1
|
Kubota Y, Kimura S. Current Understanding of the Role of Autophagy in the Treatment of Myeloid Leukemia. Int J Mol Sci 2024; 25:12219. [PMID: 39596291 PMCID: PMC11594995 DOI: 10.3390/ijms252212219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 11/12/2024] [Accepted: 11/13/2024] [Indexed: 11/28/2024] Open
Abstract
The most important issues in acute myeloid leukemia are preventing relapse and treating relapse. Although the remission rate has improved to approximately 80%, the 5-year survival rate is only around 30%. The main reasons for this are the high relapse rate and the limited treatment options. In chronic myeloid leukemia patients, when a deep molecular response is achieved for a certain period of time through tyrosine kinase inhibitor treatment, about half of them will reach treatment-free remission, but relapse is still a problem. Therefore, potential therapeutic targets for myeloid leukemias are eagerly awaited. Autophagy suppresses the development of cancer by maintaining cellular homeostasis; however, it also promotes cancer progression by helping cancer cells survive under various metabolic stresses. In addition, autophagy is promoted or suppressed in cancer cells by various genetic mutations. Therefore, the development of therapies that target autophagy is also being actively researched in the field of leukemia. In this review, studies of the role of autophagy in hematopoiesis, leukemogenesis, and myeloid leukemias are presented, and the impact of autophagy regulation on leukemia treatment and the clinical trials of autophagy-related drugs to date is discussed.
Collapse
MESH Headings
- Humans
- Autophagy
- Animals
- Leukemia, Myeloid/pathology
- Leukemia, Myeloid/genetics
- Leukemia, Myeloid/therapy
- Leukemia, Myeloid/metabolism
- Leukemia, Myeloid, Acute/pathology
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/therapy
- Leukemia, Myeloid, Acute/drug therapy
- Antineoplastic Agents/therapeutic use
- Antineoplastic Agents/pharmacology
- Hematopoiesis
Collapse
Affiliation(s)
- Yasushi Kubota
- Department of Clinical Laboratory Medicine, Saga-Ken Medical Centre Koseikan, Saga 840-8571, Japan
| | - Shinya Kimura
- Division of Hematology, Respiratory Medicine and Oncology, Department of Internal Medicine, Faculty of Medicine, Saga University, Saga 849-8501, Japan;
| |
Collapse
|
2
|
Beilankouhi EAV, Valilo M, Dastmalchi N, Teimourian S, Safaralizadeh R. The Function of Autophagy in the Initiation, and Development of Breast Cancer. Curr Med Chem 2024; 31:2974-2990. [PMID: 37138421 DOI: 10.2174/0929867330666230503145319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 02/26/2021] [Accepted: 03/15/2021] [Indexed: 05/05/2023]
Abstract
Autophagy is a significant catabolic procedure that increases in stressful conditions. This mechanism is mostly triggered after damage to the organelles, the presence of unnatural proteins, and nutrient recycling in reaction to these stresses. One of the key points in this article is that cleaning and preserving damaged organelles and accumulated molecules through autophagy in normal cells helps prevent cancer. Since dysfunction of autophagy is associated with various diseases, including cancer, it has a dual function in tumor suppression and expansion. It has newly become clear that the regulation of autophagy can be used for the treatment of breast cancer, which has a promising effect of increasing the efficiency of anticancer treatment in a tissue- and cell-type-specific manner by affecting the fundamental molecular mechanisms. Regulation of autophagy and its function in tumorigenesis is a vital part of modern anticancer techniques. This study discusses the current advances related to the mechanisms that describe essential modulators of autophagy involved in the metastasis of cancers and the development of new breast cancer treatments.
