1
|
Tian L, Qi T, Zhang F, Tran VG, Yuan J, Wang Y, He N, Cao M. Synthetic biology approaches to improve tolerance of inhibitors in lignocellulosic hydrolysates. Biotechnol Adv 2025; 78:108477. [PMID: 39551454 DOI: 10.1016/j.biotechadv.2024.108477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 10/01/2024] [Accepted: 11/12/2024] [Indexed: 11/19/2024]
Abstract
Increasing attention is being focused on using lignocellulose for valuable products. Microbial decomposition can convert lignocellulose into renewable biofuels and other high-value bioproducts, contributing to sustainable development. However, the presence of inhibitors in lignocellulosic hydrolysates can negatively affect microorganisms during fermentation. Improving microbial tolerance to these hydrolysates is a major focus in metabolic engineering. Traditional detoxification methods increase costs, so there is a need for cheap and efficient cell-based detoxification strategies. Synthetic biology approaches offer several strategies for improving microbial tolerance, including redox balancing, membrane engineering, omics-guided technologies, expression of protectants and transcription factors, irrational engineering, cell flocculation, and other novel technologies. Advances in molecular biology, high-throughput sequencing, and artificial intelligence (AI) allow for precise strain modification and efficient industrial production. Developing AI-based computational models to guide synthetic biology efforts and creating large-scale heterologous libraries with automation and high-throughput technologies will be important for future research.
Collapse
Affiliation(s)
- Linyue Tian
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Key Laboratory for Synthetic Biotechnology of Xiamen City, Xiamen University, Xiamen 361005, China; Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361005, China
| | - Tianqi Qi
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Key Laboratory for Synthetic Biotechnology of Xiamen City, Xiamen University, Xiamen 361005, China
| | - Fenghui Zhang
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Key Laboratory for Synthetic Biotechnology of Xiamen City, Xiamen University, Xiamen 361005, China
| | - Vinh G Tran
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Jifeng Yuan
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Fujian 361102, China
| | - Yuanpeng Wang
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Key Laboratory for Synthetic Biotechnology of Xiamen City, Xiamen University, Xiamen 361005, China
| | - Ning He
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Key Laboratory for Synthetic Biotechnology of Xiamen City, Xiamen University, Xiamen 361005, China.
| | - Mingfeng Cao
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Key Laboratory for Synthetic Biotechnology of Xiamen City, Xiamen University, Xiamen 361005, China; Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361005, China.
| |
Collapse
|
2
|
Sun C, Sun B, Chen L, Zhang M, Lu P, Wu M, Xue Q, Guo Q, Tang D, Lai H. Harnessing biosynthesized selenium nanoparticles for recruitment of beneficial soil microbes to plant roots. Cell Host Microbe 2024; 32:2148-2160.e7. [PMID: 39561780 DOI: 10.1016/j.chom.2024.10.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 09/13/2024] [Accepted: 10/24/2024] [Indexed: 11/21/2024]
Abstract
Root exudates can benefit plant growth and health by reshaping the rhizosphere microbiome. Whether nanoparticles biosynthesized by rhizosphere microbes play a similar role in plant microbiome manipulation remains enigmatic. Herein, we collect elemental selenium nanoparticles (SeNPs) from selenobacteria associated with maize roots. In vitro and soil assays show that the SeNPs enhanced plant performance by recruiting plant growth-promoting bacteria (e.g., Bacillus) in a dose-dependent manner. Multiomic profilings unravel a cross-kingdom-signaling cascade that mediates efficient biosynthesis of SeNPs by selenobacteria. Specifically, maize roots perceive histamine signaling from Bacillus spp., which stimulates the plant to produce p-coumarate via root exudation. The rpoS gene in selenobacteria (e.g., Pseudomonas sp. ZY71) responds to p-coumarate signaling and positively regulates the biosynthesis of SeNPs. This study demonstrates a novel mechanism for recruiting host-beneficial soil microbes by microbially synthesized nanoparticles and unlocks promising possibilities for plant microbiome manipulation.
Collapse
Affiliation(s)
- Chenyu Sun
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Bin Sun
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Lin Chen
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences, Northwest University, Xi'an 710069, Shaanxi, China
| | - Meilin Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Pingping Lu
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Mengfan Wu
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Quanhong Xue
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Qiao Guo
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Dejian Tang
- Key Laboratory of Selenium-enriched Products Development and Quality Control, Ministry of Agriculture and Rural Affairs, Ankang Research and Development Center for Selenium-enriched Products, Ankang 725000, Shaanxi, China
| | - Hangxian Lai
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, Shaanxi, China.
| |
Collapse
|
3
|
Duan J, Li Q, Cheng Y, Zhu W, Liu H, Li F. Therapeutic potential of Parabacteroides distasonis in gastrointestinal and hepatic disease. MedComm (Beijing) 2024; 5:e70017. [PMID: 39687780 PMCID: PMC11647740 DOI: 10.1002/mco2.70017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 10/16/2024] [Accepted: 10/24/2024] [Indexed: 12/18/2024] Open
Abstract
Increasing evidences indicate that the gut microbiota is involved in the development and therapy of gastrointestinal and hepatic disease. Imbalance of gut microbiota occurs in the early stages of diseases, and maintaining the balance of the gut microbiota provides a new strategy for the treatment of diseases. It has been reported that Parabacteroides distasonis is associated with multiple diseases. As the next-generation probiotics, several studies have demonstrated its positive regulation on the gastrointestinal and hepatic disease, including inflammatory bowel disease, colorectal cancer, hepatic fibrosis, and fatty liver. The function of P. distasonis and its metabolites mainly affect host immune system, intestinal barrier function, and metabolic networks. Manipulation of P. distasonis with natural components lead to the protective effect on enterohepatic disease. In this review, the metabolic pathways regulated by P. distasonis are summarized to illustrate its active metabolites and their impact on host metabolism, the role and action mechanism in gastrointestinal and hepatic disease are discussed. More importantly, the natural components can be used to manipulate P. distasonis as treatment strategies, and the challenges and perspectives of P. distasonis in clinical applications are discussed.
