1
|
Zhang Y, Tian R, Feng X, Xiao B, Yue Q, Wei J, Wang L. Overexpression of METTL3 in lung cancer cells inhibits radiation-induced bystander effect. Biochem Biophys Res Commun 2025; 761:151714. [PMID: 40184791 DOI: 10.1016/j.bbrc.2025.151714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 03/19/2025] [Accepted: 03/26/2025] [Indexed: 04/07/2025]
Abstract
BACKGROUND Radiation-induced bystander effects (RIBE) increase the complexity of radiation therapy (RT). m6A modification is implicated in ionizing radiation damage. This study aims to investigate the RIBE and the mechanism after promoting m6A modification. METHODS Lung adenocarcinoma cells were treated to simulate a hypoxic and 0.5 Gy RT environment. The expression levels of METTL3, METTL14, and YTDHF2 were quantified by RT-qPCR. Paracellular clonogenicity and the expression of 53BP1 and γ-H2AX were assessed by immunofluorescence. The proliferative rate was evaluated by CCK-8. Probes were employed to measure ROS levels. Micronucleus formation was evaluated microscopically. m6A-mRNA/lncRNA microarrays, MERIP-PCR, RT-qPCR, and ELISA were utilized to assess m6A modification levels and the expression of inflammatory factors. RESULTS m6A modification levels were significantly diminished under hypoxic, low-dose irradiation conditions. The overexpression of METTL3 in irradiated cancer cells resulted in increased clonogenicity and proliferation of paracellular cells, suppressed the rate of micronucleus formation, and reduced DNA damage by modulating the inflammatory response. m6A-mRNA/lncRNA microarray analyses revealed a higher correlation of inflammatory molecules NF-κB and TRAF6. Further analysis demonstrated that the m6A modification levels of inflammation-related factors such as IL-6, TLR4, NF-κB2, and TRAF6 were significantly up-regulated, while their mRNA expression levels were notably decreased. Additionally, the expression of IL-10 and TGF-β was significantly reduced, with no significant changes observed in IL-1 expression. CONCLUSION The overexpression of METTL3 facilitated m6A modification and mitigated the inflammatory response, thereby promoting paracellular cloning and proliferation, inhibiting micronucleus formation, alleviating DNA damage, and achieving the objective of suppression of RIBE.
Collapse
Affiliation(s)
- Yong Zhang
- The First Affiliated Hospital of Kunming Medical University, 295 Xichang Road, Kunming, 650032, China
| | - Rongrong Tian
- The First Affiliated Hospital of Kunming Medical University, 295 Xichang Road, Kunming, 650032, China
| | - Xudong Feng
- The First Affiliated Hospital of Kunming Medical University, 295 Xichang Road, Kunming, 650032, China
| | - Bin Xiao
- The First Affiliated Hospital of Kunming Medical University, 295 Xichang Road, Kunming, 650032, China
| | - Qi Yue
- The First Affiliated Hospital of Kunming Medical University, 295 Xichang Road, Kunming, 650032, China
| | - Jinling Wei
- The First People's Hospital of Yunnan Province, Kunming, 650032, Yunnan, China; The Affiliated Hospital of Kunming University of Science and Technology, Kunming, 650032, Yunnan, China
| | - Li Wang
- The First People's Hospital of Yunnan Province, Kunming, 650032, Yunnan, China; The Affiliated Hospital of Kunming University of Science and Technology, Kunming, 650032, Yunnan, China.
