1
|
Strazzulli A, Perugino G, Mazzone M, Rossi M, Withers SG, Moracci M. Probing the role of an invariant active site His in family GH1 β-glycosidases. J Enzyme Inhib Med Chem 2019; 34:973-980. [PMID: 31072150 PMCID: PMC6522968 DOI: 10.1080/14756366.2019.1608198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
The reaction mechanism of glycoside hydrolases belonging to family 1 (GH1) of carbohydrate-active enzymes classification, hydrolysing β-O-glycosidic bonds, is well characterised. This family includes several thousands of enzymes with more than 20 different EC numbers depending on the sugar glycone recognised as substrate. Most GH1 β-glycosidases bind their substrates with similar specificity through invariant amino acid residues. Despite extensive studies, the clear identification of the roles played by each of these residues in the recognition of different glycones is not always possible. We demonstrated here that a histidine residue, completely conserved in the active site of the enzymes of this family, interacts with the C2-OH of the substrate in addition to the C3-OH as previously shown by 3 D-structure determination.
Collapse
Affiliation(s)
- Andrea Strazzulli
- a Department of Biology , University of Naples "Federico II", Complesso Universitario di Monte S. Angelo , Napoli , Italy.,b Task Force on Microbiome Studies, University of Naples Federico II , Naples , Italy
| | - Giuseppe Perugino
- c Institute of Biosciences and BioResources - National Research Council of Italy , Naples , Italy
| | - Marialuisa Mazzone
- c Institute of Biosciences and BioResources - National Research Council of Italy , Naples , Italy
| | - Mosè Rossi
- c Institute of Biosciences and BioResources - National Research Council of Italy , Naples , Italy
| | - Stephen G Withers
- d Department of Chemistry , University of British Columbia , Vancouver , Canada
| | - Marco Moracci
- a Department of Biology , University of Naples "Federico II", Complesso Universitario di Monte S. Angelo , Napoli , Italy.,b Task Force on Microbiome Studies, University of Naples Federico II , Naples , Italy.,c Institute of Biosciences and BioResources - National Research Council of Italy , Naples , Italy
| |
Collapse
|
2
|
Effects of Random Mutagenesis and In Vivo Selection on the Specificity and Stability of a Thermozyme. Catalysts 2019. [DOI: 10.3390/catal9050440] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Factors that give enzymes stability, activity, and substrate recognition result from the combination of few weak molecular interactions, which can be difficult to study through rational protein engineering approaches. We used irrational random mutagenesis and in vivo selection to test if a β-glycosidase from the thermoacidophile Saccharolobus solfataricus (Ssβ-gly) could complement an Escherichia coli strain unable to grow on lactose. The triple mutant of Ssβ-gly (S26L, P171L, and A235V) was more active than the wild type at 85 °C, inactivated at this temperature almost 300-fold quicker, and showed a 2-fold higher kcat on galactosides. The three mutations, which were far from the active site, were analyzed to test their effect at the structural level. Improved activity on galactosides was induced by the mutations. The S26L and P171L mutations destabilized the enzyme through the removal of a hydrogen bond and increased flexibility of the peptide backbone, respectively. However, the flexibility added by S26L mutation improved the activity at T > 60 °C. This study shows that random mutagenesis and biological selection allowed the identification of residues that are critical in determining thermal activity, stability, and substrate recognition.