Collapse
Affiliation(s)
- Jinyi Duan
- Department of Gastroenterology & HepatologyLaboratory of Hepato‐intestinal Diseases and MetabolismFrontiers Science Center for Disease‐Related Molecular NetworkWest China HospitalSichuan UniversityChengduChina
| | - Qinmei Li
- Department of Gastroenterology & HepatologyLaboratory of Hepato‐intestinal Diseases and MetabolismFrontiers Science Center for Disease‐Related Molecular NetworkWest China HospitalSichuan UniversityChengduChina
| | - Yan Cheng
- Department of Gastroenterology & HepatologyLaboratory of Hepato‐intestinal Diseases and MetabolismFrontiers Science Center for Disease‐Related Molecular NetworkWest China HospitalSichuan UniversityChengduChina
- Deparment of Pharmacy, Academician WorkstationJiangxi University of Chinese MedicineNanchangChina
| | - Weifeng Zhu
- Deparment of Pharmacy, Academician WorkstationJiangxi University of Chinese MedicineNanchangChina
| | - Hongning Liu
- Deparment of Pharmacy, Academician WorkstationJiangxi University of Chinese MedicineNanchangChina
| | - Fei Li
- Department of Gastroenterology & HepatologyLaboratory of Hepato‐intestinal Diseases and MetabolismFrontiers Science Center for Disease‐Related Molecular NetworkWest China HospitalSichuan UniversityChengduChina
- Department of Gastroenterology & Hepatology, Huaxi Joint Centre for Gastrointestinal CancerState Key Laboratory of Respiratory Health and MultimorbidityWest China HospitalSichuan UniversityChengduChina
| |
Collapse
|
4
|
Kobayashi T, Sakamoto A, Hisano T, Kashiwagi K, Igarashi K, Takao K, Uemura T, Furuchi T, Sugita Y, Moriya T, Oshima T, Terui Y. Caldomycin, a new guanidopolyamine produced by a novel agmatine homocoupling enzyme involved in homospermidine biosynthesis. Sci Rep 2024; 14:7566. [PMID: 38555406 PMCID: PMC10981699 DOI: 10.1038/s41598-024-58296-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 03/27/2024] [Indexed: 04/02/2024] Open
Abstract
An extreme thermophilic bacterium, Thermus thermophilus produces more than 20 unusual polyamines, but their biosynthetic pathways, including homospermidine, are not yet fully understood. Two types of homospermidine synthases have been identified in plants and bacteria, which use spermidine and putrescine or two molecules of putrescine as substrates. However, homospermidine synthases with such substrate specificity have not been identified in T. thermophilus. Here we identified a novel agmatine homocoupling enzyme that is involved in homospermidine biosynthesis in T. thermophilus. The reaction mechanism is different from that of a previously described homospermidine synthase, and involves conjugation of two molecules of agmatine, which produces a diamidino derivative of homospermidine (caldomycin) as an immediate precursor of homospermidine. We conclude that there is a homospermidine biosynthetic pathway from agmatine via caldomycin synthase followed by ureohydrolase in T. thermophilus. Furthermore, it is shown that caldomycin is a novel compound existing in nature.
Collapse
Affiliation(s)
- Teruyuki Kobayashi
- Faculty of Pharmacy, Chiba Institute of Science, 15-8 Shiomi-cho, Choshi, Chiba, 288-0025, Japan
| | - Akihiko Sakamoto
- Faculty of Pharmacy, Chiba Institute of Science, 15-8 Shiomi-cho, Choshi, Chiba, 288-0025, Japan
- Department of Pathophysiology and Therapeutics, Hoshi University School of Pharmacy and Pharmaceutical Sciences, Shinagawa, Tokyo, Japan
| | - Tamao Hisano
- RIKEN Center for Biosystems Dynamics Research (BDR), Tsurumi, Kanagawa, Japan
| | - Keiko Kashiwagi
- Faculty of Pharmacy, Chiba Institute of Science, 15-8 Shiomi-cho, Choshi, Chiba, 288-0025, Japan
| | - Kazuei Igarashi
- Amine Pharma Research Institute, Innovation Plaza at Chiba University, Chiba, Japan
| | - Koichi Takao
- Faculty of Pharmacy and Pharmaceutical Sciences, Josai University, Sakado, Saitama, Japan
| | - Takeshi Uemura
- Faculty of Pharmacy and Pharmaceutical Sciences, Josai University, Sakado, Saitama, Japan
| | - Takemitsu Furuchi
- Faculty of Pharmacy and Pharmaceutical Sciences, Josai University, Sakado, Saitama, Japan
| | - Yoshiaki Sugita
- Faculty of Pharmacy and Pharmaceutical Sciences, Josai University, Sakado, Saitama, Japan
| | - Toshiyuki Moriya
- Institute of Environmental Biology, Kyowa-Kako, Machida, Tokyo, Japan
| | - Tairo Oshima
- Institute of Environmental Biology, Kyowa-Kako, Machida, Tokyo, Japan
| | - Yusuke Terui
- Faculty of Pharmacy, Chiba Institute of Science, 15-8 Shiomi-cho, Choshi, Chiba, 288-0025, Japan.
- School of Pharmacy, International University of Health and Welfare, Otawara, Tochigi, Japan.
| |
Collapse
|
5
|
Smola-Dmochowska A, Lewicka K, Macyk A, Rychter P, Pamuła E, Dobrzyński P. Biodegradable Polymers and Polymer Composites with Antibacterial Properties. Int J Mol Sci 2023; 24:ijms24087473. [PMID: 37108637 PMCID: PMC10138923 DOI: 10.3390/ijms24087473] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/05/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
Antibiotic resistance is one of the greatest threats to global health and food security today. It becomes increasingly difficult to treat infectious disorders because antibiotics, even the newest ones, are becoming less and less effective. One of the ways taken in the Global Plan of Action announced at the World Health Assembly in May 2015 is to ensure the prevention and treatment of infectious diseases. In order to do so, attempts are made to develop new antimicrobial therapeutics, including biomaterials with antibacterial activity, such as polycationic polymers, polypeptides, and polymeric systems, to provide non-antibiotic therapeutic agents, such as selected biologically active nanoparticles and chemical compounds. Another key issue is preventing food from contamination by developing antibacterial packaging materials, particularly based on degradable polymers and biocomposites. This review, in a cross-sectional way, describes the most significant research activities conducted in recent years in the field of the development of polymeric materials and polymer composites with antibacterial properties. We particularly focus on natural polymers, i.e., polysaccharides and polypeptides, which present a mechanism for combating many highly pathogenic microorganisms. We also attempt to use this knowledge to obtain synthetic polymers with similar antibacterial activity.
Collapse
Affiliation(s)
- Anna Smola-Dmochowska
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34 Marii Curie-Skłodowskiej Str., 41-819 Zabrze, Poland
| | - Kamila Lewicka
- Faculty of Science and Technology, Jan Dlugosz University in Czestochowa, 13/15 Armii Krajowej Av., 42-200 Czestochowa, Poland
| | - Alicja Macyk
- Department of Biomaterials and Composites, Faculty of Materials Science and Ceramics, AGH University of Science and Technology, 30 Mickiewicza Av., 30-059 Kraków, Poland
| | - Piotr Rychter
- Faculty of Science and Technology, Jan Dlugosz University in Czestochowa, 13/15 Armii Krajowej Av., 42-200 Czestochowa, Poland
| | - Elżbieta Pamuła
- Department of Biomaterials and Composites, Faculty of Materials Science and Ceramics, AGH University of Science and Technology, 30 Mickiewicza Av., 30-059 Kraków, Poland
| | - Piotr Dobrzyński
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34 Marii Curie-Skłodowskiej Str., 41-819 Zabrze, Poland
- Faculty of Science and Technology, Jan Dlugosz University in Czestochowa, 13/15 Armii Krajowej Av., 42-200 Czestochowa, Poland
| |
Collapse
|
6
|
Shao J, Huang K, Batool M, Idrees F, Afzal R, Haroon M, Noushahi HA, Wu W, Hu Q, Lu X, Huang G, Aamer M, Hassan MU, El Sabagh A. Versatile roles of polyamines in improving abiotic stress tolerance of plants. FRONTIERS IN PLANT SCIENCE 2022; 13:1003155. [PMID: 36311109 PMCID: PMC9606767 DOI: 10.3389/fpls.2022.1003155] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 09/15/2022] [Indexed: 06/16/2023]
Abstract
In recent years, extreme environmental cues such as abiotic stresses, including frequent droughts with irregular precipitation, salinity, metal contamination, and temperature fluctuations, have been escalating the damage to plants' optimal productivity worldwide. Therefore, yield maintenance under extreme events needs improvement in multiple mechanisms that can minimize the influence of abiotic stresses. Polyamines (PAs) are pivotally necessary for a defensive purpose under adverse abiotic conditions, but their molecular interplay in this remains speculative. The PAs' accretion is one of the most notable metabolic responses of plants under stress challenges. Recent studies reported the beneficial roles of PAs in plant development, including metabolic and physiological processes, unveiling their potential for inducing tolerance against adverse conditions. This review presents an overview of research about the most illustrious and remarkable achievements in strengthening plant tolerance to drought, salt, and temperature stresses by the exogenous application of PAs. The knowledge of underlying processes associated with stress tolerance and PA signaling pathways was also summarized, focusing on up-to-date evidence regarding the metabolic and physiological role of PAs with exogenous applications that protect plants under unfavorable climatic conditions. Conclusively, the literature proposes that PAs impart an imperative role in abiotic stress tolerance in plants. This implies potentially important feedback on PAs and plants' stress tolerance under unfavorable cues.