| |
Collapse
|
2
|
Gaikwad PS, Hole A, Saxena V, Choudhury S, Nath BB, Krishna CM, Mukhopadhyaya R. Vibrational spectroscopic detection of radiation-induced structural changes in Chironomus hemoglobin. Biochem Biophys Rep 2024; 38:101721. [PMID: 38766383 PMCID: PMC11101703 DOI: 10.1016/j.bbrep.2024.101721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 04/21/2024] [Accepted: 04/24/2024] [Indexed: 05/22/2024] Open
Abstract
Purpose Chironomus hemoglobin is known to exhibit higher gamma radiation resistance compared to human hemoglobin. In the present study, we have introduced a sensitive method to analyze radiation-induced alterations in Chironomus hemoglobin using Vibrational spectroscopy and further highlighting its potential for monitoring radiotoxicity in aquatic environments. Materials and methods Vibrational spectroscopic methods such as Raman and FT-IR spectroscopy were used to capture the distinctive chemical signature of Chironomus hemoglobin (ChHb) under both in vitro and in vivo conditions. Any radiation dose-dependent shifts could be analyzed Human hemoglobin (HuHb) as standard reference. Results Distinctive Raman peak detected at 930 cm-1 in (ChHb) was attributed to C-N stretching in the heterocyclic ring surrounding the iron atom, preventing heme degradation even after exposure to 2400 Gy dose. In contrast, for (HuHb), the transition from deoxy-hemoglobin to met-hemoglobin at 1210 cm-1 indicated a disruption in oxygen binding after exposure to 1200 Gy dose. Furthermore, while ChHb exhibited a consistent peak at 1652 cm-1 in FT-IR analysis, HuHb on the other hand, suffered damage after gamma irradiation. Conclusion The findings suggest that vibrational spectroscopic methods hold significant potential as a sensitive tool for detecting radiation-induced molecular alterations and damages. Chironomus hemoglobin, with its robust interaction of the pyrrole ring with Fe, serves as a reliable bioindicator molecule to detect radiation damage using vibrational spectroscopic method.
Collapse
Affiliation(s)
- Pallavi S. Gaikwad
- Department of Zoology, Savitribai Phule Pune University, Pune, 411007, India
- Gene Technology Section, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085, India
| | - Arti Hole
- Advanced Centre for Treatment, Research & Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Navi Mumbai, 410210, India
| | - Vibha Saxena
- Technical Physics Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085, India
| | - Sipra Choudhury
- Chemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085, India
| | - Bimalendu B. Nath
- Department of Zoology, Savitribai Phule Pune University, Pune, 411007, India
- MIE-SPPU Institute of Higher Education, Doha, Qatar, 122104
| | - C. Murali Krishna
- Homi Bhabha National Institute, Anushaktinagar, Mumbai-400094, India
- Advanced Centre for Treatment, Research & Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Navi Mumbai, 410210, India
| | - Rita Mukhopadhyaya
- Gene Technology Section, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085, India
- Homi Bhabha National Institute, Anushaktinagar, Mumbai-400094, India
| |
Collapse
|
3
|
Sela R, Halpern M. The Chironomid Microbiome Plays a Role in Protecting Its Host From Toxicants. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.796830] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Organisms are assemblages of the host and their endogenous bacteria, which are defined as microbiomes. The host and its microbiome undergo a mutual evolutionary process to adapt to changes in the environment. Chironomids (Diptera; Chironomidae), are aquatic insects that grow and survive in polluted environments; however, the mechanisms that protect them under these conditions are not fully understood. Here we present evidence that the chironomids’ microbiome enables them to survival in polluted environments. It has been demonstrated that about 40% of the microbiota that inhabit Chironomus transvaalensis egg masses and larvae has the potential to detoxify different toxicants. Metagenomic analysis of Chironomus ramosus larvae demonstrated the presence of genes in the insects’ microbiome that can help the insects to survive in hostile environments. A set of experiments demonstrated that short exposure of C. transvaalensis larvae to metals significantly changed their microbiota composition in comparison to unexposed larvae. Another experiment, that followed Koch’s postulates, demonstrated that disinfected C. transvaalensis larvae can survive toxic lead and chromium exposure when they are recolonized with bacteria that can detoxify these toxic metals. This accumulating research, points to the conclusion that the chironomid microbiome plays a role in protecting its host from toxicants.
