidates. Thanks to technical developments, radiotherapy have achieved high precision treatments, making it possible to eliminate tumor cells without severe damage to the liver and other organs. Stereotactic Body Radiation Therapy is an advanced radiotherapy technique able to eradicate malignant tumors wherever they are located in properly selected patients. The best use of radiotherapy, the most fruitful radiotherapy strategy, and the best way to combine it with other treatments for liver cancer are largely unknown. Radiosensitizers, agents that can potentiate radiotherapy, could broaden the radiotherapeutic landscape. Radiotherapy potentiation can be achieved with diverse treatments, not only drugs but also nanoparticles. In order to clear up the performance of radiotherapy in liver cancer management in the future and the best ways to potentiate its effects, considerable medical research is needed. Abstract Stereotactic body radiotherapy (SBRT) is an emerging ablative modality for hepatocellular carcinoma (HCC). Most patients with HCC have advanced disease at the time of diagnosis, and therefore, are not candidates for definitive-intent therapies such as resection or transplantation. For this reason, various alternative local and regional therapies have been used to prevent disease progression, palliate symptoms, and delay liver failure. Stereotactic body radiation therapy is a non-invasive technique of delivering ablative doses of radiation to tumors while sparing normal or non-tumor hepatic tissue. Incorporation of SBRT in multidisciplinary HCC management is gradual, initially applied when other liver-directed therapies have failed or are contraindicated, and tried in combination with other locoregional or systemic therapies for more unfavorable conditions by more experienced teams. In order to improve SBRT therapeutic ratio, there has been much interest in augmenting the effect of radiation on tumors by combining it with chemotherapy, molecularly targeted therapeutics, nanoparticles, and immunotherapy. This review aims to synthesize available evidence to evaluate the clinical feasibility and efficacy of SBRT for HCC, and to explore novel radio-potentiation concepts by combining SBRT with novel therapeutics. It is expected that those approaches would result in improved therapeutic outcomes, even though many questions remain with regard to the optimal way to assemble treatments. Further trials are needed to evaluate and consolidate these promising therapies for HCC.
Collapse
|
6
|
Hsieh CH, Chen YJ, Tsai TH, Wang LY, Tai HC, Huang HL, Huang YC. Robust combination of liver stereotactic body radiotherapy modulates pharmacokinetics of sorafenib toward preferable parameters. Sci Rep 2020; 10:9575. [PMID: 32533042 PMCID: PMC7293270 DOI: 10.1038/s41598-020-66583-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 05/21/2020] [Indexed: 01/15/2023] Open
Abstract
To evaluate the effect and mechanism of radiotherapy (RT)–sorafenib pharmacokinetics (PK) in different regimens with conventional or high dose irradiation. Between February 2012 and December 2018, 43 patients with portal vein tumor thrombosis treated with sorafenib plus conventional RT (58%) or stereotactic body radiation therapy (SBRT, 42%) were retrospectively reviewed. In vivo and in vitro studies of concurrent and sequential RT with sorafenib were designed. SBRT resulted in a 3-fold increase in complete recanalization compared to conventional RT group (28% vs. 8%, p = 0.014). Compared to the control group, the area under the concentration vs. time curve (AUC) of sorafenib was increased in the concurrent RT2Gy and RT9Gy groups and the sequential RT9Gy group by 132% (p = 0.046), 163% (p = 0.038) and 102% (p = 0.018), respectively; and was decreased by 59% in the sequential RT2Gy group (p = 0.036). Sequential RT2Gy and RT9Gy increased CYP3A4 activity by 82% (p = 0.028) and 203% (p = 0.0004), respectively, compared to that with the corresponding concurrent regimen. SBRT produced better recanalization than conventional RT with sorafenib. The AUC of sorafenib was modulated by RT. P-gp expression was not influenced by RT. The sequential RT regimen increased CYP3A4 activity that may increase the RT-sorafenib synergy effect and overall sorafenib activity. The biodistribution of sorafenib was modulated by local RT with the different regimens.
Collapse
Affiliation(s)
- Chen-Hsi Hsieh
- Institute of Traditional Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan. .,Faculty of Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan. .,Division of Radiation Oncology, Department of Radiology, Far Eastern Memorial Hospital, Taipei, Taiwan.