Collapse
Affiliation(s)
- Jinhua Shao
- Research Center on Ecological Sciences, Jiangxi Agricultural University, Nanchang, China
- China Guangxi Hydraulic Research Institute, Nanning, China
- Key Laboratory of Water Engineering Materials and Structures, Nanning, China
| | - Kai Huang
- China Guangxi Hydraulic Research Institute, Nanning, China
- Key Laboratory of Water Engineering Materials and Structures, Nanning, China
| | - Maria Batool
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Fahad Idrees
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Rabail Afzal
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Muhammad Haroon
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | | | - Weixiong Wu
- China Guangxi Hydraulic Research Institute, Nanning, China
- Key Laboratory of Water Engineering Materials and Structures, Nanning, China
| | - Qiliang Hu
- Research Center on Ecological Sciences, Jiangxi Agricultural University, Nanchang, China
| | - Xingda Lu
- China Guangxi Hydraulic Research Institute, Nanning, China
- Key Laboratory of Water Engineering Materials and Structures, Nanning, China
| | - Guoqin Huang
- Research Center on Ecological Sciences, Jiangxi Agricultural University, Nanchang, China
| | - Muhammad Aamer
- Research Center on Ecological Sciences, Jiangxi Agricultural University, Nanchang, China
| | - Muhammad Umair Hassan
- Research Center on Ecological Sciences, Jiangxi Agricultural University, Nanchang, China
| | - Ayman El Sabagh
- Department of Field Crops, Faculty of Agriculture, Siirt University, Siirt, Turkey
- Department of Agronomy, Faculty of Agriculture, University of Kafrelsheikh, Kafr El Sheikh, Egypt
| |
Collapse
|
7
|
Douglas EJA, Alkhzem AH, Wonfor T, Li S, Woodman TJ, Blagbrough IS, Laabei M. Antibacterial activity of novel linear polyamines against Staphylococcus aureus. Front Microbiol 2022; 13:948343. [PMID: 36071957 PMCID: PMC9441809 DOI: 10.3389/fmicb.2022.948343] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 08/04/2022] [Indexed: 01/11/2023] Open
Abstract
New therapeutic options are urgently required for the treatment of Staphylococcus aureus infections. Accordingly, we sought to exploit the vulnerability of S. aureus to naturally occurring polyamines. We have developed and tested the anti-staphylococcal activity of three novel linear polyamines based on spermine and norspermine. Using a panel of genetically distinct and clinically relevant multidrug resistant S. aureus isolates, including the polyamine resistant USA300 strain LAC, compound AHA-1394 showed a greater than 128-fold increase in inhibition against specific S. aureus strains compared to the most active natural polyamine. Furthermore, we show that AHA-1394 has superior biofilm prevention and biofilm dispersal properties compared to natural polyamines while maintaining minimal toxicity toward human HepG2 cells. We examined the potential of S. aureus to gain resistance to AHA-1394 following in vitro serial passage. Whole genome sequencing of two stable resistant mutants identified a gain of function mutation (S337L) in the phosphatidylglycerol lysyltransferase mprF gene. Inactivation of mutant mprF confirmed the importance of this allele to AHA-1394 resistance. Importantly, AHA-1394 resistant mutants showed a marked decrease in relative fitness and increased generation time. Intriguingly, mprF::S337L contributed to altered surface charge only in the USA300 background whereas increased cell wall thickness was observed in both USA300 and SH1000. Lastly, we show that AHA-1394 displays a particular proclivity for antibiotic potentiation, restoring sensitivity of MRSA and VRSA isolates to daptomycin, oxacillin and vancomycin. Together this study shows that polyamine derivatives are impressive drug candidates that warrant further investigation.
Collapse
Affiliation(s)
- Edward J. A. Douglas
- Department of Biology and Biochemistry, University of Bath, Bath, United Kingdom
| | - Abdulaziz H. Alkhzem
- Department of Pharmacy and Pharmacology, University of Bath, Bath, United Kingdom
| | - Toska Wonfor
- Department of Biology and Biochemistry, University of Bath, Bath, United Kingdom
| | - Shuxian Li
- Department of Biology and Biochemistry, University of Bath, Bath, United Kingdom
| | - Timothy J. Woodman
- Department of Pharmacy and Pharmacology, University of Bath, Bath, United Kingdom
| | - Ian S. Blagbrough
- Department of Pharmacy and Pharmacology, University of Bath, Bath, United Kingdom
| | - Maisem Laabei
- Department of Biology and Biochemistry, University of Bath, Bath, United Kingdom
- *Correspondence: Maisem Laabei,
| |
Collapse
|
8
|
Sakamoto A, Tamakoshi M, Moriya T, Oshima T, Takao K, Sugita Y, Furuchi T, Niitsu M, Uemura T, Igarashi K, Kashiwagi K, Terui Y. Polyamines produced by an extreme thermophile are essential for cell growth at high temperature. J Biochem 2022; 172:109-115. [PMID: 35639548 DOI: 10.1093/jb/mvac048] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 05/23/2022] [Indexed: 11/14/2022] Open
Abstract
An extreme thermophile, Thermus thermophilus grows at an optimum temperature of around 70 oC and produces 16 different polyamines including long-chain and branched-chain polyamines. We found that the composition of polyamines in the thermophile cells changes with culture temperature. Long-chain and branched-chain polyamines (unusual polyamines) were increased in the cells grown at high temperature such as 80 oC, but they were minor components in the cells grown at relatively lower temperature such as 60 oC. The effects of polyamines on cell growth were studied using T. thermophilus HB8 ΔspeA deficient in arginine decarboxylase. Cell growth of this mutant strain was significantly decreased at 70 oC. This mutant strain cannot produce polyamines and grows poorly at 75 oC. It was also determined whether polyamines are directly involved in protecting DNA from DNA double-strand breaks induced by heat. Polyamines protected DNA against double-strand breaks. Therefore, polyamines play essential roles in cell growth at extremely high temperature through maintaining a functional conformation of DNA against DNA double-strand breaks and depurination.