Collapse
|
3
|
GlcNAc De- N-Acetylase from the Hyperthermophilic Archaeon Sulfolobus solfataricus. Appl Environ Microbiol 2019; 85:AEM.01879-18. [PMID: 30446550 DOI: 10.1128/aem.01879-18] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 11/04/2018] [Indexed: 01/17/2023] Open
Abstract
Sulfolobus solfataricus is an aerobic crenarchaeal hyperthermophile with optimum growth at temperatures greater than 80°C and pH 2 to 4. Within the crenarchaeal group of Sulfolobales, N-acetylglucosamine (GlcNAc) has been shown to be a component of exopolysaccharides, forming their biofilms, and of the N-glycan decorating some proteins. The metabolism of GlcNAc is still poorly understood in Archaea, and one approach to gaining additional information is through the identification and functional characterization of carbohydrate active enzymes (CAZymes) involved in the modification of GlcNAc. The screening of S. solfataricus extracts allowed the detection of a novel α-N-acetylglucosaminidase (α-GlcNAcase) activity, which has never been identified in Archaea Mass spectrometry analysis of the purified activity showed a protein encoded by the sso2901 gene. Interestingly, the purified recombinant enzyme, which was characterized in detail, revealed a novel de-N-acetylase activity specific for GlcNAc and derivatives. Thus, assays to identify an α-GlcNAcase found a GlcNAc de-N-acetylase instead. The α-GlcNAcase activity observed in S. solfataricus extracts did occur when SSO2901 was used in combination with an α-glucosidase. Furthermore, the inspection of the genomic context and the preliminary characterization of a putative glycosyltransferase immediately upstream of sso2901 (sso2900) suggest the involvement of these enzymes in the GlcNAc metabolism in S. solfataricus IMPORTANCE In this study, a preliminary screening of cellular extracts of S. solfataricus allowed the identification of an α-N-acetylglucosaminidase activity. However, the characterization of the corresponding recombinant enzyme revealed a novel GlcNAc de-N-acetylase, which, in cooperation with the α-glucosidase, catalyzed the hydrolysis of O-α-GlcNAc glycosides. In addition, we show that the product of a gene flanking the one encoding the de-N-acetylase is a putative glycosyltransferase, suggesting the involvement of the two enzymes in the metabolism of GlcNAc. The discovery and functional analysis of novel enzymatic activities involved in the modification of this essential sugar represent a powerful strategy to shed light on the physiology and metabolism of Archaea.
Collapse
|
4
|
Cobucci-Ponzano B, Strazzulli A, Iacono R, Masturzo G, Giglio R, Rossi M, Moracci M. Novel thermophilic hemicellulases for the conversion of lignocellulose for second generation biorefineries. Enzyme Microb Technol 2015. [PMID: 26215346 DOI: 10.1016/j.enzmictec.2015.06.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The biotransformation of lignocellulose biomasses into fermentable sugars is a very complex procedure including, as one of the most critical steps, the (hemi) cellulose hydrolysis by specific enzymatic cocktails. We explored here, the potential of stable glycoside hydrolases from thermophilic organisms, so far not used in commercial enzymatic preparations, for the conversion of glucuronoxylan, the major hemicellulose of several energy crops. Searches in the genomes of thermophilic bacteria led to the identification, efficient production, and detailed characterization of novel xylanase and α-glucuronidase from Alicyclobacillus acidocaldarius (GH10-XA and GH67-GA, respectively) and a α-glucuronidase from Caldicellulosiruptor saccharolyticus (GH67-GC). Remarkably, GH10-XA, if compared to other thermophilic xylanases from this family, coupled good specificity on beechwood xylan and the best stability at 65 °C (3.5 days). In addition, GH67-GC was the most stable α-glucuronidases from this family and the first able to hydrolyse both aldouronic acid and aryl-α-glucuronic acid substrates. These enzymes, led to the very efficient hydrolysis of beechwood xylan by using 7- to 9-fold less protein (concentrations <0.3 μM) and in much less reaction time (2h vs 12h) if compared to other known biotransformations catalyzed by thermophilic enzymes. In addition, remarkably, together with a thermophilic β-xylosidase, they catalyzed the production of xylose from the smart cooking pre-treated biomass of one of the most promising energy crops for second generation biorefineries. We demonstrated that search by the CAZy Data Bank of currently available genomes and detailed enzymatic characterization of recombinant enzymes allow the identification of glycoside hydrolases with novel and interesting properties and applications.