Collapse
Affiliation(s)
| | - Mohammad Valilo
- Department of Biochemistry, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Narges Dastmalchi
- Department of Biology, University College of Nabi Akram, Tabriz, Iran
| | - Shahram Teimourian
- Department of Medical Genetics, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Reza Safaralizadeh
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| |
Collapse
|
3
|
Xiao C, Sun Y, Fan J, Nguyen W, Chen S, Long Y, Chen W, Zhu A, Liu B. Engineering cannabidiol synergistic carbon monoxide nanocomplexes to enhance cancer therapy via excessive autophagy. Acta Pharm Sin B 2023; 13:4591-4606. [PMID: 37969731 PMCID: PMC10638503 DOI: 10.1016/j.apsb.2023.05.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 04/27/2023] [Accepted: 04/30/2023] [Indexed: 11/17/2023] Open
Abstract
Although carbon monoxide (CO)-based treatments have demonstrated the high cancer efficacy by promoting mitochondrial damage and core-region penetrating ability, the efficiency was often compromised by protective autophagy (mitophagy). Herein, cannabidiol (CBD) is integrated into biomimetic carbon monoxide nanocomplexes (HMPOC@M) to address this issue by inducing excessive autophagy. The biomimetic membrane not only prevents premature drugs leakage, but also prolongs blood circulation for tumor enrichment. After entering the acidic tumor microenvironment, carbon monoxide (CO) donors are stimulated by hydrogen oxide (H2O2) to disintegrate into CO and Mn2+. The comprehensive effect of CO/Mn2+ and CBD can induce ROS-mediated cell apoptosis. In addition, HMPOC@M-mediated excessive autophagy can promote cancer cell death by increasing autophagic flux via class III PI3K/BECN1 complex activation and blocking autolysosome degradation via LAMP1 downregulation. Furthermore, in vivo experiments showed that HMPOC@M+ laser strongly inhibited tumor growth and attenuated liver and lung metastases by downregulating VEGF and MMP9 proteins. This strategy may highlight the pro-death role of excessive autophagy in TNBC treatment, providing a novel yet versatile avenue to enhance the efficacy of CO treatments. Importantly, this work also indicated the applicability of CBD for triple-negative breast cancer (TNBC) therapy through excessive autophagy.
Collapse
Affiliation(s)
- Chang Xiao
- College of Biology, Hunan University, Changsha 410082, China
| | - Yue Sun
- College of Biology, Hunan University, Changsha 410082, China
- General Hospital of Ningxia Medical University, School of Public Health and Management, Ningxia Medical University, Yinchuan 750004, China
| | - Jialong Fan
- College of Biology, Hunan University, Changsha 410082, China
| | - William Nguyen
- Department of Physics, the University of Texas at Arlington, Arlington, TX 76019, USA
| | - Simin Chen
- College of Biology, Hunan University, Changsha 410082, China
| | - Ying Long
- College of Biology, Hunan University, Changsha 410082, China
| | - Wei Chen
- Department of Physics, the University of Texas at Arlington, Arlington, TX 76019, USA
| | - Aiguo Zhu
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China
| | - Bin Liu
- College of Biology, Hunan University, Changsha 410082, China
| |
Collapse
|
4
|
Fan M, Gao J, Zhou L, Xue W, Wang Y, Chen J, Li W, Yu Y, Liu B, Shen Y, Xu Q. Highly expressed SERCA2 triggers tumor cell autophagy and is a druggable vulnerability in triple-negative breast cancer. Acta Pharm Sin B 2022; 12:4407-4423. [PMID: 36561988 PMCID: PMC9764070 DOI: 10.1016/j.apsb.2022.05.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/13/2022] [Accepted: 03/23/2022] [Indexed: 12/25/2022] Open
Abstract
Chemoresistance remains a major obstacle to successful treatment of triple negative breast cancer (TNBC). Identification of druggable vulnerabilities is an important aim for TNBC therapy. Here, we report that SERCA2 expression correlates with TNBC progression in human patients, which promotes TNBC cell proliferation, migration and chemoresistance. Mechanistically, SERCA2 interacts with LC3B via LIR motif, facilitating WIPI2-independent autophagosome formation to induce autophagy. Autophagy-mediated SERCA2 degradation induces SERCA2 transactivation through a Ca2+/CaMKK/CREB-1 feedback. Moreover, we found that SERCA2-targeting small molecule RL71 enhances SERCA2-LC3B interaction and induces excessive autophagic cell death. The increase in SERCA2 expression predisposes TNBC cells to RL71-induced autophagic cell death in vitro and in vivo. This study elucidates a mechanism by which TNBC cells maintain their high autophagy activity to induce chemoresistance, and suggests increased SERCA2 expression as a druggable vulnerability for TNBC.