Collapse
Affiliation(s)
- Akihiko Sakamoto
- Faculty of Pharmacy, Chiba Institute of Science, Choshi, Chiba 288-0025, Japan
| | - Masatada Tamakoshi
- Department of Molecular Biology, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0302, Japan
| | - Toshiyuki Moriya
- Institute of Environmental Biology, Kyowa-Kako, Machida, Tokyo 194-0035, Japan
| | - Tairo Oshima
- Institute of Environmental Biology, Kyowa-Kako, Machida, Tokyo 194-0035, Japan
| | - Koichi Takao
- Department of Pharmaceutical Sciences, Josai University, Sakado, Saitama 350-0295, Japan
| | - Yoshiaki Sugita
- Department of Pharmaceutical Sciences, Josai University, Sakado, Saitama 350-0295, Japan
| | - Takemitsu Furuchi
- Department of Pharmaceutical Sciences, Josai University, Sakado, Saitama 350-0295, Japan
| | - Masaru Niitsu
- Department of Pharmaceutical Sciences, Josai University, Sakado, Saitama 350-0295, Japan
| | - Takeshi Uemura
- Department of Pharmaceutical Sciences, Josai University, Sakado, Saitama 350-0295, Japan
| | - Kazuei Igarashi
- Amine Pharma Research Institute, Innovation Plaza at Chiba University, Chiba 260-0856, Japan.,Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 260-8675, Japan
| | - Keiko Kashiwagi
- Faculty of Pharmacy, Chiba Institute of Science, Choshi, Chiba 288-0025, Japan
| | - Yusuke Terui
- Faculty of Pharmacy, Chiba Institute of Science, Choshi, Chiba 288-0025, Japan
| |
Collapse
|
9
|
Navakoudis E, Kotzabasis K. Polyamines: Α bioenergetic smart switch for plant protection and development. JOURNAL OF PLANT PHYSIOLOGY 2022; 270:153618. [PMID: 35051689 DOI: 10.1016/j.jplph.2022.153618] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 01/09/2022] [Accepted: 01/10/2022] [Indexed: 05/27/2023]
Abstract
The present review highlights the bioenergetic role of polyamines in plant protection and development and proposes a universal model for describing polyamine-mediated stress responses. Any stress condition induces an excitation pressure on photosystem II by reforming the photosynthetic apparatus. To control this phenomenon, polyamines act directly on the molecular structure and function of the photosynthetic apparatus as well as on the components of the chemiosmotic proton-motive force (ΔpH/Δψ), thus regulating photochemical (qP) and non-photochemical quenching (NPQ) of energy. The review presents the mechanistic characteristics that underline the key role of polyamines in the structure, function, and bioenergetics of the photosynthetic apparatus upon light adaptation and/or under stress conditions. By following this mechanism, it is feasible to make stress-sensitive plants to be tolerant by simply altering their polyamine composition (especially the ratio of putrescine to spermine), either chemically or by light regulation.
Collapse
Affiliation(s)
- Eleni Navakoudis
- Department of Biology, University of Crete, Voutes University Campus, 70013, Heraklion, Greece; Department of Chemical Engineering, Cyprus University of Technology, 3603, Limassol, Cyprus
| | - Kiriakos Kotzabasis
- Department of Biology, University of Crete, Voutes University Campus, 70013, Heraklion, Greece.
| |
Collapse
|
10
|
Helfrich F, Scheidig AJ. Structural and catalytic characterization of Blastochloris viridis and Pseudomonas aeruginosa homospermidine synthases supports the essential role of cation-π interaction. Acta Crystallogr D Struct Biol 2021; 77:1317-1335. [PMID: 34605434 PMCID: PMC8489232 DOI: 10.1107/s2059798321008937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Accepted: 08/27/2021] [Indexed: 11/16/2022] Open
Abstract
Polyamines influence medically relevant processes in the opportunistic pathogen Pseudomonas aeruginosa, including virulence, biofilm formation and susceptibility to antibiotics. Although homospermidine synthase (HSS) is part of the polyamine metabolism in various strains of P. aeruginosa, neither its role nor its structure has been examined so far. The reaction mechanism of the nicotinamide adenine dinucleotide (NAD+)-dependent bacterial HSS has previously been characterized based on crystal structures of Blastochloris viridis HSS (BvHSS). This study presents the crystal structure of P. aeruginosa HSS (PaHSS) in complex with its substrate putrescine. A high structural similarity between PaHSS and BvHSS with conservation of the catalytically relevant residues is demonstrated, qualifying BvHSS as a model for mechanistic studies of PaHSS. Following this strategy, crystal structures of single-residue variants of BvHSS are presented together with activity assays of PaHSS, BvHSS and BvHSS variants. For efficient homospermidine production, acidic residues are required at the entrance to the binding pocket (`ionic slide') and near the active site (`inner amino site') to attract and bind the substrate putrescine via salt bridges. The tryptophan residue at the active site stabilizes cationic reaction components by cation-π interaction, as inferred from the interaction geometry between putrescine and the indole ring plane. Exchange of this tryptophan for other amino acids suggests a distinct catalytic requirement for an aromatic interaction partner with a highly negative electrostatic potential. These findings substantiate the structural and mechanistic knowledge on bacterial HSS, a potential target for antibiotic design.
Collapse
Affiliation(s)
- F. Helfrich
- Zoological Institute, University of Kiel, Am Botanischen Garten 1–9, 24118 Kiel, Germany
| | - Axel J. Scheidig
- Zoological Institute, University of Kiel, Am Botanischen Garten 1–9, 24118 Kiel, Germany
| |
Collapse
|
11
|
Kang M, Chhetri G, Kim J, Kim I, Seo T. Sphingomonas sabuli sp. nov., a carotenoid-producing bacterium isolated from beach sand. Int J Syst Evol Microbiol 2021; 71. [PMID: 34323678 DOI: 10.1099/ijsem.0.004896] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A Gram-stain-negative, aerobic and non-motile bacterium, strain sand1-3T, was isolated from beach sand collected from Haeundae Beach located in Busan, Republic of Korea. Based on the results of 16S rRNA gene sequence and phylogenetic analyses, Sphingomonas daechungensis CH15-11T (97.0 %), Sphingomonas edaphi DAC4T (96.8 %), Sphingomonas xanthus AE3T (96.5 %) and Sphingomonas oryziterrae YC6722T (96.0 %) were selected for comparing phenotypic and chemotaxonomic characteristics. Cells of strain sand1-3T grew at 7-50 °C (optimum, 30-35 °C), pH 5.0-8.0 (optimum, pH 7.0-8.0) and in the presence of 0-0.5 % (w/v) NaCl (optimum, 0 %). Major polar lipids included diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol, sphingoglycolipid, one unidentified glycolipid and one unidentified phosphoglycolipid. The major fatty acids were summed feature 8 (C18 : 1 ω6c and/or C18 : 1 ω7c) and C18 : 1 2-OH. Moreover, the sole respiratory quinone and major polyamine were identified as ubiquinone-10 and homospermidine, respectively. The genomic DNA G+C content was 65.9 mol%. The digital DNA-DNA hybridization, average nucleotide identity and average amino acid identity values of strain sand1-3T and its reference strains with publicly available genomes were 17.9-18.9 %, 72.0-75.3 % and 63.3-76.5 % respectively. Based on polyphasic evidence, we propose Sphingomonas sabuli sp. nov. as a novel species within the genus Sphingomonas. The type strain is sand1-3T (=KCTC 82358T=NBRC 114538T).