Collapse
Affiliation(s)
- Beatrice Cobucci-Ponzano
- Institute of Biosciences and Bioresources, National Research Council of Italy, Via P. Castellino 111, 80131 Naples, Italy.
| | - Andrea Strazzulli
- Institute of Biosciences and Bioresources, National Research Council of Italy, Via P. Castellino 111, 80131 Naples, Italy.
| | - Roberta Iacono
- Institute of Biosciences and Bioresources, National Research Council of Italy, Via P. Castellino 111, 80131 Naples, Italy.
| | - Giuseppe Masturzo
- Institute of Biosciences and Bioresources, National Research Council of Italy, Via P. Castellino 111, 80131 Naples, Italy.
| | - Rosa Giglio
- Institute of Biosciences and Bioresources, National Research Council of Italy, Via P. Castellino 111, 80131 Naples, Italy.
| | - Mosè Rossi
- Institute of Biosciences and Bioresources, National Research Council of Italy, Via P. Castellino 111, 80131 Naples, Italy.
| | - Marco Moracci
- Institute of Biosciences and Bioresources, National Research Council of Italy, Via P. Castellino 111, 80131 Naples, Italy.
| |
Collapse
|
5
|
A Fluorometric Enzymatic Assay for Quantification of Steryl Glucosides in Biodiesel. J AM OIL CHEM SOC 2015. [DOI: 10.1007/s11746-014-2574-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
6
|
Ferrara MC, Cobucci-Ponzano B, Carpentieri A, Henrissat B, Rossi M, Amoresano A, Moracci M. The identification and molecular characterization of the first archaeal bifunctional exo-β-glucosidase/N-acetyl-β-glucosaminidase demonstrate that family GH116 is made of three functionally distinct subfamilies. Biochim Biophys Acta Gen Subj 2013; 1840:367-77. [PMID: 24060745 DOI: 10.1016/j.bbagen.2013.09.022] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Revised: 09/13/2013] [Accepted: 09/16/2013] [Indexed: 11/29/2022]
Abstract
BACKGROUND β-N-acetylhexosaminidases, which are involved in a variety of biological processes including energy metabolism, cell proliferation, signal transduction and in pathogen-related inflammation and autoimmune diseases, are widely distributed in Bacteria and Eukaryotes, but only few examples have been found in Archaea so far. However, N-acetylgluco- and galactosamine are commonly found in the extracellular storage polymers and in the glycans decorating abundantly expressed glycoproteins from different Crenarchaeota Sulfolobus sp., suggesting that β-N-acetylglucosaminidase activities could be involved in the modification/recycling of these cellular components. METHODS A thermophilic β-N-acetylglucosaminidase was purified from cellular extracts of S. solfataricus, strain P2, identified by mass spectrometry, and cloned and expressed in E. coli. Glycosidase assays on different strains of S. solfataricus, steady state kinetic constants, substrate specificity analysis, and the sensitivity to two inhibitors of the recombinant enzyme were also reported. RESULTS A new β-N-acetylglucosaminidase from S. solfataricus was unequivocally identified as the product of gene sso3039. The detailed enzymatic characterization demonstrates that this enzyme is a bifunctional β-glucosidase/β-N-acetylglucosaminidase belonging to family GH116 of the carbohydrate active enzyme (CAZy) classification. CONCLUSIONS This study allowed us to propose that family GH116 is composed of three subfamilies, which show distinct substrate specificities and inhibitor sensitivities. GENERAL SIGNIFICANCE The characterization of SSO3039 allows, for the first time in Archaea, the identification of an enzyme involved in the metabolism β-N-acetylhexosaminide, an essential component of glycoproteins in this domain of life, and substantially increases our knowledge on the functional role and phylogenetic relationships amongst the GH116 CAZy family members.