| | - Yu-Jen Chen
- Institute of Traditional Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan.,Department of Radiation Oncology, Mackay Memorial Hospital, Taipei, Taiwan.,Department of Medical Research, Mackay Memorial Hospital, Taipei, Taiwan
| | - Tung-Hu Tsai
- Institute of Traditional Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan.,Department of Chemical Engineering, National United University, Miaoli, Taiwan
| | - Li-Ying Wang
- School and Graduate Institute of Physical Therapy, College of Medicine, National Taiwan University, Taipei, Taiwan.,Physical Therapy Center, National Taiwan University Hospital, Taipei, Taiwan
| | - Hung-Chi Tai
- Department of Radiation Oncology, Mackay Memorial Hospital, Taipei, Taiwan
| | - Hsiang-Ling Huang
- Division of Radiation Oncology, Department of Radiology, Far Eastern Memorial Hospital, Taipei, Taiwan
| | - Yu-Chuen Huang
- Department of Medical Research, China Medical University Hospital, Taichung, Taiwan.,School of Chinese Medicine, China Medical University, Taichung, Taiwan
| |
Collapse
|
7
|
Ouellette MM, Yan Y. Radiation‐activated prosurvival signaling pathways in cancer cells. PRECISION RADIATION ONCOLOGY 2019. [DOI: 10.1002/pro6.1076] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Affiliation(s)
- Michel M. Ouellette
- Department of Internal MedicineUniversity of Nebraska Medical Center Omaha Nebraska USA
| | - Ying Yan
- Department of Radiation OncologyUniversity of Nebraska Medical Center Omaha Nebraska USA
| |
Collapse
|
8
|
Tang JY, Shu CW, Wang CL, Wang SC, Chang MY, Lin LC, Chang HW. Sulfonyl chromen-4-ones (CHW09) shows an additive effect to inhibit cell growth of X-ray irradiated oral cancer cells, involving apoptosis and ROS generation. Int J Radiat Biol 2019; 95:1226-1235. [PMID: 31141432 DOI: 10.1080/09553002.2019.1625490] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Purpose: This study evaluates the growth inhibiting potential of our previously described sulfonyl chromen-4-ones (CHW09) compound in X-ray irradiated oral cancer cells. Materials and methods: The growth inhibiting effect and mechanism of combined CHW09/X-ray treatment was examined by analyzing cell viability, cell cycle, apoptosis, reactive oxygen species (ROS), and DNA damage. Results: Individual treatments of CHW09 (10 μg/mL) and X-ray irradiation (12 Gy) slightly decreased cell viability of oral cancer Ca9-22 (87.25% and 86.54%) and CAL 27 (80.00% and 74.01%) cells and normal oral HGF-1 cells (92.76% and 87.56%) at 24 h-MTS assay, respectively. In a combined treatment (CHW09/X-ray), the cell viability in Ca9-22 and CAL 27 cells was significantly decreased to 73.48% and 59.07%, whereas HGF-1 cells maintained 84.97% viability in 24 h-MTS assay. For CAL 27 cells, both 72 h-MTS assay and clonogenic assay showed that CHW09/X-ray resulted in more growth inhibition than other treatments. Intracellular ROS levels of CHW09/X-ray were higher than for CHW09, X-ray and control. CHW09/X-ray and X-ray alone had higher G2/M arrest than the control and CHW09 alone. Moreover, flow cytometry and western blotting showed that CHW09/X-ray treatment caused higher apoptosis levels. Levels of H2A histone family member X (γH2AX)-based DNA damage and 8-oxo-2'-deoxyguanosine (8-oxodG)-oxidative DNA damage of CHW09/X-ray were higher than for CHW09, X-ray and control. Conclusion: CHW09/X-ray treatment had additive growth inhibiting effects against X-ray irradiated oral cancer cells, partly attributing to apoptosis and ROS generation.
Collapse
Affiliation(s)
- Jen-Yang Tang
- Department of Radiation Oncology, Faculty of Medicine, College of Medicine, Kaohsiung Medical University , Kaohsiung , Taiwan.,Department of Radiation Oncology, Kaohsiung Medical University Hospital , Kaohsiung , Taiwan
| | - Chih-Wen Shu
- School of Medicine for International Students, I-Shou University , Kaohsiung , Taiwan
| | - Chun-Lin Wang
- Food Industry Research and Development Institute, Bioresource Collection and Research Center , Hsinchu , Taiwan
| | - Sheng-Chieh Wang
- PhD Program in Life Sciences, College of Life Science, Kaohsiung Medical University , Kaohsiung , Taiwan
| | - Meng-Yang Chang
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University , Kaohsiung , Taiwan
| | - Li-Ching Lin
- Department of Radiation Oncology, Chi-Mei Foundation Medical Center , Tainan , Taiwan.,School of Medicine, Taipei Medical University , Taipei , Taiwan.,Chung Hwa University of Medical Technology , Tainan , Taiwan
| | - Hsueh-Wei Chang
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University , Kaohsiung , Taiwan.,Institute of Medical Science and Technology, National Sun Yat-sen University , Kaohsiung , Taiwan.,Cancer Center, Kaohsiung Medical University Hospital, Kaohsiung Medical University , Kaohsiung , Taiwan.,Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University , Kaohsiung , Taiwan
| |
Collapse
|
9
|
Luo J, Si ZZ, Li T, Li JQ, Zhang ZQ, Chen GS, Qi HZ, Yao HL. MicroRNA-146a-5p enhances radiosensitivity in hepatocellular carcinoma through replication protein A3-induced activation of the DNA repair pathway. Am J Physiol Cell Physiol 2019; 316:C299-C311. [PMID: 30462539 DOI: 10.1152/ajpcell.00189.2018] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Hepatocellular carcinoma (HCC) is known for its high mortality rate worldwide. Based on intensive studies, microRNA (miRNA) expression functions in tumor suppression. Therefore, we aimed to evaluate the contribution of miR-146a-5p to radiosensitivity in HCC through the activation of the DNA damage repair pathway by binding to replication protein A3 (RPA3). First, the limma package of R was performed to differentially analyze HCC expression chip, and regulative miRNA of RPA3 was predicted. Expression of miR-146a-5p, RPA3, and DNA damage repair pathway-related factors in tissues and cells was determined. The effects of radiotherapy on the expression of miR-146a-5p and RPA3 as well as on cell radiosensitivity, proliferation, cell cycle, and apoptosis were also assessed. The results showed that there exists a close correlation between miR-146a and the radiotherapy effect on HCC progression through regulation of RPA3 and the DNA repair pathway. The positive rate of ATM, pCHK2, and Rad51 in HCC tissues was higher when compared with that of the paracancerous tissues. SMMC-7721 and HepG2 cell proliferation were significantly inhibited following 8 Gy 6Mv dose. MiR-146a-5p restrained the expression of RPA3 and promoted the expression of relative genes associated with the DNA repair pathway. In addition, miR-146a-5p overexpression suppresses cell proliferation and enhances radiosensitivity and cell apoptosis in HCC cells. In conclusion, the present study revealed that miR-146a-5p could lead to the restriction of proliferation and the promotion of radiosensitivity and apoptosis in HCC cells through activation of DNA repair pathway and inhibition of RPA3.