Collapse
Affiliation(s)
- Minchung Kang
- Department of Life Science, Dongguk University-Seoul, Goyang, 10326, Republic of Korea
| | - Geeta Chhetri
- Department of Life Science, Dongguk University-Seoul, Goyang, 10326, Republic of Korea
| | - Jiyoun Kim
- Department of Life Science, Dongguk University-Seoul, Goyang, 10326, Republic of Korea
| | - Inhyup Kim
- Department of Life Science, Dongguk University-Seoul, Goyang, 10326, Republic of Korea
| | - Taegun Seo
- Department of Life Science, Dongguk University-Seoul, Goyang, 10326, Republic of Korea
| |
Collapse
|
12
|
Le VTB, Tsimbalyuk S, Lim EQ, Solis A, Gawat D, Boeck P, Lim EQ, Renolo R, Forwood JK, Kuhn ML. The Vibrio cholerae SpeG Spermidine/Spermine N-Acetyltransferase Allosteric Loop and β6-β7 Structural Elements Are Critical for Kinetic Activity. Front Mol Biosci 2021; 8:645768. [PMID: 33928120 PMCID: PMC8076852 DOI: 10.3389/fmolb.2021.645768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 02/16/2021] [Indexed: 11/27/2022] Open
Abstract
Polyamines regulate many important biological processes including gene expression, intracellular signaling, and biofilm formation. Their intracellular concentrations are tightly regulated by polyamine transport systems and biosynthetic and catabolic pathways. Spermidine/spermine N-acetyltransferases (SSATs) are catabolic enzymes that acetylate polyamines and are critical for maintaining intracellular polyamine homeostasis. These enzymes belong to the Gcn5-related N-acetyltransferase (GNAT) superfamily and adopt a highly conserved fold found across all kingdoms of life. SpeG is an SSAT protein found in a variety of bacteria, including the human pathogen Vibrio cholerae. This protein adopts a dodecameric structure and contains an allosteric site, making it unique compared to other SSATs. Currently, we have a limited understanding of the critical structural components of this protein that are required for its allosteric behavior. Therefore, we explored the importance of two key regions of the SpeG protein on its kinetic activity. To achieve this, we created various constructs of the V. cholerae SpeG protein, including point mutations, a deletion, and chimeras with residues from the structurally distinct and non-allosteric human SSAT protein. We measured enzyme kinetic activity toward spermine for ten constructs and crystallized six of them. Ultimately, we identified specific portions of the allosteric loop and the β6-β7 structural elements that were critical for enzyme kinetic activity. These results provide a framework for further study of the structure/function relationship of SpeG enzymes from other organisms and clues toward the structural evolution of members of the GNAT family across domains of life.
Collapse
Affiliation(s)
- Van Thi Bich Le
- Department of Chemistry & Biochemistry, San Francisco State University, San Francisco, CA, United States
| | - Sofiya Tsimbalyuk
- School of Biomedical Science, Charles Sturt University, Wagga Wagga, NSW, Australia
| | - Ee Qi Lim
- Department of Chemistry & Biochemistry, San Francisco State University, San Francisco, CA, United States
| | - Allan Solis
- Department of Chemistry & Biochemistry, San Francisco State University, San Francisco, CA, United States
| | - Darwin Gawat
- Department of Chemistry & Biochemistry, San Francisco State University, San Francisco, CA, United States
| | - Paloma Boeck
- Department of Chemistry & Biochemistry, San Francisco State University, San Francisco, CA, United States
| | - Ee Qing Lim
- Department of Chemistry & Biochemistry, San Francisco State University, San Francisco, CA, United States
| | - Rosselini Renolo
- Department of Chemistry & Biochemistry, San Francisco State University, San Francisco, CA, United States
| | - Jade K. Forwood
- School of Biomedical Science, Charles Sturt University, Wagga Wagga, NSW, Australia
| | - Misty L. Kuhn
- Department of Chemistry & Biochemistry, San Francisco State University, San Francisco, CA, United States
| |
Collapse
|
13
|
|
14
|
Zou D, Li L, Min Y, Ji A, Liu Y, Wei X, Wang J, Wen Z. Biosynthesis of a Novel Bioactive Metabolite of Spermidine from Bacillus amyloliquefaciens: Gene Mining, Sequence Analysis, and Combined Expression. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:267-274. [PMID: 33356220 DOI: 10.1021/acs.jafc.0c07143] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Spermidine is a biologically active polyamine with extensive application potential in functional foods. However, previously reported spermidine titers by biosynthesis methods are relatively low, which hinders its industrial application. To improve the spermidine titer, key genes affecting the spermidine production were mined to modify Bacillus amyloliquefaciens. Genes of S-adenosylmethionine decarboxylase (speD) and spermidine synthase (speE) from different microorganisms were expressed and compared in B. amyloliquefaciens. Therein, the speD from Escherichia coli and speE from Saccharomyces cerevisiae were confirmed to be optimal for spermidine synthesis, respectively. Gene and amino acid sequence analysis further confirmed the function of speD and speE. Then, these two genes were co-expressed to generate a recombinant strain B. amyloliquefaciens HSAM2(PDspeD-SspeE) with a spermidine titer of 105.2 mg/L, improving by 11.0-fold compared with the control (HSAM2). Through optimization of the fermentation medium, the spermidine titer was increased to 227.4 mg/L, which was the highest titer among present reports. Moreover, the consumption of the substrate S-adenosylmethionine was consistent with the accumulation of spermidine, which contributed to understanding its synthesis pattern. In conclusion, two critical genes for spermidine synthesis were obtained, and an engineering B. amyloliquefaciens strain was constructed for enhanced spermidine production.
Collapse
Affiliation(s)
- Dian Zou
- Key Laboratory of Environment Correlative Dietology (Ministry of Education), College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Lu Li
- Guangdong Key Laboratory of Agricultural Products Processing, Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510610, China
| | - Yu Min
- Key Laboratory of Environment Correlative Dietology (Ministry of Education), College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Anying Ji
- Key Laboratory of Environment Correlative Dietology (Ministry of Education), College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yingli Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Xuetuan Wei
- Key Laboratory of Environment Correlative Dietology (Ministry of Education), College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Jing Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Zhiyou Wen
- Department of Food Science and Human Nutrition, Iowa State University, Ames, Iowa 50011, United States
| |
Collapse
|
15
|
Park C, Kim M, Lee BH, Lee KE, Park W. Sphingomonas changnyeongensis sp. nov. isolated from the Hapcheon–Changnyeong barrage area in the Nakdong river. Int J Syst Evol Microbiol 2020; 70:6091-6097. [DOI: 10.1099/ijsem.0.004503] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
The novel bacterial strain C33T was isolated from a freshwater sample collected from the Hapcheon–Changnyeong barrage. The Gram-negative, motile, yellow-pigmented strain C33T was characterized as a rod-shaped and strictly aerobic bacterium. A 16S-rRNA phylogenetic analysis revealed that this strain was most closely related to
Sphingomonas changbaiensis
V2M44T,
Sphingomonas tabacisoli
X1-8T, and
Sphingomonas flavalba
ZLT-5T with 97.1, 97.0, and 95.0 % 16S-rRNA sequence similarities, respectively. The genomic DNA GC content of strain C33T was estimated at 65.0 mol%. The average nucleotide identity of strain C33T relative to
S. changbaiensis
V2M44T and
S. flavalba
ZLT-5T was found to be 77.0 and 75.6%, with average amino-acid identities of 69.9, and 66.7%, and the digital DNA–DNA hybridization values of 21.3 and 17.7 %, respectively. The cells grew at 19–37 °C and pH 6–9 with 0–0.5 % (w/v) NaCl (optimum: 28 °C, pH 6.5, and 0 % NaCl). The major component identified in the polyamine pattern was sym-homospermidine, and the main ubiquinone was Q-10. The predominant polar lipids characterized were diphophatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, phosphatidylmonomethylethanolamine, phosphatidyldimethylethanolamine, and sphingoglycolipid. Iso-C15 : 0, C15 : 0 anteiso, and summed feature 3 (C16 : 1
ω6c and/or C16 : 1
ω7c) were found to be the primary cellular fatty acids in strain C33T. Based on these genotypic and phenotypic characteristics, strain C33T was classified as a novel species of the genus
Sphingomonas
; and the name Sphingomonas changnyeongensis sp. nov. is proposed (=KACC 21511T=JCM 33880T).