Collapse
Affiliation(s)
- Maria Carmina Ferrara
- Institute of Protein Biochemistry, Consiglio Nazionale delle Ricerche, Via P. Castellino 111, 80131 Naples, Italy
| | | | | | | | | | | | | |
Collapse
|
7
|
Trincone A, Pagnotta E, Fantin G, Fogagnolo M. Enzymatic Routes for the Synthesis of Rhododendrin and Epi-Rhododendrin. BIOCATAL BIOTRANSFOR 2009. [DOI: 10.3109/10242429609003603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
8
|
Trincone A, Improta R, Gambacorta A. Enzymatic Synthesis of Polyol- and Masked Polyol- Glycosides using β-Glycosidase ofSulfolobus Solfataricus. BIOCATAL BIOTRANSFOR 2009. [DOI: 10.3109/10242429508998153] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
9
|
Petzelbauer I, Kuhn B, Splechtna B, Kulbe KD, Nidetzky B. Development of an ultrahigh-temperature process for the enzymatic hydrolysis of lactose. IV. Immobilization of two thermostable beta-glycosidases and optimization of a packed-bed reactor for lactose conversion. Biotechnol Bioeng 2002; 77:619-31. [PMID: 11807757 DOI: 10.1002/bit.10110] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Recombinant hyperthermostable beta-glycosidases from the archaea Sulfolobus solfataricus (Ss beta Gly) and Pyrococcus furiosus (CelB) were covalently attached onto the insoluble carriers chitosan, controlled pore glass (CPG), and Eupergit C. For each enzyme/carrier pair, the protein-binding capacity, the immobilization yield, the pH profiles for activity and stability, the activity/temperature profile, and the kinetic constants for lactose hydrolysis at 70 degrees C were determined. Eupergit C was best among the carriers in regard to retention of native-like activity and stability of Ss beta Gly and CelB over the pH range 3.0-7.5. Its protein binding capacity of approximately 0.003 (on a mass basis) was one-third times that of CPG, while immobilization yields were typically 80% in each case. Activation energies for lactose conversion by the immobilized enzymes at pH 5.5 were in the range 50-60 kJ/mol. This is compared to values of approximately 75 kJ/mol for the free enzymes. Immobilization expands the useful pH range for CelB and Ss beta Gly by approximately 1.5 pH units toward pH 3.5 and pH 4.5, respectively. A packed-bed enzyme reactor was developed for the continuous conversion of lactose in different media, including whey and milk, and operated over extended reaction times of up to 14 days. The productivities of the Eupergit C-immobilized enzyme reactor were determined at dilution rates between 1 and 12 h(-1), and using 45 and 170 g/L initial lactose. Results of kinetic modeling for the same reactor, assuming plug flow and steady state, suggest the presence of mass-transfer limitation of the reaction rate under the conditions used. Formation of galacto-oligosaccharides in the continuous packed-bed reactor and in the batch reactor using free enzyme was closely similar in regard to yield and individual saccharide components produced.