Collapse
Affiliation(s)
- Jing Luo
- Department of Organ Transplantation and General Surgery, Second Xiangya Hospital of Central South University, Changsha, China
| | - Zhong-Zhou Si
- Department of Organ Transplantation and General Surgery, Second Xiangya Hospital of Central South University, Changsha, China
| | - Ting Li
- Department of Organ Transplantation and General Surgery, Second Xiangya Hospital of Central South University, Changsha, China
| | - Jie-Qun Li
- Department of Organ Transplantation and General Surgery, Second Xiangya Hospital of Central South University, Changsha, China
| | - Zhong-Qiang Zhang
- Department of Organ Transplantation and General Surgery, Second Xiangya Hospital of Central South University, Changsha, China
| | - Guang-Shun Chen
- Department of Organ Transplantation and General Surgery, Second Xiangya Hospital of Central South University, Changsha, China
| | - Hai-Zhi Qi
- Department of Organ Transplantation and General Surgery, Second Xiangya Hospital of Central South University, Changsha, China
| | - Hong-Liang Yao
- Department of Gastrointestinal Surgery, Second Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
10
|
Affiliation(s)
- John E. Moulder
- Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI, USA
| |
Collapse
|
11
|
Beizaei K, Gleißner L, Hoffer K, Bußmann L, Vu AT, Steinmeister L, Laban S, Möckelmann N, Münscher A, Petersen C, Rothkamm K, Kriegs M. Receptor tyrosine kinase MET as potential target of multi-kinase inhibitor and radiosensitizer sorafenib in HNSCC. Head Neck 2018; 41:208-215. [PMID: 30552828 DOI: 10.1002/hed.25440] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 06/13/2018] [Accepted: 07/18/2018] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND The multi-kinase inhibitor sorafenib displays antitumoral effects in head and neck squamous cell carcinoma (HNSCC); however, the targeted kinases are unknown. Here we aimed to identify those kinases to determine the mechanism of sorafenib-mediated effects and establish candidate biomarkers for patient stratification. METHODS The effects of sorafenib and MET inhibitors crizotinib and SU11274 were analyzed using a slide-based antibody array, Western blotting, proliferation, and survival assays. X-rays were used for irradiations. RESULTS Sorafenib inhibited auto-phosphorylation of epidermal growth factor receptor and MET, which has not been described previously. MET expression in HNSCC cells was not always associated with activity/phosphorylation. Furthermore, sorafenib-dependent cell kill and radiosensitization was not associated with MET level. Although MET inhibitors blocked proliferation, they caused only mild cytotoxicity and no radiosensitization. CONCLUSION We identified MET as a new potential target of sorafenib. However, MET inhibition is not the cause for sorafenib-mediated cytotoxicity or radiosensitization.
