1
|
Ren W, Xin SK, Han LY, Zuo R, Li Y, Gong MX, Wei XL, Zhou YY, He J, Wang HJ, Si N, Zhao HY, Yang J, Bian BL. Comparative metabolism of four limonoids in human liver microsomes using ultra-high-performance liquid chromatography coupled with high-resolution LTQ-Orbitrap mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2015; 29:2045-2056. [PMID: 26443405 DOI: 10.1002/rcm.7365] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Revised: 08/16/2015] [Accepted: 08/18/2015] [Indexed: 06/05/2023]
Abstract
RATIONALE Limonoids, characterized by a triterpenoid skeleton with a furan ring, are unique secondary metabolites widely distributed in the families of Rutaceae, particularly in Citrus species and Meliaceae. Studies on health benefits have demonstrated that limonoids have a range of biological activities. Dietary intake of citrus limonoids may provide a protective effect against the onset of various cancers and other xenobiotic related diseases. However, few studies about the metabolic profiles of limonoids have been carried out. METHODS The objectives of this study were to investigate the metabolic profiles of four limonoids (limonin, obacunone, nominin and gedunin) in human liver microsomes (HLMs) using ultra-high-performance liquid chromatography coupled with high-resolution mass spectrometry (UHPLC/HRMS) and to identify the cytochrome P450 (CYP) enzymes involved in the formation of their metabolites by recombinant human CYP enzymes. RESULTS Based on the accurate HR-MS/MS spectra and the proposed MS/MS fragmentation pathways, four metabolites of limonin (M1-1, M1-2, M1-3 and M1-4), eight metabolites ofobacunone (M2-1, M2-2, M2-3, M2-4, M2-5, M2-6, M2-7 and M2-8), six metabolites of nominin (M3-1, M3-2, M3-3, M3-4, M3-5 and M3-6) and three metabolites of gedunin (M4-1, M4-2 and M4-3) in HLMs were tentatively identified and the involved CYPs were investigated. CONCLUSIONS The results demonstrated that reduction at C-7 and C-16, hydroxylation and reaction of glycine with reduction limonoids were the major metabolic pathways of limonoids in HLMs. Among them, glycination with reduction was the unique metabolic process of limonoids observed for the first time. CYP2D6 and CYP3A4 played an important role in the isomerization and glycination of limonoids in HLMs, whereas other CYP isoforms were considerably less active. The results might help to understand the metabolic process of limonoids in vitro such as the unidentified metabolites of limonin glucoside observed in the medium of microbes and the biotransformation of limonin in juices. Moreover, it would be beneficial for us to further study the pharmacokinetic behavior of limonoids in vivo systematically.
Collapse
Affiliation(s)
- Wei Ren
- Capital Medical University School of Traditional Chinese Medicine, Beijing, 100069, China
| | - Shao-Kun Xin
- Capital Medical University School of Traditional Chinese Medicine, Beijing, 100069, China
| | - Ling-Yu Han
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Ran Zuo
- Li Kang Hospital, Beijing, 102609, People's Republic of China
| | - Yan Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Mu-Xing Gong
- Capital Medical University School of Traditional Chinese Medicine, Beijing, 100069, China
| | - Xiao-Lu Wei
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Yan-Yan Zhou
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Jing He
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Hong-Jie Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Nan Si
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Hai-Yu Zhao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
- State Key Laboratory Breeding Base of Dao-di Herbs, China Academy of Chinese Medical Sciences, Beijing, 100700, P.R. China
| | - Jian Yang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Bao-Lin Bian
- Capital Medical University School of Traditional Chinese Medicine, Beijing, 100069, China
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| |
Collapse
|
2
|
Characterization and upregulation of bifunctional phosphoglucomutase/phosphomannomutase enzyme in an exobiopolymer overproducing strain of Acinetobacter haemolyticus. Microbiol Res 2015; 181:8-14. [PMID: 26640047 DOI: 10.1016/j.micres.2015.08.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2015] [Revised: 07/13/2015] [Accepted: 08/04/2015] [Indexed: 11/24/2022]
Abstract
Several members of the Acinetobacter spp. produce exobiopolymer (EBP) of considerable biotechnological interest. In a previous study, we reported phosphate removal capacity of EBP produced by Acinetobacter haemolyticus. Insertional mutagenesis was attempted to develop EBP-overproducing strains of A. haemolyticus and mutant MG606 was isolated. In order to understand the underlying mechanism of overproduction, the EBP overproducing mutant MG606 was analyzed and compared with the wild type counterpart for its key EBP synthetic enzymes. The EBP produced by MG606 mutant was 650 mg/L compared to 220 mg/L in its wild type counterpart. Significantly high (p<0.05) levels of phosphoglucomutase/phosphomannomutase (PGM/PMM) in MG606 mutant was noted, whereas activities of other enzymes responsible for EBP synthesis showed no significant change (p>0.05). The up-regulation of PGM/PMM expression in mutant was further confirmed by real time reverse transcriptase (RT)-PCR of PGM/PMM transcripts. The optimal conditions for PGM/PMM activity were found to be 35 °C and pH 7.5; PGM/PMM activity was inhibited by ions such as lithium, zinc, nickel. Further, incubation of cells with a PGM inhibitor (lithium) resulted in a concentration-dependent decrease in EBP production further confirming the role of PGM/PMM overexpression in enhanced EBP production by the mutant. Overall the results of our study indicate a key role of PGM/PMM in enhanced EBP production, as evident from enhanced enzyme activity, increased PGM/PMM transcripts and reduction in EBP synthesis by a PGM inhibitor. We envisage a potential exploitation of the insights so obtained to effectively engineer strains of Acinetobacter for overproducing phosphate binding EBP.
Collapse
|