Collapse
Affiliation(s)
- Minmin Fan
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing Drum Tower Hospital, School of Life Sciences, Nanjing University, Nanjing 210023, China,The First Clinical Medical College, Nanjing University of Chinese Medicine, Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine Prevention and Treatment of Tumor, Nanjing 210023, China
| | - Jian Gao
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing Drum Tower Hospital, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Lin Zhou
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing Drum Tower Hospital, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Wenwen Xue
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing Drum Tower Hospital, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Yixuan Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing Drum Tower Hospital, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Jingwei Chen
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing Drum Tower Hospital, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Wuhao Li
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing Drum Tower Hospital, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Ying Yu
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing Drum Tower Hospital, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Bo Liu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Collaborative Innovation Center of Biotherapy, Chengdu 610041, China
| | - Yan Shen
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing Drum Tower Hospital, School of Life Sciences, Nanjing University, Nanjing 210023, China,Corresponding authors. Tel./fax: +86 25 89687620.
| | - Qiang Xu
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing Drum Tower Hospital, School of Life Sciences, Nanjing University, Nanjing 210023, China,Corresponding authors. Tel./fax: +86 25 89687620.
| |
Collapse
|
5
|
The effect of lactoferrin on ULK1 and ATG13 genes expression in breast cancer cell line MCF7 and bioinformatics studies of protein interaction between lactoferrin and the autophagy initiation complex. Cell Biochem Biophys 2022; 80:795-806. [PMID: 36169801 DOI: 10.1007/s12013-022-01097-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 09/12/2022] [Indexed: 11/03/2022]
Abstract
Recently, the study of autophagy and its mechanism on the cancer cell growth process has received much attention. lactoferrin (Lf) is a glycoprotein with various biological activities, including antibacterial, antiviral, anti-cancer, etc. In the present study, the effect of different concentrations of lactoferrin on the expression of ULK1 and ATG13 genes was evaluated in breast cancer cell line MCF7 using real-time PCR technique as well as the molecular mechanism of these two genes and their proteins in the autophagy pathway and the relationship between lactoferrin and these proteins were investigated by bioinformatics studies. The result showed that the expression of the ULK1 gene at a concentration of 500 μg/ml of lactoferrin was significantly (P < 0.007) increased compared to the control and two other concentrations. Also, the expression of the ATG13 gene at all three concentrations was not significantly different from each other and compared to the control (P = 0.635). In the immunoblot of ULK1 protein at a concentration of 500 µg, more protein expression was observed. The binding mode of lactoferrin with ULK1, ATG13, and ATG101 proteins was obtained using docking. According to docking results, the N-lobe region of lactoferrin interacts with the PS domain of the ULK1 protein, and the N-lobe region of lactoferrin interacts with the horma domain of the ATG 13 and ATG101 proteins. The results show that lactoferrin, in addition to acting on the gene, interacts with ULK1, ATG13, and ATG101 proteins. Since all three proteins are components of the autophagy initiation complex, lactoferrin can induce autophagy in this way.
Collapse
|
6
|
Mahgoub E, Taneera J, Sulaiman N, Saber-Ayad M. The role of autophagy in colorectal cancer: Impact on pathogenesis and implications in therapy. Front Med (Lausanne) 2022; 9:959348. [PMID: 36160153 PMCID: PMC9490268 DOI: 10.3389/fmed.2022.959348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 08/11/2022] [Indexed: 12/24/2022] Open
Abstract
Colorectal cancer (CRC) is considered as a global major cause of cancer death. Surgical resection is the main line of treatment; however, chemo-, radiotherapy and other adjuvant agents are crucial to achieve good outcomes. The tumor microenvironment (TME) is a well-recognized key player in CRC progression, yet the processes linking the cancer cells to its TME are not fully delineated. Autophagy is one of such processes, with a controversial role in the pathogenesis of CRC, with its intricate links to many pathological factors and processes. Autophagy may apparently play conflicting roles in carcinogenesis, but the precise mechanisms determining the overall direction of the process seem to depend on the context. Additionally, it has been established that autophagy has a remarkable effect on the endothelial cells in the TME, the key substrate for angiogenesis that supports tumor metastasis. Favorable response to immunotherapy occurs only in a specific subpopulation of CRC patients, namely the microsatellite instability-high (MSI-H). In view of such limitations of immunotherapy in CRC, modulation of autophagy represents a potential adjuvant strategy to enhance the effect of those relatively safe agents on wider CRC molecular subtypes. In this review, we discussed the molecular control of autophagy in CRC and how autophagy affects different processes and mechanisms that shape the TME. We explored how autophagy contributes to CRC initiation and progression, and how it interacts with tumor immunity, hypoxia, and oxidative stress. The crosstalk between autophagy and the TME in CRC was extensively dissected. Finally, we reported the clinical efforts and challenges in combining autophagy modulators with various cancer-targeted agents to improve CRC patients’ survival and restrain cancer growth.
