1
|
Cheng L, Yang B, Du H, Zhou T, Li Y, Wu J, Cao Z, Xu A. Moderate intensity of static magnetic fields can alter the avoidance behavior and fat storage of Caenorhabditis elegans via serotonin. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:43102-43113. [PMID: 35092591 DOI: 10.1007/s11356-022-18898-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 01/23/2022] [Indexed: 06/14/2023]
Abstract
Man-made static magnetic fields (SMFs) widely exist in human life as a physical environmental factor. However, the biological responses to moderate SMFs exposure and their underlying mechanisms are largely unknown. The present study was focused on exploring the nervous responses to moderate-intensity SMFs at 0.5 T and 1 T in Caenorhabditis elegans (C. elegans). We found that SMFs at either 0.5 T or 1 T had no statistically significant effects on the locomotor behaviors, while the 1 T magnetic field increased pharyngeal pumping. The avoidance behavior of the pathogenic Pseudomonas aeruginosa was greatly decreased in either 0.5 T or 1 T SMFs exposed nematodes, and the learning index was reducede from 0.52 ± 0.11 to 0.23 ± 0.17 and 0.16 ± 0.11, respectively. The total serotonin level was increased by 17.08% and 16.45% with the treatment of 0.5 T and 1 T SMF, compared to the control group; however, there were minimal effects of SMFs on other three neurotransmitters including choline, γ-aminobutyric acid (GABA), dopamine. RT-qPCR was used to further investigate the expression of serotonin-related genes, including rate-limiting enzymes, transcription factors and transport receptors. The expression levels of tph-1 and unc-86 genes were increased by SMF exposure, while those of ocr-2, osm-9, ser-1 and mod-1 genes were decreased. With the staining of lipid in either wild-type N2 or tph-1 mutants, we found that 0.5 T and 1 T SMFs decreased fat storage in C. elegans via serotonin pathway. Our study demonstrated that moderate-intensity SMFs induced neurobehavioral disorder and the reduction of fat storage by disturbing the secretion of serotonin in C. elegans, which provided new insights into elucidating nervous responses of C. elegans to moderate-intensity SMFs.
Collapse
Affiliation(s)
- Lei Cheng
- School of Environmental Science and Optoelectronic Technology, University of Science and Technology of China, Hefei, Anhui, 230026, PR China
- Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, The Anhui High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, PR China
| | - Baolin Yang
- School of Environmental Science and Optoelectronic Technology, University of Science and Technology of China, Hefei, Anhui, 230026, PR China
- Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, The Anhui High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, PR China
| | - Hua Du
- Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, The Anhui High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, PR China
| | - Tong Zhou
- Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, The Anhui High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, PR China
| | - Yang Li
- School of Environmental Science and Optoelectronic Technology, University of Science and Technology of China, Hefei, Anhui, 230026, PR China
- Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, The Anhui High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, PR China
| | - Jiajie Wu
- Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, The Anhui High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, PR China
| | - Zhenxiao Cao
- School of Environmental Science and Optoelectronic Technology, University of Science and Technology of China, Hefei, Anhui, 230026, PR China
- Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, The Anhui High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, PR China
| | - An Xu
- Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, The Anhui High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, PR China.
| |
Collapse
|
2
|
Lai H. Neurological effects of static and extremely-low frequency electromagnetic fields. Electromagn Biol Med 2022; 41:201-221. [DOI: 10.1080/15368378.2022.2064489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Henry Lai
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| |
Collapse
|
3
|
Abstract
This paper is the thirty-seventh consecutive installment of the annual review of research concerning the endogenous opioid system. It summarizes papers published during 2014 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides, opioid receptors, opioid agonists and opioid antagonists. The particular topics that continue to be covered include the molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors related to behavior (endogenous opioids and receptors), and the roles of these opioid peptides and receptors in pain and analgesia (pain and analgesia); stress and social status (human studies); tolerance and dependence (opioid mediation of other analgesic responses); learning and memory (stress and social status); eating and drinking (stress-induced analgesia); alcohol and drugs of abuse (emotional responses in opioid-mediated behaviors); sexual activity and hormones, pregnancy, development and endocrinology (opioid involvement in stress response regulation); mental illness and mood (tolerance and dependence); seizures and neurologic disorders (learning and memory); electrical-related activity and neurophysiology (opiates and conditioned place preferences (CPP)); general activity and locomotion (eating and drinking); gastrointestinal, renal and hepatic functions (alcohol and drugs of abuse); cardiovascular responses (opiates and ethanol); respiration and thermoregulation (opiates and THC); and immunological responses (opiates and stimulants). This paper is the thirty-seventh consecutive installment of the annual review of research concerning the endogenous opioid system. It summarizes papers published during 2014 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides, opioid receptors, opioid agonists and opioid antagonists. The particular topics that continue to be covered include the molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors related to behavior (endogenous opioids and receptors), and the roles of these opioid peptides and receptors in pain and analgesia (pain and analgesia); stress and social status (human studies); tolerance and dependence (opioid mediation of other analgesic responses); learning and memory (stress and social status); eating and drinking (stress-induced analgesia); alcohol and drugs of abuse (emotional responses in opioid-mediated behaviors); sexual activity and hormones, pregnancy, development and endocrinology (opioid involvement in stress response regulation); mental illness and mood (tolerance and dependence); seizures and neurologic disorders (learning and memory); electrical-related activity and neurophysiology (opiates and conditioned place preferences (CPP)); general activity and locomotion (eating and drinking); gastrointestinal, renal and hepatic functions (alcohol and drugs of abuse); cardiovascular responses (opiates and ethanol); respiration and thermoregulation (opiates and THC); and immunological responses (opiates and stimulants).
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, Flushing, NY 11367, United States.
| |
Collapse
|