Collapse
Affiliation(s)
- Kaweh Beizaei
- Laboratory of Radiobiology and Experimental Radiation Oncology, Hubertus Wald Tumorzentrum-University Cancer Center Hamburg, Hamburg-Eppendorf, Germany
| | - Lisa Gleißner
- Laboratory of Radiobiology and Experimental Radiation Oncology, Hubertus Wald Tumorzentrum-University Cancer Center Hamburg, Hamburg-Eppendorf, Germany
| | - Konstantin Hoffer
- Laboratory of Radiobiology and Experimental Radiation Oncology, Hubertus Wald Tumorzentrum-University Cancer Center Hamburg, Hamburg-Eppendorf, Germany
| | - Lara Bußmann
- Department of Otorhinolaryngology and Head and Neck Surgery, Hubertus Wald Tumorzentrum-University Cancer Center Hamburg, Hamburg-Eppendorf, Germany
| | - Anh Thu Vu
- Laboratory of Radiobiology and Experimental Radiation Oncology, Hubertus Wald Tumorzentrum-University Cancer Center Hamburg, Hamburg-Eppendorf, Germany
| | - Leonhard Steinmeister
- Department for Diagnostic and Interventional Radiology and Nuclear Medicine, Hubertus Wald Tumorzentrum-University Cancer Center Hamburg, Hamburg-Eppendorf, Germany
| | - Simon Laban
- Department of Otorhinolaryngology and Head and Neck Surgery, University Medical Center Ulm, Ulm, Germany
| | - Nikolaus Möckelmann
- Department of Otorhinolaryngology and Head and Neck Surgery, Hubertus Wald Tumorzentrum-University Cancer Center Hamburg, Hamburg-Eppendorf, Germany
| | - Adrian Münscher
- Department of Otorhinolaryngology and Head and Neck Surgery, Hubertus Wald Tumorzentrum-University Cancer Center Hamburg, Hamburg-Eppendorf, Germany
| | - Cordula Petersen
- Laboratory of Radiobiology and Experimental Radiation Oncology, Hubertus Wald Tumorzentrum-University Cancer Center Hamburg, Hamburg-Eppendorf, Germany
| | - Kai Rothkamm
- Laboratory of Radiobiology and Experimental Radiation Oncology, Hubertus Wald Tumorzentrum-University Cancer Center Hamburg, Hamburg-Eppendorf, Germany
| | - Malte Kriegs
- Laboratory of Radiobiology and Experimental Radiation Oncology, Hubertus Wald Tumorzentrum-University Cancer Center Hamburg, Hamburg-Eppendorf, Germany
| |
Collapse
|
12
|
Sorafenib inhibits cell growth but fails to enhance radio- and chemosensitivity of glioblastoma cell lines. Oncotarget 2018; 7:61988-61995. [PMID: 27542273 PMCID: PMC5308705 DOI: 10.18632/oncotarget.11328] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 07/26/2016] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Glioblastomas (GBM) are the most common malignant type of primary brain tumor. GBM are intensively treated with surgery and combined radiochemotherapy using X-irradiation and temozolomide (TMZ) but they are still associated with an extremely poor prognosis, urging for the development of new treatment strategies. To improve the outcome of GBM patients, the small molecule multi-kinase inhibitor sorafenib has moved into focus of recent research. Sorafenib has already been shown to enhance the radio- and radiochemosensitivity of other tumor entities. Whether sorafenib is also able to sensitize GBM cells to radio- and chemotherapy is still an unsolved question which we have addressed in this study. METHODS The effect of sorafenib on signaling, proliferation, radiosensitivity, chemosensitivity and radiochemosensitivity was analyzed in six glioblastoma cell lines using Western blot, proliferation- and colony formation assays. RESULTS In half of the cell lines sorafenib clearly inhibited MAPK signaling. We also observed a strong blockage of proliferation, which was, however, not associated with MAPK pathway inhibition. Sorafenib had only minor effects on cell survival when administered alone. Most importantly, sorafenib treatment failed to enhance GBM cell killing by irradiation, TMZ or combined treatment, and instead rather caused resistance in some cell lines. CONCLUSION Our data suggest that sorafenib treatment may not improve the efficacy of radiochemotherapy in GBM.
Collapse
|
13
|
Ma JW, Zhang Y, Ye JC, Li R, Wen YL, Huang JX, Zhong XY. Tetrandrine Exerts a Radiosensitization Effect on Human Glioma through Inhibiting Proliferation by Attenuating ERK Phosphorylation. Biomol Ther (Seoul) 2017; 25:186-193. [PMID: 27829269 PMCID: PMC5340544 DOI: 10.4062/biomolther.2016.044] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 05/21/2016] [Accepted: 07/28/2016] [Indexed: 01/17/2023] Open
Abstract
Tetrandrine (Tet), a bisbenzylisoquinoline alkaloid, has been reported to have a radiosensitization effect on tumors. However, its effects on human glioma and the specific molecular mechanisms of these effects remain unknown. In this study, we demonstrated that Tet has a radiosensitization effect on human glioma cells. It has been hypothesized that Tet has a radiosensitization effect on glioma cells by affecting the glioma cell cycle and DNA repair mechanism and that ERK mediates these activities. Therefore, we conducted detailed analyses of the effects of Tet on the cell cycle by performing flow cytometric analysis and on DNA repair by detecting the expression of phosphorylated H2AX by immunofluorescence. We used western blot analysis to investigate the role of ERK in the effect of Tet on the cell cycle and DNA repair. The results revealed that Tet exerts its radiosensitization effect on glioma cells by inhibiting proliferation and decreasing the expression of phosphorylated ERK and its downstream proteins. In summary, our data indicate that ERK is involved in Tet-induced radiosensitization of glioma cells via inhibition of glioma cell proliferation or of the cell cycle at G0/G1 phase.