Collapse
Affiliation(s)
- Eglal Mahgoub
- College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
| | - Jalal Taneera
- College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
| | - Nabil Sulaiman
- College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Maha Saber-Ayad
- College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
- Faculty of Medicine, Cairo University, Giza, Egypt
- *Correspondence: Maha Saber-Ayad,
| |
Collapse
|
7
|
Mukhopadhyay S, Mahapatra KK, Praharaj PP, Patil S, Bhutia SK. Recent progress of autophagy signaling in tumor microenvironment and its targeting for possible cancer therapeutics. Semin Cancer Biol 2021; 85:196-208. [PMID: 34500075 DOI: 10.1016/j.semcancer.2021.09.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 08/30/2021] [Accepted: 09/03/2021] [Indexed: 02/08/2023]
Abstract
Autophagy, a lysosomal catabolic process, involves degradation of cellular materials, protein aggregate, and dysfunctional organelles to maintain cellular homeostasis. Strikingly, autophagy exhibits a dual-sided role in cancer; on the one hand, it promotes clearance of transformed cells and inhibits tumorigenesis, while cytoprotective autophagy has a role in sustaining cancer. The autophagy signaling in the tumor microenvironment (TME) during cancer growth and therapy is not adequately understood. The review highlights the role of autophagy signaling pathways to support cancer growth and progression in adaptation to the oxidative and hypoxic context of TME. Furthermore, autophagy contributes to regulating the metabolic switch for generating sufficient levels of high-energy metabolites, including amino acids, ketones, glutamine, and free fatty acids for cancer cell survival. Interestingly, autophagy has a critical role in modulating the tumor-associated fibroblast resulting in different cytokines and paracrine signaling mediated angiogenesis and invasion of pre-metastatic niches to secondary tumor sites. Moreover, autophagy promotes immune evasion to inhibit antitumor immunity, and autophagy inhibitors enhance response to immunotherapy with infiltration of immune cells to the TME niche. Furthermore, autophagy in TME maintains and supports the survival of cancer stem cells resulting in chemoresistance and therapy recurrence. Presently, drug repurposing has enabled the use of lysosomal inhibitor-based antimalarial drugs like chloroquine and hydroxychloroquine as clinically available autophagy inhibitors in cancer therapy. We focus on the recent developments of multiple autophagy modulators from pre-clinical trials and the challenges in developing autophagy-based cancer therapy.
Collapse
Affiliation(s)
- Subhadip Mukhopadhyay
- Cancer and Cell Death Laboratory, Department of Life Science, National Institute of Technology Rourkela, Rourkela 769008, Odisha, India
| | - Kewal Kumar Mahapatra
- Cancer and Cell Death Laboratory, Department of Life Science, National Institute of Technology Rourkela, Rourkela 769008, Odisha, India
| | - Prakash Priyadarshi Praharaj
- Cancer and Cell Death Laboratory, Department of Life Science, National Institute of Technology Rourkela, Rourkela 769008, Odisha, India
| | - Shankargouda Patil
- Department of Maxillofacial Surgery and Diagnostic Sciences, Division of Oral Pathology, College of Dentistry, Jazan University, Saudi Arabia
| | - Sujit Kumar Bhutia
- Cancer and Cell Death Laboratory, Department of Life Science, National Institute of Technology Rourkela, Rourkela 769008, Odisha, India.