Collapse
|
4
|
Penninckx S, Pariset E, Cekanaviciute E, Costes SV. Quantification of radiation-induced DNA double strand break repair foci to evaluate and predict biological responses to ionizing radiation. NAR Cancer 2021; 3:zcab046. [PMID: 35692378 PMCID: PMC8693576 DOI: 10.1093/narcan/zcab046] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 11/08/2021] [Accepted: 12/17/2021] [Indexed: 08/08/2023] Open
Abstract
Radiation-induced foci (RIF) are nuclear puncta visualized by immunostaining of proteins that regulate DNA double-strand break (DSB) repair after exposure to ionizing radiation. RIF are a standard metric for measuring DSB formation and repair in clinical, environmental and space radiobiology. The time course and dose dependence of their formation has great potential to predict in vivo responses to ionizing radiation, predisposition to cancer and probability of adverse reactions to radiotherapy. However, increasing complexity of experimentally and therapeutically setups (charged particle, FLASH …) is associated with several confounding factors that must be taken into account when interpreting RIF values. In this review, we discuss the spatiotemporal characteristics of RIF development after irradiation, addressing the common confounding factors, including cell proliferation and foci merging. We also describe the relevant endpoints and mathematical models that enable accurate biological interpretation of RIF formation and resolution. Finally, we discuss the use of RIF as a biomarker for quantification and prediction of in vivo radiation responses, including important caveats relating to the choice of the biological endpoint and the detection method. This review intends to help scientific community design radiobiology experiments using RIF as a key metric and to provide suggestions for their biological interpretation.
Collapse
Affiliation(s)
- Sébastien Penninckx
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Medical Physics Department, Jules Bordet Institute, Université Libre de Bruxelles, 1 Rue Héger-Bordet, 1000 Brussels, Belgium
| | - Eloise Pariset
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA 94035, USA
- Universities Space Research Association, 615 National Avenue, Mountain View, CA 94043, USA
| | - Egle Cekanaviciute
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA 94035, USA
| | - Sylvain V Costes
- To whom correspondence should be addressed. Tel: +1 650 604 5343;
| |
Collapse
|
5
|
Laviad-Shitrit S, Sharaby Y, Sela R, Thorat L, Nath BB, Halpern M. Copper and chromium exposure affect chironomid larval microbiota composition. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 771:145330. [PMID: 33545485 DOI: 10.1016/j.scitotenv.2021.145330] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 01/13/2021] [Accepted: 01/17/2021] [Indexed: 06/12/2023]
Abstract
Chironomids are aquatic insects that are known to be pollution tolerant. We have recently demonstrated that endogenous chironomid microbiota protects its host from toxic metals. Following these findings, we hypothesized that under different environmental conditions, a different bacterial consortium will evolve. Our aim was to explore the change in chironomid larval microbiota composition triggered by exposure to toxic copper and hexavalent chromium. Chironomid larvae were collected from the environment and treated in the laboratory with copper, hexavalent chromium, and no metal (control). After six days, the microbial composition of the surviving larvae was examined. We found a significant change in larval microbiota composition between the three treatments and for different copper concentrations. The abundance of specific taxa varied significantly between the treatments. At the genus level, the abundance of some genera (e.g. Yersinia, Acinetobacter) increased in the presence of copper, and some genera (e.g. Yersinia, Dysgonomonas, Delftia, Enterococcus) increased in the presence of hexavalent chromium, compared to the control. The change in the larval microbiota composition was rapid and metal-specific. We suggest that each larva hosts a consortium of bacterial species that can proliferate under a specific environmental change and thus, protect the insect under unstable environmental conditions.
Collapse
Affiliation(s)
- Sivan Laviad-Shitrit
- Department of Evolutionary and Environmental Biology, University of Haifa, Haifa, Israel
| | - Yehonatan Sharaby
- Department of Evolutionary and Environmental Biology, University of Haifa, Haifa, Israel
| | - Rotem Sela
- Department of Evolutionary and Environmental Biology, University of Haifa, Haifa, Israel
| | - Leena Thorat
- Department of Zoology, Savitribai Phule Pune University, Pune, India; Department of Biology, York University, Toronto, Canada
| | - Bimalendu B Nath
- Department of Zoology, Savitribai Phule Pune University, Pune, India
| | - Malka Halpern
- Department of Evolutionary and Environmental Biology, University of Haifa, Haifa, Israel; Department of Biology and Environment, University of Haifa, Oranim, Tivon, Israel.