Collapse
Affiliation(s)
- Ji-Wei Ma
- Division of Pathology, Guangdong Province Key Laboratory of Molecular Immunology and Antibody Engineering, Medical College, Jinan University, Guangzhou 510632, China
| | - Yong Zhang
- Division of Pathology, Guangdong Province Key Laboratory of Molecular Immunology and Antibody Engineering, Medical College, Jinan University, Guangzhou 510632, China
| | - Ji-Cheng Ye
- Division of Pathology, Guangdong Province Key Laboratory of Molecular Immunology and Antibody Engineering, Medical College, Jinan University, Guangzhou 510632, China
| | - Ru Li
- Division of Pathology, Guangdong Province Key Laboratory of Molecular Immunology and Antibody Engineering, Medical College, Jinan University, Guangzhou 510632, China
| | - Yu-Lin Wen
- Division of Pathology, Guangdong Province Key Laboratory of Molecular Immunology and Antibody Engineering, Medical College, Jinan University, Guangzhou 510632, China
| | - Jian-Xian Huang
- Division of Pathology, Guangdong Province Key Laboratory of Molecular Immunology and Antibody Engineering, Medical College, Jinan University, Guangzhou 510632, China
| | - Xue-Yun Zhong
- Division of Pathology, Guangdong Province Key Laboratory of Molecular Immunology and Antibody Engineering, Medical College, Jinan University, Guangzhou 510632, China
| |
Collapse
|
14
|
Chen KH, Weng MT, Chou YH, Lu YF, Hsieh CH. Epigastric Distress Caused by Esophageal Candidiasis in 2 Patients Who Received Sorafenib Plus Radiotherapy for Hepatocellular Carcinoma: Case Report. Medicine (Baltimore) 2016; 95:e3133. [PMID: 26986168 PMCID: PMC4839949 DOI: 10.1097/md.0000000000003133] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Sorafenib followed by fractionated radiotherapy (RT) has been shown to decrease the phagocytic and candidacidal activities of antifungal agents due to radiosensitization. Moreover, sorafenib has been shown to suppress the immune system, thereby increasing the risk for candida colonization and infection. In this study, we present the 2 hepatocellular carcinoma (HCC) patients suffered from epigastric distress caused by esophageal candidiasis who received sorafenib plus RT. Two patients who had received sorafenib and RT for HCC with bone metastasis presented with hiccups, gastric ulcer, epigastric distress, anorexia, heart burn, and fatigue. Empiric antiemetic agents, antacids, and pain killers were ineffective at relieving symptoms. Panendoscopy revealed diffuse white lesions in the esophagus. Candida esophagitis was suspected. Results of periodic acid-Schiff staining were diagnostic of candidiasis. Oral fluconazole (150 mg) twice daily and proton-pump inhibitors were prescribed. At 2-weak follow-up, esophagitis had resolved and both patients were free of gastrointestinal symptoms. Physicians should be aware that sorafenib combined with RT may induce an immunosuppressive state in patients with HCC, thereby increasing their risk of developing esophagitis due to candida species.
Collapse
Affiliation(s)
- Kuo-Hsin Chen
- From the Department of Surgery (K-HC), Department of Internal Medicine (M-TW), Department of Anatomical Pathology (Y-HC), Division of Radiation Oncology, Department of Radiology, Far Eastern Memorial Hospital, New Taipei City (Y-FL, C-HH), Department of Electrical Engineering (K-HC), Department of Chemical Engineering & Materials Science, Yuan-Ze University, Taoyuan (M-TW), Department of Medicine (C-HH), and Institute of Traditional Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan (C-HH)
| | | | | | | | | |
Collapse
|
15
|
Wu WL, Wang WY, Yao WQ, Li GD. Suppressive effects of microRNA-16 on the proliferation, invasion and metastasis of hepatocellular carcinoma cells. Int J Mol Med 2015; 36:1713-9. [PMID: 26499886 DOI: 10.3892/ijmm.2015.2379] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2015] [Accepted: 09/22/2015] [Indexed: 02/05/2023] Open
Abstract
miR-16 is known to be abnormally expressed in hepatocellular carcinoma (HCC) cells, and the overexpression of miR-16 inhibits the proliferation, invasion and metastasis of various cancer cells. MicroRNAs (miRNAs or miRs) are closely related to the proliferation, invasion and metastasis of HCC. The present study aimed to explore the effects of miR-16 on the proliferation, invasion and metastasis of HCC cells, and to elucidate the mechanisms involved. A cell line with moderate levels of miR‑16 expression was selected from the SMMC-7721, HepG2, SK-Hep-1 and Huh‑7 HCC cells and validated by reverse transcription-PCR (RT-PCR). The effects of miR‑16 on HCC cell viability were determined by MTT assay; cell migration and invasion were determined by Transwell cell invasion assay, and apoptosis was determined by flow cytometery (FCM). Western blot analysis was used to measure the expression levels of the apoptosis-related proteins, Bax, Bcl-2, matrix metalloproteinase (MMP)-2, MMP-9, as well as to examine epithelial-mesenchymal transition (EMT), and E-cadherin, vimentin, and phosphatidylinositol 3-kinase (PI3K)/Akt signaling pathway-related protein expression. The mRNA expression levels of miR‑16 were highest in the SMMC-7721 cells and lowest in the SK-Hep‑1 and Huh‑7 cells; moderate levels were observed in the HepG2 cells. The HepG2 cell line was selected as the cell line for use in the follow-up experiments, where we measured cell viability, and the expression of PI3k/Akt, Bax, Bcl-2, MMP-2 and MMP-9, and E-cadherin and vimentin. miR‑16 overexpression significantly inhibited the proliferation, invasion and metastasis of the HepG2 cells, as shown by western blot analysis. This was achieved through the upregulation of Bax expression, the downregulation of Bcl-2 expression and the decrease in the expression of MMP-2 and MMP-9. In addition the expression of E-cadherin increased and vimentin expression decreased. miR‑16 overexpression inhibited PI3K expression and Akt phosphorylation. The results of this study suggest that the overexpression of miR‑16 inhibits the proliferation, invasion and metastasis of HepG2 HCC cells, and that these effects are associated with the PI3K/Akt signaling pathway.