| |
Collapse
|
8
|
Mukhopadhyay S, Praharaj PP, Naik PP, Talukdar S, Emdad L, Das SK, Fisher PB, Bhutia SK. Identification of Annexin A2 as a key mTOR target to induce roller coaster pattern of autophagy fluctuation in stress. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165952. [PMID: 32841734 DOI: 10.1016/j.bbadis.2020.165952] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 07/28/2020] [Accepted: 08/20/2020] [Indexed: 01/07/2023]
Abstract
Autophagy can either be cytoprotective or promote cell death in a context-dependent manner in response to stress. How autophagy leads to autophagy dependent cell death requires further clarification. In this study, we document a nonlinear roller coaster form of autophagy oscillation when cells are subjected to different stress conditions. Serum starvation induces an initial primary autophagic peak at 6 h, that helps to replenish cells with de novo fluxed nutrients, but protracted stress lead to a secondary autophagic peak around 48 h. Time kinetic studies indicate that the primary autophagic peak is reversible, whereas the secondary autophagic peak is irreversible and leads to cell death. Key players involved in different stages of autophagy including initiation, elongation and degradation during this oscillatory sequence were identified. A similar molecular pattern was intensified under apoptosis-deficient conditions. mTOR was the central molecule regulating this autophagic activity, and upon knockdown a steady increase of autophagy without any non-linear fluctuation was evident. An unbiased proteome screening approach was employed to identify the autophagy molecules potentially regulating these autophagic peaks. Our proteomics analysis has identified Annexin A2 as a stress-induced protein to implicate in autophagy fluctuation and its deficiency reduced autophagy. Moreover, we report that mTOR in its phosphorylated condition interacts with Annexin A2 to induce autophagy fluctuation by altering its cellular localization. The work highlights the molecular mechanism of a mTOR-dependent roller coaster fluctuation of autophagy and autophagy dependent cell death during prolong stress.
Collapse
Affiliation(s)
- Subhadip Mukhopadhyay
- Department of Life Science, National Institute of Technology Rourkela, Rourkela-769008, India
| | - Prakash P Praharaj
- Department of Life Science, National Institute of Technology Rourkela, Rourkela-769008, India
| | - Prajna P Naik
- Department of Life Science, National Institute of Technology Rourkela, Rourkela-769008, India
| | - Sarmistha Talukdar
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA 23298, USA
| | - Luni Emdad
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA 23298, USA; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA 23298, USA; VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA 23298, USA
| | - Swadesh K Das
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA 23298, USA; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA 23298, USA; VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA 23298, USA
| | - Paul B Fisher
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA 23298, USA; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA 23298, USA; VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA 23298, USA
| | - Sujit K Bhutia
- Department of Life Science, National Institute of Technology Rourkela, Rourkela-769008, India.
| |
Collapse
|
9
|
Wei L, Qin Y, Jiang L, Yu X, Xi Z. PPARγ and mitophagy are involved in hypoxia/reoxygenation-induced renal tubular epithelial cells injury. J Recept Signal Transduct Res 2019; 39:235-242. [PMID: 31538845 DOI: 10.1080/10799893.2019.1660894] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Renal tubular epithelial cell (RTEC) injury is the main cause and common pathological process of various renal diseases. Mitochondrial dysfunction (MtD) is a pathological process after renal injury. Mitophagy is vital for mitochondrial function. Hypoxia is a common cause of RTEC injury. Peroxisome proliferator-activated receptor γ (PPARγ) is involved in cell proliferation, apoptosis, and inflammation. Previous studies have shown that the low expression of PPARγ might be involved in hypoxia-induced RTEC injury. The present study aimed to investigate the correlation between PPARγ and mitophagy in damaged RTEC in the hypoxia/reoxygenation (HR) model. The results showed that HR inhibited the expression of PPARγ, but increased the expression of LC3II, Atg5, SQSTM1/P62, and PINK1 in a time-dependent manner. Moreover, mitochondrial DNA (mt DNA) copy number, mitochondria membrane potential (MMP) levels, ATP content, and cell viability were decreased in hypoxic RTECs, the expression of SQSTM1/P62 and PINK1, the release of cytochrome c (cyt C), and production of reactive oxygen species (ROS) were increased. Mitochondrial-containing autophagosomes (APs) were detected using transmission election microscope (TEM) and laser scanning confocal microscope (LSCM). Furthermore, PPARγ protein expression was negatively correlated with that of LC3II, PINK1, and the positive rate of RTEC-containing mitochondrial-containing APs (all p < .05), but positively correlated with cell viability, MMP level, and ATP content (all p < .05). These data suggested that PPARγ and mitophagy are involved in the RTEC injury process. Thus, a close association could be detected between PPARγ and mitophagy in HR-induced RTEC injury, albeit additional investigation is imperative.