Collapse
Affiliation(s)
- Inge Petzelbauer
- Division of Biochemical Engineering, Institute of Food Technology, Universität für Bodenkultur Wien (BOKU), Muthgasse 18, A-1190 Vienna, Austria
| | | | | | | | | |
Collapse
|
10
|
Hansson T, Adlercreutz P. OPTIMIZATION OF GALACTOOLIGO-SACCHARIDE PRODUCTION FROM LACTOSE USING β-GLYCOSIDASES FROM HYPERTHERMOPHILES. FOOD BIOTECHNOL 2001. [DOI: 10.1081/fbt-100106830] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
11
|
Petzelbauer I, Zeleny R, Reiter A, Kulbe KD, Nidetzky B. Development of an ultra-high-temperature process for the enzymatic hydrolysis of lactose: II. Oligosaccharide formation by two thermostable beta-glycosidases. Biotechnol Bioeng 2000; 69:140-9. [PMID: 10861393 DOI: 10.1002/(sici)1097-0290(20000720)69:2<140::aid-bit3>3.0.co;2-r] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
During lactose conversion at 70 degrees C, when catalyzed by beta-glycosidases from the archea Sulfolobus solfataricus (SsbetaGly) and Pyrococcus furiosus (CelB), galactosyl transfer to acceptors other than water competes efficiently with complete hydrolysis of substrate. This process leads to transient formation of a range of new products, mainly disaccharides and trisaccharides, and shows a marked dependence on initial substrate concentration and lactose conversion. Oligosaccharides have been analyzed quantitatively by using capillary electrophoresis and high performance anion-exchange chromatography. At 270 g/L initial lactose, they accumulate at a maximum concentration of 86 g/L at 80% lactose conversion. With both enzymes, the molar ratio of trisaccharides to disaccharides is maximal at an early stage of reaction and decreases directly proportional to increasing substrate conversion. Overall, CelB produces about 6% more hydrolysis byproducts than SsbetaGly. However, the product spectrum of SsbetaGly is richer in trisaccharides, and this agrees with results obtained from the steady-state kinetics analyses of galactosyl transfer catalyzed by SsbetaGly and CelB. The major transgalactosylation products of SsbetaGly and CelB have been identified. They are beta-D-Galp-(1-->3)-Glc and beta-D-Galp-(1-->6)-Glc, and beta-D-Galp-(1-->3)-lactose and beta-D-Galp-(1-->6)-lactose, and their formation and degradation have been shown to be dependent upon lactose conversion. Both enzymes accumulate beta(1-->6)-linked glycosides, particularly allolactose, at a late stage of reaction. Because a high oligosaccharide concentration prevails until about 80% lactose conversion, thermostable beta-glycosidases are efficient for oligosaccharide production from lactose. Therefore, they prove to be stable and versatile catalysts for lactose utilization.
Collapse
Affiliation(s)
- I Petzelbauer
- Division of Biochemical Engineering, Institute of Food Technology, Universität für Bodenkultur Wien (BOKU), Muthgasse 18, A-1190 Wien, Austria
| | | | | | | | | |
Collapse
|
12
|
Petzelbauer I, Nidetzky B, Haltrich D, Kulbe KD. Development of an ultra-high-temperature process for the enzymatic hydrolysis of lactose. I. The properties of two thermostable beta-glycosidases. Biotechnol Bioeng 1999; 64:322-32. [PMID: 10397869 DOI: 10.1002/(sici)1097-0290(19990805)64:3<322::aid-bit8>3.0.co;2-9] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Recombinant beta-glycosidases from hyperthermophilic Sulfolobus solfataricus (SsbetaGly) and Pyrococcus furiosus (CelB) have been characterized with regard to their potential use in lactose hydrolysis at about 70 degrees C or greater. Compared with SsbetaGly, CelB is approximately 15 times more stable against irreversible denaturation by heat, its operational half-life time at 80 degrees C and pH 5.5 being 22 days. The stability of CelB but not that of SsbetaGly is decreased 4-fold in the presence of 200 mM lactose at 80 degrees C. CelB displays a broader pH/activity profile than SsbetaGly, retaining at least 60% enzyme activity between pH 4 and 7. Both enzymes have a similar activation energy for lactose hydrolysis of approximately 75 kJ/mol (pH 5.5), and this is constant between 30 and 95 degrees C. D-Galactose is a weak competitive inhibitor against the release of D-glucose from lactose (Ki approximately 0.3 M), and at 80 degrees C the ratio of Ki, D-galactose to Km,lactose is 2.5 and 4.0 for CelB and SsbetaGly, respectively. SsbetaGly is activated up to 2-fold in the presence of D-glucose with respect to the maximum rate of glycosidic bond cleavage, measured with o-nitrophenyl beta-D-galactoside as the substrate. By contrast, CelB is competitively inhibited by D-glucose and has a Ki of 76 mM. The transfer of the galactosyl group from lactose to acceptors such as lactose or D-glucose rather than water is significant for both enzymes and depends on the initial lactose concentration as well as the time-dependent substrate/product ratio during batchwise lactose conversion. It is approximately 1.8 times higher for SsbetaGly, compared with CelB. Overall, CelB and SsbetaGly share their catalytic properties with much less thermostable beta-glycosidases and thus seem very suitable for lactose hydrolysis at >/=70 degrees C.