| |
Collapse
|
6
|
Shuryak I. Review of resistance to chronic ionizing radiation exposure under environmental conditions in multicellular organisms. JOURNAL OF ENVIRONMENTAL RADIOACTIVITY 2020; 212:106128. [PMID: 31818732 DOI: 10.1016/j.jenvrad.2019.106128] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 12/02/2019] [Accepted: 12/03/2019] [Indexed: 06/10/2023]
Abstract
Ionizing radiation resistance occurs among many phylogenetic groups and its mechanisms remain incompletely understood. Tolerances to acute and chronic irradiation do not always correlate because different mechanisms may be involved. The radioresistance phenomenon becomes even more complex in the field than in the laboratory because the effects of radioactive contamination on natural populations are intertwined with those of other factors, such as bioaccumulation of radionuclides, interspecific competition, seasonal variations in environmental conditions, and land use changes due to evacuation of humans from contaminated areas. Previous reviews of studies performed in radioactive sites like the Kyshtym, Chernobyl, and Fukushima accident regions, and of protracted irradiation experiments, often focused on detecting radiation effects at low doses in radiosensitive organisms. Here we review the literature with a different purpose: to identify organisms with high tolerance to chronic irradiation under environmental conditions, which maintained abundant populations and/or outcompeted more radiosensitive species at high dose rates. Taxa for which consistent evidence for radioresistance came from multiple studies conducted in different locations and at different times were found among plants (e.g. willow and birch trees, sedges), invertebrate and vertebrate animals (e.g. rotifers, some insects, crustaceans and freshwater fish). These organisms are not specialized "extremophiles", but tend to tolerate broad ranges of environmental conditions and stresses, have small genomes, reproduce quickly and/or disperse effectively over long distances. Based on these findings, resistance to radioactive contamination can be examined in a more broad context of chronic stress responses.
Collapse
Affiliation(s)
- Igor Shuryak
- Center for Radiological Research, Columbia University Irving Medical Center, 630 West 168th Street, VC-11-234/5, New York, NY, USA.
| |
Collapse
|
7
|
Unfolding and inactivation of proteins by counterions in protein-nanoparticles interaction. Colloids Surf B Biointerfaces 2016; 145:194-200. [DOI: 10.1016/j.colsurfb.2016.04.053] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Revised: 04/15/2016] [Accepted: 04/30/2016] [Indexed: 12/13/2022]
|
8
|
Gaikwad PS, Panicker L, Mohole M, Sawant S, Mukhopadhyaya R, Nath BB. Differential sensitivity of Chironomus and human hemoglobin to gamma radiation. Biochem Biophys Res Commun 2016; 476:371-378. [PMID: 27237970 DOI: 10.1016/j.bbrc.2016.05.129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 05/25/2016] [Indexed: 10/21/2022]
Abstract
Chironomus ramosus is known to tolerate high doses of gamma radiation exposure. Larvae of this insect possess more than 95% of hemoglobin (Hb) in its circulatory hemolymph. This is a comparative study to see effect of gamma radiation on Hb of Chironomus and humans, two evolutionarily diverse organisms one having extracellular and the other intracellular Hb respectively. Stability and integrity of Chironomus and human Hb to gamma radiation was compared using biophysical techniques like Dynamic Light Scattering (DLS), UV-visible spectroscopy, fluorescence spectrometry and CD spectroscopy after exposure of whole larvae, larval hemolymph, human peripheral blood, purified Chironomus and human Hb. Sequence- and structure-based bioinformatics methods were used to analyze the sequence and structural similarities or differences in the heme pockets of respective Hbs. Resistivity of Chironomus Hb to gamma radiation is remarkably higher than human Hb. Human Hb exhibited loss of heme iron at a relatively low dose of gamma radiation exposure as compared to Chironomus Hb. Unlike human Hb, the heme pocket of Chironomus Hb is rich in aromatic amino acids. Higher hydophobicity around heme pocket confers stability of Chironomus Hb compared to human Hb. Previously reported gamma radiation tolerance of Chironomus can be largely attributed to its evolutionarily ancient form of extracellular Hb as evident from the present study.
Collapse
Affiliation(s)
- Pallavi S Gaikwad
- Stress Biology Research Laboratory, Department of Zoology, Savitribai Phule University, Pune, 411007, India; Molecular Biology Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085, India
| | - Lata Panicker
- Solid State Physics Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085, India
| | - Madhura Mohole
- Bioinformatics Center, Savitribai Phule Pune University, Pune, 411007, India
| | - Sangeeta Sawant
- Bioinformatics Center, Savitribai Phule Pune University, Pune, 411007, India
| | - Rita Mukhopadhyaya
- Molecular Biology Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085, India
| | - Bimalendu B Nath
- Stress Biology Research Laboratory, Department of Zoology, Savitribai Phule University, Pune, 411007, India.
| |
Collapse
|