Collapse
Affiliation(s)
- Chulwoo Park
- Laboratory of Molecular Environmental Microbiology, Department of Environmental Science and Ecological Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Minkyung Kim
- Laboratory of Molecular Environmental Microbiology, Department of Environmental Science and Ecological Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Byoung-Hee Lee
- National Institute of Biological Resources, Incheon, 22689, Republic of Korea
| | - Ki-Eun Lee
- National Institute of Biological Resources, Incheon, 22689, Republic of Korea
| | - Woojun Park
- Laboratory of Molecular Environmental Microbiology, Department of Environmental Science and Ecological Engineering, Korea University, Seoul, 02841, Republic of Korea
| |
Collapse
|
16
|
Banerji R, Kanojiya P, Patil A, Saroj SD. Polyamines in the virulence of bacterial pathogens of respiratory tract. Mol Oral Microbiol 2020; 36:1-11. [PMID: 32979241 DOI: 10.1111/omi.12315] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/24/2020] [Accepted: 09/16/2020] [Indexed: 12/11/2022]
Abstract
Polyamines are positively charged hydrocarbons that are essential for the growth and cellular maintenance in prokaryotes and eukaryotes. Polyamines have been demonstrated to play a role in bacterial pathogenicity and biofilm formation. However, the role of extracellular polyamines as a signaling molecule in the regulation of virulence is not investigated in detail. The bacterial pathogens residing in the respiratory tract remain asymptomatic for an extended period; however, the factors that lead to symptomatic behavior are poorly understood. Further investigation to understand the relation between the host-secreted factors and virulence of pathogenic bacteria in the respiratory tract may provide insights into the pathogenesis of respiratory tract infections. Polyamines produced within the bacterial cell are generally sequestered. Therefore, the pool of extracellular polyamines formed by secretion of the commensals and the host may be one of the signaling molecules that might contribute toward the alterations in the expression of virulence factors in bacterial pathogens. Besides, convergent mechanisms of polyamine biosynthesis do exist across the border of species and genus level. Also, several novel polyamine transporters in the host and bacteria remain yet to be identified. The review focuses on the role of polyamines in the expression of virulence phenotypes and biofilm formation of the respiratory tract pathogens.
Collapse
Affiliation(s)
- Rajashri Banerji
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), Pune, India
| | - Poonam Kanojiya
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), Pune, India
| | - Amrita Patil
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), Pune, India
| | - Sunil D Saroj
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), Pune, India
| |
Collapse
|
17
|
Zhang YX, Li X, Li FL, Ma SC, Zheng GD, Chen WF, Li WJ, Wang L. Paracoccus alkanivorans sp. nov., isolated from a deep well with oil reservoir water. Int J Syst Evol Microbiol 2020; 70:2312-2317. [DOI: 10.1099/ijsem.0.004036] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
A Gram-stain-negative, non-motile and ovoid bacterial strain, designated 4-2T, was isolated from oil-contaminated water which was collected from Xinjiang Province, north-west PR China. The 16S rRNA gene sequence analysis showed that strain 4-2T belonged to the genus
Paracoccus
. The species with highest similarity to strain 4-2T was
Paracoccus saliphilus
YIM 90738T (97.83 %), followed by ‘
Paracoccus siganidrum
’ M26 (97.83 %) and
Paracoccus endophyticus
SYSUP0003T (97.25 %). The average nucleotide identity values between 4-2T and three type strains were 84.69, 77.88 and 74.07 %, respectively. The genomic DNA G+C content of strain 4-2T was 61.4 mol%. Chemotaxonomical characteristic results showed that the respiratory quinone was ubiquinone Q-10 and the major fatty acids were summed feature 8 (C18 : 1
ω7c or C18 : 1
ω6c) and C19 : 0 cyclo ω8c. The polar lipid profile consisted of diphosphatidylglycerol, phosphatidylglycerol, phosphatidylcholine, unidentified phospholipids, an unidentified aminolipid and an unidentified polar lipid. The predominant polyamines were putrescine, cadaverine and spermidine. On the basis of phenotypic, chemotaxonomic and phylogenetic inferences, strain 4-2T represents a novel species of the genus
Paracoccus
, for which the name Paracoccus alkanivorans sp. nov. is proposed. The type strain is 4-2T (=CGMCC 1.13669T=LMG 30882T).
Collapse
Affiliation(s)
- Ya-Xi Zhang
- Key Laboratory of Soil Microbiology, Ministry of Agriculture, Department of Microbiology and Immunology, College of Biological Sciences, China Agricultural University, Beijing 100193, PR China
| | - Xin Li
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, College of Ecology and Evolution, Sun Yat-Sen University, Guangzhou, 510275, PR China
| | - Fang-Ling Li
- Key Laboratory of Soil Microbiology, Ministry of Agriculture, Department of Microbiology and Immunology, College of Biological Sciences, China Agricultural University, Beijing 100193, PR China
| | - Su-Chen Ma
- Key Laboratory of Soil Microbiology, Ministry of Agriculture, Department of Microbiology and Immunology, College of Biological Sciences, China Agricultural University, Beijing 100193, PR China
| | - Guo-Di Zheng
- Center for Environmental Remediation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Wen-Feng Chen
- Key Laboratory of Soil Microbiology, Ministry of Agriculture, Department of Microbiology and Immunology, College of Biological Sciences, China Agricultural University, Beijing 100193, PR China
| | - Wen-Jun Li
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, College of Ecology and Evolution, Sun Yat-Sen University, Guangzhou, 510275, PR China
| | - Lei Wang
- Key Laboratory of Soil Microbiology, Ministry of Agriculture, Department of Microbiology and Immunology, College of Biological Sciences, China Agricultural University, Beijing 100193, PR China
| |
Collapse
|
18
|
Sakamoto A, Sahara J, Kawai G, Yamamoto K, Ishihama A, Uemura T, Igarashi K, Kashiwagi K, Terui Y. Cytotoxic Mechanism of Excess Polyamines Functions through Translational Repression of Specific Proteins Encoded by Polyamine Modulon. Int J Mol Sci 2020; 21:ijms21072406. [PMID: 32244348 PMCID: PMC7177335 DOI: 10.3390/ijms21072406] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 03/28/2020] [Accepted: 03/29/2020] [Indexed: 01/08/2023] Open
Abstract
Excessive accumulation of polyamines causes cytotoxicity, including inhibition of cell growth and a decrease in viability. We investigated the mechanism of cytotoxicity caused by spermidine accumulation under various conditions using an Escherichia coli strain deficient in spermidine acetyltransferase (SAT), a key catabolic enzyme in controlling polyamine levels. Due to the excessive accumulation of polyamines by the addition of exogenous spermidine to the growth medium, cell growth and viability were markedly decreased through translational repression of specific proteins [RMF (ribosome modulation factor) and Fis (rRNA transcription factor) etc.] encoded by members of polyamine modulon, which are essential for cell growth and viability. In particular, synthesis of proteins that have unusual locations of the Shine–Dalgarno (SD) sequence in their mRNAs was inhibited. In order to elucidate the molecular mechanism of cytotoxicity by the excessive accumulation of spermidine, the spermidine-dependent structural change of the bulged-out region in the mRNA at the initiation site of the rmf mRNA was examined using NMR analysis. It was suggested that the structure of the mRNA bulged-out region is affected by excess spermidine, so the SD sequence of the rmf mRNA cannot approach initiation codon AUG.