Collapse
Affiliation(s)
- Luming Wei
- Department of Pediatrics, Guangxi Medical University First Affiliated Hospital , Nanning 530021 , China
| | - Yuanhan Qin
- Department of Pediatrics, Guangxi Medical University First Affiliated Hospital , Nanning 530021 , China
| | - Ling Jiang
- Department of Pediatrics, Guangxi Medical University First Affiliated Hospital , Nanning 530021 , China
| | - Xueyun Yu
- Department of Pediatrics, Guangxi Medical University First Affiliated Hospital , Nanning 530021 , China
| | - Zhiyang Xi
- Department of Pediatrics, Guangxi Medical University First Affiliated Hospital , Nanning 530021 , China
| |
Collapse
|
10
|
Abstract
Autophagy is a highly conserved catabolic process induced under various conditions of cellular stress, which prevents cell damage and promotes survival in the event of energy or nutrient shortage and responds to various cytotoxic insults. Thus, autophagy has primarily cytoprotective functions and needs to be tightly regulated to respond correctly to the different stimuli that cells experience, thereby conferring adaptation to the ever-changing environment. It is now apparent that autophagy is deregulated in the context of various human pathologies, including cancer and neurodegeneration, and its modulation has considerable potential as a therapeutic approach.
Collapse
Affiliation(s)
- Ivan Dikic
- Institute of Biochemistry II, School of Medicine, Goethe University, Frankfurt am Main, Germany. .,Buchmann Institute for Molecular Life Sciences, Goethe University, Frankfurt am Main, Germany.
| | - Zvulun Elazar
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
11
|
Autophagy therapeutics: preclinical basis and initial clinical studies. Cancer Chemother Pharmacol 2018; 82:923-934. [PMID: 30225602 DOI: 10.1007/s00280-018-3688-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Accepted: 09/10/2018] [Indexed: 12/12/2022]
Abstract
Autophagy captures and degrades intracellular components such as proteins and organelles to sustain metabolism and homeostasis. Rapidly accumulating attention is being paid to the role of autophagy in the development of cancer, which makes autophagy attractive tools and targets for novel therapeutic approaches. Functional studies have confirmed that autophagy dysregulation is causal in many cases of cancer, with autophagy acting as tumor suppressors or tumor promoters, and autophagy inhibitor or promoter has shown promise in preclinical studies. The autophagy-targeted therapeutics using chloroquine/hydroxychloroquine have reached clinical development for treating cancer, but these drugs are actually not efficient probably because of a reduced penetration within the tumor. In this review, we first discuss the discoveries related to dual function of autophagy in cancer. Then, we provide an overview of preclinical studies and clinical trials involved in the development of autophagy therapeutics and finally discuss the future of such therapies.
Collapse
|
12
|
Russo M, Russo GL. Autophagy inducers in cancer. Biochem Pharmacol 2018; 153:51-61. [PMID: 29438677 DOI: 10.1016/j.bcp.2018.02.007] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2017] [Accepted: 02/07/2018] [Indexed: 12/19/2022]
Abstract
Autophagy is a complex, physiological process devoted to degrade and recycle cellular components. Proteins and organelles are first phagocytized by autophagosomes, then digested in lysosomes, and finally recycled to be utilized again during cellular metabolism. Moreover, autophagy holds an important role in the physiopathology of several diseases. In cancer, excellent works demonstrated the dual functions of autophagy in tumour biology: autophagy activation can promote cancer cells survival (protective autophagy), or contribute to cancer cell death (cytotoxic/nonprotective autophagy). A better understanding of the dichotomy roles of autophagy in cancer biology can help to identify or design new drugs able to induce/enhance (or block) autophagic flux. These features will necessary be tissue-dependent and confined to a specific time of treatment. The intent of this review is to focus on the different potentialities of autophagy inducers in cancer prevention versus therapy in order to elicit a desirable clinical response. Few promising synthetic and natural compounds have been identified and the pros and cons of their role in autophagy regulation is reviewed here. In the complex framework of autophagy modulation, "connecting the dots" is not a simple work and the lack of clinical studies further complicates the scenario, but the final goal to obtain clinically relevant autophagy inducers can reveal an unexpected landscape.