Collapse
Affiliation(s)
- Wei-Lu Wu
- Department of Pathology, West China Hospital of Sichuan University, Chengdu 610041, P.R. China
| | - Wei-Ya Wang
- Department of Pathology, West China Hospital of Sichuan University, Chengdu 610041, P.R. China
| | - Wen-Qing Yao
- Department of Pathology, West China Hospital of Sichuan University, Chengdu 610041, P.R. China
| | - Gan-Di Li
- Department of Pathology, West China Hospital of Sichuan University, Chengdu 610041, P.R. China
| |
Collapse
|
16
|
Advani SJ, Camargo MF, Seguin L, Mielgo A, Anand S, Hicks AM, Aguilera J, Franovic A, Weis SM, Cheresh DA. Kinase-independent role for CRAF-driving tumour radioresistance via CHK2. Nat Commun 2015; 6:8154. [PMID: 26333361 PMCID: PMC4559870 DOI: 10.1038/ncomms9154] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Accepted: 07/24/2015] [Indexed: 12/19/2022] Open
Abstract
Although oncology therapy regimens commonly include radiation and genotoxic drugs, tumour cells typically develop resistance to these interventions. Here we report that treatment of tumours with ionizing radiation or genotoxic drugs drives p21-activated kinase 1 (PAK1)-mediated phosphorylation of CRAF on Serine 338 (pS338) triggering a kinase-independent mechanism of DNA repair and therapeutic resistance. CRAF pS338 recruits CHK2, a cell cycle checkpoint kinase involved in DNA repair, and promotes CHK2 phosphorylation/activation to enhance the tumour cell DNA damage response. Accordingly, a phospho-mimetic mutant of CRAF (S338D) is sufficient to induce the CRAF/CHK2 association enhancing tumour radioresistance, while an allosteric CRAF inhibitor sensitizes tumour cells to ionizing radiation or genotoxic drugs. Our findings establish a role for CRAF in the DNA damage response that is independent from its canonical function as a kinase. Tumors hijack cellular pathways to evade the effects of cancer therapy. Here, Advani et al. show that DNA damage-induced phosphorylation of CRAF Serine 338 triggers DNA repair by recruiting CHK2, highlighting a role for CRAF independent from its canonical function as a kinase.
Collapse
Affiliation(s)
- Sunil J Advani
- Department of Radiation Medicine and Applied Sciences at the UC San Diego Moores Cancer Center, University of California, San Diego, La Jolla, California 92093, USA
| | - Maria Fernanda Camargo
- Department of Pathology at the UC San Diego Moores Cancer Center and Sanford Consortium for Regenerative Medicine, University of California, San Diego, 3855 Health Science Drive, La Jolla, California 92037, USA
| | - Laetitia Seguin
- Department of Pathology at the UC San Diego Moores Cancer Center and Sanford Consortium for Regenerative Medicine, University of California, San Diego, 3855 Health Science Drive, La Jolla, California 92037, USA
| | - Ainhoa Mielgo
- Department of Pathology at the UC San Diego Moores Cancer Center and Sanford Consortium for Regenerative Medicine, University of California, San Diego, 3855 Health Science Drive, La Jolla, California 92037, USA
| | - Sudarshan Anand
- Department of Pathology at the UC San Diego Moores Cancer Center and Sanford Consortium for Regenerative Medicine, University of California, San Diego, 3855 Health Science Drive, La Jolla, California 92037, USA
| | - Angel M Hicks
- Department of Radiation Medicine and Applied Sciences at the UC San Diego Moores Cancer Center, University of California, San Diego, La Jolla, California 92093, USA
| | - Joseph Aguilera
- Department of Radiation Medicine and Applied Sciences at the UC San Diego Moores Cancer Center, University of California, San Diego, La Jolla, California 92093, USA
| | - Aleksandra Franovic
- Department of Pathology at the UC San Diego Moores Cancer Center and Sanford Consortium for Regenerative Medicine, University of California, San Diego, 3855 Health Science Drive, La Jolla, California 92037, USA
| | - Sara M Weis
- Department of Pathology at the UC San Diego Moores Cancer Center and Sanford Consortium for Regenerative Medicine, University of California, San Diego, 3855 Health Science Drive, La Jolla, California 92037, USA
| | - David A Cheresh
- Department of Pathology at the UC San Diego Moores Cancer Center and Sanford Consortium for Regenerative Medicine, University of California, San Diego, 3855 Health Science Drive, La Jolla, California 92037, USA
| |
Collapse
|
17
|
Salari E, Unkelbach J, Bortfeld T. A mathematical programming approach to the fractionation problem in chemoradiotherapy. ACTA ACUST UNITED AC 2015. [DOI: 10.1080/19488300.2015.1017673] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
18
|
Liu Q, Wang M, Kern AM, Khaled S, Han J, Yeap BY, Hong TS, Settleman J, Benes CH, Held KD, Efstathiou JA, Willers H. Adapting a drug screening platform to discover associations of molecular targeted radiosensitizers with genomic biomarkers. Mol Cancer Res 2015; 13:713-20. [PMID: 25667133 PMCID: PMC4410013 DOI: 10.1158/1541-7786.mcr-14-0570] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Accepted: 01/19/2015] [Indexed: 12/23/2022]
Abstract