Collapse
Affiliation(s)
- Akihiko Sakamoto
- Faculty of Pharmacy, Chiba Institute of Science, Choshi, Chiba 288-0025, Japan
| | - Junpei Sahara
- Faculty of Advanced Engineering, Chiba Institute of Technology, Chiba 275-0016, Japan
| | - Gota Kawai
- Faculty of Advanced Engineering, Chiba Institute of Technology, Chiba 275-0016, Japan
| | - Kaneyoshi Yamamoto
- Department of Frontier Bioscience, Hosei University, Tokyo 184-8584, Japan
| | - Akira Ishihama
- Department of Frontier Bioscience, Hosei University, Tokyo 184-8584, Japan
| | - Takeshi Uemura
- Amine Pharma Research Institute, Innovation Plaza at Chiba University, Chiba 260-0856, Japan
- Graduate School of Pharmaceutical Science, Chiba University, Chiba 260-0856, Japan
| | - Kazuei Igarashi
- Amine Pharma Research Institute, Innovation Plaza at Chiba University, Chiba 260-0856, Japan
- Graduate School of Pharmaceutical Science, Chiba University, Chiba 260-0856, Japan
| | - Keiko Kashiwagi
- Faculty of Pharmacy, Chiba Institute of Science, Choshi, Chiba 288-0025, Japan
| | - Yusuke Terui
- Faculty of Pharmacy, Chiba Institute of Science, Choshi, Chiba 288-0025, Japan
| |
Collapse
|
19
|
Kim H, Chhetri G, Seo T. Sphingomonas edaphi sp. nov., a novel species isolated from beach soil in the Republic of Korea. Int J Syst Evol Microbiol 2020; 70:522-529. [DOI: 10.1099/ijsem.0.003780] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Hyungdong Kim
- Department of Life Science, Dongguk University-Seoul, Goyang, 10326, Republic of Korea
| | - Geeta Chhetri
- Department of Life Science, Dongguk University-Seoul, Goyang, 10326, Republic of Korea
| | - Taegun Seo
- Department of Life Science, Dongguk University-Seoul, Goyang, 10326, Republic of Korea
| |
Collapse
|
20
|
Becerra-Rivera VA, Bergström E, Thomas-Oates J, Dunn MF. Polyamines are required for normal growth in Sinorhizobium meliloti. MICROBIOLOGY-SGM 2019; 164:600-613. [PMID: 29619919 DOI: 10.1099/mic.0.000615] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Polyamines (PAs) are ubiquitous polycations derived from basic l-amino acids whose physiological roles are still being defined. Their biosynthesis and functions in nitrogen-fixing rhizobia such as Sinorhizobium meliloti have not been extensively investigated. Thin layer chromatographic and mass spectrometric analyses showed that S. meliloti Rm8530 produces the PAs, putrescine (Put), spermidine (Spd) and homospermidine (HSpd), in their free forms and norspermidine (NSpd) in a form bound to macromolecules. The S. meliloti genome encodes two putative ornithine decarboxylases (ODC) for Put synthesis. Activity assays with the purified enzymes showed that ODC2 (SMc02983) decarboxylates both ornithine and lysine. ODC1 (SMa0680) decarboxylates only ornithine. An odc1 mutant was similar to the wild-type in ODC activity, PA production and growth. In comparison to the wild-type, an odc2 mutant had 45 % as much ODC activity and its growth rates were reduced by 42, 14 and 44 % under non-stress, salt stress or acid stress conditions, respectively. The odc2 mutant produced only trace levels of Put, Spd and HSpd. Wild-type phenotypes were restored when the mutant was grown in cultures supplemented with 1 mM Put or Spd or when the odc2 gene was introduced in trans. odc2 gene expression was increased under acid stress and reduced under salt stress and with exogenous Put or Spd. An odc1 odc2 double mutant had phenotypes similar to the odc2 mutant. These results indicate that ODC2 is the major enzyme for Put synthesis in S. meliloti and that PAs are required for normal growth in vitro.
Collapse
Affiliation(s)
- Victor A Becerra-Rivera
- Programa de Genómica Funcional de Procariotes, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos 62210, Mexico
| | - Ed Bergström
- Centre of Excellence in Mass Spectrometry and Department of Chemistry, University of York, Heslington, York, YO10 5DD, UK
| | - Jane Thomas-Oates
- Centre of Excellence in Mass Spectrometry and Department of Chemistry, University of York, Heslington, York, YO10 5DD, UK
| | - Michael F Dunn
- Programa de Genómica Funcional de Procariotes, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos 62210, Mexico
| |
Collapse
|
21
|
Affiliation(s)
- Rosanna Tofalo
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Simone Cocchi
- Farmacie Comunali di Romano di Lombardia, Bergamo, Italy
| | - Giovanna Suzzi
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| |
Collapse
|
22
|
Spermidine plays a significant role in stabilizing a master transcription factor Clp to promote antifungal activity in Lysobacter enzymogenes. Appl Microbiol Biotechnol 2019; 103:1811-1822. [PMID: 30617535 DOI: 10.1007/s00253-018-09596-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 12/18/2018] [Accepted: 12/19/2018] [Indexed: 01/26/2023]
Abstract
Spermidine is a common polyamine compound produced in bacteria, but its roles remain poorly understood. The bacterial SpeD encodes an S-adenosylmethionine decarboxylase that participates in spermidine synthesis. Lysobacter enzymogenes is an efficient environmental predator of crop fungal pathogens by secreting an antifungal antibiotic HSAF (heat-stable antifungal factor), while Clp is a master transcription factor essential for the antifungal activity of L. enzymogenes. In this work, we observed that speD was a close genomic neighbor of the clp gene. This genomic arrangement also seems to occur in many other bacteria, but the underlying reason remains unclear. By using L. enzymogenes OH11 as a working model, we showed that SpeD was involved in spermidine production that was essential for the L. enzymogenes antifungal activity. Spermidine altered the bacterial growth capability and HSAF production, both of which critically contributed to the L. enzymogenes antifungal activity. We further found that spermidine in L. enzymogenes was able to play a crucial, yet indirect role in maintaining the Clp level in vivo, at least partially accounting for its role in the antifungal activity. Thus, our findings suggested that spermidine probably plays an uncharacterized role in maintaining the levels of the master transcription regulator Clp to optimize its role in antifungal activity in an agriculturally beneficial bacterium.