Collapse
Affiliation(s)
- I Petzelbauer
- Division of Biochemical Engineering, Institute of Food Technology, Universität für Bodenkultur Wien (BOKU), Muthgasse 18, A-1190 Wien, Austria
| | | | | | | |
Collapse
|
13
|
van Rantwijk F, Woudenberg-van Oosterom M, Sheldon R. Glycosidase-catalysed synthesis of alkyl glycosides. ACTA ACUST UNITED AC 1999. [DOI: 10.1016/s1381-1177(99)00042-9] [Citation(s) in RCA: 241] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
14
|
D'Auria S, Moracci M, Febbraio F, Tanfani F, Nucci R, Rossi M. Structure-function studies on beta-glycosidase from Sulfolobus solfataricus. Molecular bases of thermostability. Biochimie 1998; 80:949-57. [PMID: 9893955 DOI: 10.1016/s0300-9084(00)88892-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
beta-Glycosidase from the extreme thermophilic archaeon Sulfolobus solfataricus is a thermostable tetrameric protein with a molecular mass of 240 kDa which is stable in the presence of detergents and has a maximal activity above 95 degrees C. An understanding of the structure-function relationship of the enzyme under different chemical-physical conditions is of fundamental importance for both theoretical and application purposes. In this paper we report the effect of basic pH values on the structural stability of this enzyme. The structure of the enzyme was studied at pH 10 and in the temperature range 25-97.5 degrees C using circular dichroism, Fourier-transform infrared and fluorescence spectroscopy. The spectroscopic data indicated that the enzyme stability was strongly affected by pH 10 suggesting that the destabilization of the protein structure is correlated with the perturbation of ionic interactions present in the native protein at neutral pHs. These experiments give support to the observation derived from the 3D-structure, that large ion pair networks on the surface stabilize Sulfolobus solfataricus beta-glycosidase.
Collapse
Affiliation(s)
- S D'Auria
- Istituto di Biochimica delle Proteine ed Enzimologia, Consiglio Nazionale delle Ricerche, Naples, Italy
| | | | | | | | | | | |
Collapse
|
15
|
|
16
|
Prisco A, Moracci M, Rossi M, Ciaramella M. A gene encoding a putative membrane protein homologous to the major facilitator superfamily of transporters maps upstream of the beta-glycosidase gene in the archaeon Sulfolobus solfataricus. J Bacteriol 1995; 177:1614-1619. [PMID: 7533760 PMCID: PMC176780 DOI: 10.1128/jb.177.6.1614-1619.1995] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
We have identified a gene encoding a putative membrane protein homologous to the major facilitator superfamily, mapping upstream of the lacS gene in Sulfolobus solfataricus. Permeases from this family mediate secondary transport and are widely distributed among eubacteria and eukaryotes; the finding of an archaeal member suggests that this mechanism of transport evolved before the divergence of the three living domains. We also report a transcriptional mapping of the gene cluster.
Collapse
Affiliation(s)
- A Prisco
- Institute of Protein Biochemistry and Enzymology, Consiglio Nazionale delle Ricerche, Naples, Italy
| | | | | | | |
Collapse
|
17
|
|
18
|
Trincone A, Pagnotta E. Efficient chemoselective synthesis of 3,4?-dihydroxypropiophenone 3-O-?-D-glucoside by thermophilic ?-glycosidase from Sulfolobus solfataricus. Biotechnol Lett 1995. [DOI: 10.1007/bf00134194] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|