Collapse
Affiliation(s)
- Maria Russo
- Institute of Food Sciences, National Research Council, 83100 Avellino, Italy
| | - Gian Luigi Russo
- Institute of Food Sciences, National Research Council, 83100 Avellino, Italy.
| |
Collapse
|
13
|
Bhutia SK, Praharaj PP, Bhol CS, Panigrahi DP, Mahapatra KK, Patra S, Saha S, Das DN, Mukhopadhyay S, Sinha N, Panda PK, Naik PP. Monitoring and Measuring Mammalian Autophagy. Methods Mol Biol 2018; 1854:209-222. [PMID: 29855817 DOI: 10.1007/7651_2018_159] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
Macroautophagy (autophagy) is a conserved lysosomal-based intracellular degradation pathway. Here, we present different methods used for monitoring autophagy at cellular level. The methods involve Atg8/LC3 detection and quantification by Western blot, autophagic flux measurement through Western blot, direct fluorescence microscopy or indirect immunofluorescence, and finally traffic light assay using tf-LC3-II. Monitoring autophagic flux is experimentally challenging but obviously a prerequisite for the proper investigation of the process. These methods are suitable for screening purposes and can be used for measurements in cell lysates as well as in living cells. These assays have proven useful for the identification of genes and small molecules that regulate autophagy in mammalian cells.
Collapse
Affiliation(s)
- Sujit K Bhutia
- Department of Life Science, National Institute of Technology Rourkela, Rourkela, Odisha, India.
| | - Prakash P Praharaj
- Department of Life Science, National Institute of Technology Rourkela, Rourkela, Odisha, India
| | - Chandra S Bhol
- Department of Life Science, National Institute of Technology Rourkela, Rourkela, Odisha, India
| | - Debasna P Panigrahi
- Department of Life Science, National Institute of Technology Rourkela, Rourkela, Odisha, India
| | - Kewal K Mahapatra
- Department of Life Science, National Institute of Technology Rourkela, Rourkela, Odisha, India
| | - Srimanta Patra
- Department of Life Science, National Institute of Technology Rourkela, Rourkela, Odisha, India
| | - Sarbari Saha
- Department of Life Science, National Institute of Technology Rourkela, Rourkela, Odisha, India
| | - Durgesh N Das
- Department of Medicine, University of Texas Health Science Center, Tyler, TX, USA
| | | | - Niharika Sinha
- Department of Animal Science, Michigan State University, East Lansing, MI, USA
| | - Prashanta K Panda
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Prajna P Naik
- PG Department of Zoology, Vikram Deb (Auto) College, Jeypore, Odisha, India
| |
Collapse
|
14
|
Chandrasekar T, Evans CP. Autophagy and urothelial carcinoma of the bladder: A review. Investig Clin Urol 2016; 57 Suppl 1:S89-97. [PMID: 27326411 PMCID: PMC4910764 DOI: 10.4111/icu.2016.57.s1.s89] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 04/08/2016] [Indexed: 12/22/2022] Open
Abstract
The incidence of urothelial carcinoma of the urinary bladder (bladder cancer) remains high. While other solid organ malignancies have seen significant improvement in morbidity and mortality, there has been little change in bladder cancer mortality in the past few decades. The mortality is mainly driven by muscle invasive bladder cancer, but the cancer burden remains high even in nonmuscle invasive bladder cancer due to high recurrence rates and risk of progression. While apoptosis deregulation has long been an established pathway for cancer progression, nonapoptotic pathways have gained prominence of late. Recent research in the role of autophagy in other malignancies, including its role in treatment resistance, has led to greater interest in the role of autophagy in bladder cancer. Herein, we summarize the literature regarding the role of autophagy in bladder cancer progression and treatment resistance. We address it by systematically reviewing treatment modalities for nonmuscle invasive and muscle invasive bladder cancer.
Collapse
|