UNLABELLED Large collections of annotated cancer cell lines are powerful tools for precisely matching targeted drugs with genomic alterations that can be tested as biomarkers in the clinic. Whether these screening platforms, which utilize short-term cell survival to assess drug responses, can be applied to precision radiation medicine is not established. To this end, 32 cancer cell lines were screened using 18 targeted therapeutic agents with known or putative radiosensitizing properties (227 combinations). The cell number remaining after drug exposure with or without radiation was assessed by nonclonogenic assays. We derived short-term radiosensitization factors (SRF2Gy) and calculated clonogenic survival assay-based dose enhancement factors (DEFSF0.1). Radiosensitization was characterized by SRF2Gy values of mostly ∼1.05 to 1.2 and significantly correlated with drug-induced changes in apoptosis and senescence frequencies. SRF2Gy was significantly correlated with DEFSF0.1, with a respective sensitivity and specificity of 91.7% and 81.5% for a 3-day endpoint, and 82.8% and 84.2% for a robotic 5-day assay. KRAS mutations (codons 12/13) were found to be a biomarker of radiosensitization by midostaurin in lung cancer, which was pronounced under conditions that enriched for stem cell-like cells. In conclusion, although short-term proliferation/survival assays cannot replace the gold-standard clonogenic survival assay for measuring cellular radiosensitivity, they capture with high accuracy the relative change in radiosensitivity that is caused by a radiosensitzing targeted agent. IMPLICATIONS This study supports a paradigm shift regarding the utility of short-term assays for precision radiation medicine, which should facilitate the identification of genomic biomarkers to guide the testing of novel drug/radiation combinations.
Collapse
Affiliation(s)
- Qi Liu
- Laboratory of Cellular and Molecular Radiation Oncology, Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, Massachusetts. Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Meng Wang
- Laboratory of Cellular and Molecular Radiation Oncology, Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, Massachusetts. Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Ashley M Kern
- Laboratory of Cellular and Molecular Radiation Oncology, Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, Massachusetts. Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Saman Khaled
- Laboratory of Cellular and Molecular Radiation Oncology, Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, Massachusetts. Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Jing Han
- Laboratory of Cellular and Molecular Radiation Oncology, Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, Massachusetts. Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts. Jinan Municipal Center for Disease Control and Prevention, Shandong, China
| | - Beow Y Yeap
- Biostatistics Unit, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Theodore S Hong
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Jeff Settleman
- Center for Cancer Research, Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, Massachusetts
| | - Cyril H Benes
- Center for Cancer Research, Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, Massachusetts
| | - Kathryn D Held
- Laboratory of Cellular and Molecular Radiation Oncology, Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, Massachusetts. Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Jason A Efstathiou
- Laboratory of Cellular and Molecular Radiation Oncology, Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, Massachusetts. Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Henning Willers
- Laboratory of Cellular and Molecular Radiation Oncology, Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, Massachusetts. Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
19
|
HEIN ASHLEYL, OUELLETTE MICHELM, YAN YING. Radiation-induced signaling pathways that promote cancer cell survival (review). Int J Oncol 2014; 45:1813-9. [PMID: 25174607 PMCID: PMC4203326 DOI: 10.3892/ijo.2014.2614] [Citation(s) in RCA: 123] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Accepted: 08/01/2014] [Indexed: 12/12/2022] Open
Abstract
Radiation therapy is a staple cancer treatment approach that has significantly improved local disease control and the overall survival of cancer patients. However, its efficacy is still limited by the development of radiation resistance and the presence of residual disease after therapy that leads to cancer recurrence. Radiation impedes cancer cell growth by inducing cytotoxicity, mainly caused by DNA damage. However, radiation can also simultaneously induce multiple pro-survival signaling pathways, such as those mediated by AKT, ERK and ATM/ATR, which can lead to suppression of apoptosis, induction of cell cycle arrest and/or initiation of DNA repair. These signaling pathways act conjointly to reduce the magnitude of radiation-induced cytotoxicity and promote the development of radioresistance in cancer cells. Thus, targeting these pro-survival pathways has great potential for the radiosensitization of cancer cells. In the present review, we summarize the current literature on how these radiation‑activated signaling pathways promote cancer cell survival.
Collapse
Affiliation(s)
- ASHLEY L. HEIN
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA
| | - MICHEL M. OUELLETTE
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA
| | - YING YAN
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA
| |
Collapse
|
20
|
Chiorean EG, Schneider BP, Akisik FM, Perkins SM, Anderson S, Johnson CS, DeWitt J, Helft P, Clark R, Johnston EL, Spittler AJ, Deluca J, Bu G, Shahda S, Loehrer PJ, Sandrasegaran K, Cardenes HR. Phase 1 pharmacogenetic and pharmacodynamic study of sorafenib with concurrent radiation therapy and gemcitabine in locally advanced unresectable pancreatic cancer. Int J Radiat Oncol Biol Phys 2014; 89:284-91. [PMID: 24726286 DOI: 10.1016/j.ijrobp.2014.02.024] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Revised: 12/19/2013] [Accepted: 02/14/2014] [Indexed: 12/21/2022]
Abstract
PURPOSE To define the safety, efficacy, and pharmacogenetic and pharmacodynamic effects of sorafenib with gemcitabine-based chemoradiotherapy (CRT) in locally advanced pancreatic cancer. METHODS AND MATERIALS Patients received gemcitabine 1000 mg/m(2) intravenously weekly × 3 every 4 weeks per cycle for 1 cycle before CRT and continued for up to 4 cycles after CRT. Weekly gemcitabine 600 mg/m(2) intravenously was given during concurrent intensity modulated radiation therapy of 50 Gy to gross tumor volume in 25 fractions. Sorafenib was dosed orally 400 mg twice daily until progression, except during CRT when it was escalated from 200 mg to 400 mg daily, and 400 mg twice daily. The maximum tolerated dose cohort was expanded to 15 patients. Correlative studies included dynamic contrast-enhanced MRI and angiogenesis genes polymorphisms (VEGF-A and VEGF-R2 single nucleotide polymorphisms). RESULTS Twenty-seven patients were enrolled. No dose-limiting toxicity occurred during induction gemcitabine/sorafenib followed by concurrent CRT. The most common grade 3/4 toxicities were fatigue, hematologic, and gastrointestinal. The maximum tolerated dose was sorafenib 400 mg twice daily. The median progression-free survival and overall survival for 25 evaluable patients were 10.6 and 12.6 months, respectively. The median overall survival for patients with VEGF-A -2578 AA, -1498 CC, and -1154 AA versus alternate genotypes was 21.6 versus 14.7 months. Dynamic contrast-enhanced MRI demonstrated higher baseline K(trans) in responding patients. CONCLUSIONS Concurrent sorafenib with CRT had modest clinical activity with increased gastrointestinal toxicity in localized unresectable pancreatic cancer. Select VEGF-A/VEGF-R2 genotypes were associated with favorable survival.
Collapse
Affiliation(s)
- E Gabriela Chiorean
- Department of Medicine, Indiana University Melvin and Bren Simon Cancer Center, Indianapolis, Indiana; Department of Medicine, University of Washington, Seattle, Washington.
| | - Bryan P Schneider
- Department of Medicine, Indiana University Melvin and Bren Simon Cancer Center, Indianapolis, Indiana
| | - Fatih M Akisik
- Department of Radiology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Susan M Perkins
- Department of Biostatistics, Indiana University School of Medicine, Indianapolis, Indiana
| | - Stephen Anderson
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Cynthia S Johnson
- Department of Biostatistics, Indiana University School of Medicine, Indianapolis, Indiana
| | - John DeWitt
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Paul Helft
- Department of Medicine, Indiana University Melvin and Bren Simon Cancer Center, Indianapolis, Indiana
| | - Romnee Clark
- Department of Medicine, Indiana University Melvin and Bren Simon Cancer Center, Indianapolis, Indiana
| | - Erica L Johnston
- Department of Medicine, Indiana University Melvin and Bren Simon Cancer Center, Indianapolis, Indiana
| | - A John Spittler
- Department of Medicine, Indiana University Melvin and Bren Simon Cancer Center, Indianapolis, Indiana
| | - Jill Deluca
- Department of Radiation Oncology, Indiana University Melvin and Bren Simon Cancer Center, Indianapolis, Indiana
| | - Guixue Bu
- Department of Radiology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Safi Shahda
- Department of Medicine, Indiana University Melvin and Bren Simon Cancer Center, Indianapolis, Indiana
| | - Patrick J Loehrer
- Department of Medicine, Indiana University Melvin and Bren Simon Cancer Center, Indianapolis, Indiana
| | - Kumar Sandrasegaran
- Department of Radiology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Higinia R Cardenes
- Department of Radiation Oncology, Indiana University School of Medicine, Indianapolis, Indiana
| |
Collapse
|