Collapse
|
23
|
Burnat M, Li B, Kim SH, Michael AJ, Flores E. Homospermidine biosynthesis in the cyanobacteriumAnabaenarequires a deoxyhypusine synthase homologue and is essential for normal diazotrophic growth. Mol Microbiol 2018; 109:763-780. [DOI: 10.1111/mmi.14006] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/11/2018] [Indexed: 12/11/2022]
Affiliation(s)
- Mireia Burnat
- Instituto de Bioquímica Vegetal y Fotosíntesis, CSIC and Universidad de Sevilla Avda. Américo Vespucio 49E‐41092Sevilla Spain
| | - Bin Li
- Department of Biochemistry University of Texas Southwestern Medical Center 5323 Harry Hines BlvdDallas TX 75390‐9041USA
| | - Sok Ho Kim
- Department of Biochemistry University of Texas Southwestern Medical Center 5323 Harry Hines BlvdDallas TX 75390‐9041USA
| | - Anthony J. Michael
- Department of Biochemistry University of Texas Southwestern Medical Center 5323 Harry Hines BlvdDallas TX 75390‐9041USA
| | - Enrique Flores
- Instituto de Bioquímica Vegetal y Fotosíntesis, CSIC and Universidad de Sevilla Avda. Américo Vespucio 49E‐41092Sevilla Spain
| |
Collapse
|
24
|
Abstract
Most of the phylogenetic diversity of life is found in bacteria and archaea, and is reflected in the diverse metabolism and functions of bacterial and archaeal polyamines. The polyamine spermidine was probably present in the last universal common ancestor, and polyamines are known to be necessary for critical physiological functions in bacteria, such as growth, biofilm formation, and other surface behaviors, and production of natural products, such as siderophores. There is also phylogenetic diversity of function, indicated by the role of polyamines in planktonic growth of different species, ranging from absolutely essential to entirely dispensable. However, the cellular molecular mechanisms responsible for polyamine function in bacterial growth are almost entirely unknown. In contrast, the molecular mechanisms of essential polyamine functions in archaea are better understood: covalent modification by polyamines of translation factor aIF5A and the agmatine modification of tRNAIle As with bacterial hyperthermophiles, archaeal thermophiles require long-chain and branched polyamines for growth at high temperatures. For bacterial species in which polyamines are essential for growth, it is still unknown whether the molecular mechanisms underpinning polyamine function involve covalent or noncovalent interactions. Understanding the cellular molecular mechanisms of polyamine function in bacterial growth and physiology remains one of the great challenges for future polyamine research.
Collapse
Affiliation(s)
- Anthony J Michael
- From the Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| |
Collapse
|
25
|
Engineering a spermidine biosynthetic pathway in Clostridium thermocellum results in increased resistance to furans and increased ethanol production. Metab Eng 2018; 49:267-274. [DOI: 10.1016/j.ymben.2018.09.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 08/27/2018] [Accepted: 09/04/2018] [Indexed: 12/29/2022]
|
26
|
Terui Y, Yoshida T, Sakamoto A, Saito D, Oshima T, Kawazoe M, Yokoyama S, Igarashi K, Kashiwagi K. Polyamines protect nucleic acids against depurination. Int J Biochem Cell Biol 2018; 99:147-153. [PMID: 29649565 DOI: 10.1016/j.biocel.2018.04.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Revised: 03/21/2018] [Accepted: 04/06/2018] [Indexed: 11/20/2022]
Abstract
Depurination is accelerated by heat and reactive oxygen species under physiological conditions. We previously reported that polyamines are involved in mitigation of heat shock and oxidative stresses through stimulation of the synthesis of heat shock and antioxidant proteins. This time, we investigated whether polyamines are directly involved in protecting nucleic acids from thermal depurination induced by high temperature. The suppressing efficiencies of depurination of DNA by spermine, caldopentamine and caldohexamine in the presence of 1 mM Mg2+, were approximately 50%, 60% and 80%, respectively. Mg2+ also protected nucleic acids against depurination but to a lesser degree than polyamines. Longer unusual polyamines were more effective at protecting DNA against depurination compared to standard polyamines. The tRNA depurination suppressing efficiencies of spermine, caldopentamine and caldohexamine in the presence of 1 mM Mg2+, were approximately 60%, 70% and 80%, respectively. Standard polyamines protected tRNA and ribosomes more effectively than DNA against thermal depurination. Branched polyamines such as mitsubishine and tetrakis(3-aminopropyl)ammonium also protected RNA more effectively than DNA against depurination. These results suggest that the suppressing effect of depurination of nucleic acids (DNA and RNA) depends on the types of polyamines: i.e. to maintain functional conformation of nucleic acids at high temperature, longer and branched polyamines play important roles in protecting nucleic acids from depurination compared to standard polyamines and Mg2+.
Collapse
Affiliation(s)
- Yusuke Terui
- Faculty of Pharmacy, Chiba Institute of Science, Choshi, Chiba, Japan.
| | - Taketo Yoshida
- Faculty of Pharmacy, Chiba Institute of Science, Choshi, Chiba, Japan
| | - Akihiko Sakamoto
- Faculty of Pharmacy, Chiba Institute of Science, Choshi, Chiba, Japan
| | | | - Tairo Oshima
- Institute of Environmental Biology, Kyowa-Kako, Machida, Tokyo, Japan
| | | | | | - Kazuei Igarashi
- Amine Pharma Research Institute, Innovation Plaza at Chiba University, Chiba, Japan; Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
| | - Keiko Kashiwagi
- Faculty of Pharmacy, Chiba Institute of Science, Choshi, Chiba, Japan.
| |
Collapse
|
27
|
Biotechnological production of mono- and diamines using bacteria: recent progress, applications, and perspectives. Appl Microbiol Biotechnol 2018. [DOI: 10.1007/s00253-018-8890-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
28
|
Gevrekci AÖ. The roles of polyamines in microorganisms. World J Microbiol Biotechnol 2017; 33:204. [PMID: 29080149 DOI: 10.1007/s11274-017-2370-y] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 10/15/2017] [Indexed: 10/18/2022]
Abstract
Polyamines are small polycations that are well conserved in all the living organisms except Archae, Methanobacteriales and Halobacteriales. The most common polyamines are putrescine, spermidine and spermine, which exist in varying concentrations in different organisms. They are involved in a variety of cellular processes such as gene expression, cell growth, survival, stress response and proliferation. Therefore, diverse regulatory pathways are evolved to ensure strict regulation of polyamine concentration in the cells. Polyamine levels are kept under strict control by biosynthetic pathways as well as cellular uptake driven by specific transporters. Reverse genetic studies in microorganisms showed that deletion of the genes in polyamine metabolic pathways or depletion of polyamines have negative effects on cell survival and proliferation. The protein products of these genes are also used as drug targets against pathogenic protozoa. These altogether confirm the significant roles of polyamines in the cells. This mini-review focuses on the differential concentrations of polyamines and their cellular functions in different microorganisms. This will provide an insight about the diverse evolution of polyamine metabolism and function based on the physiology and the ecological context of the microorganisms.
Collapse
Affiliation(s)
- Aslıhan Örs Gevrekci
- Department of Psychology, Faculty of Science and Letters, Başkent University, Ankara, Turkey.
| |
Collapse
|
29
|
Kim SK, Jo JH, Park YC, Jin YS, Seo JH. Metabolic engineering of Saccharomyces cerevisiae for production of spermidine under optimal culture conditions. Enzyme Microb Technol 2017; 101:30-35. [DOI: 10.1016/j.enzmictec.2017.03.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 03/13/2017] [Accepted: 03/15/2017] [Indexed: 10/19/2022]
|
30
|
Gevrekci AÖ. Fission Yeast srm1 is Involved in Stress Response and Cell Cycle. Curr Microbiol 2017; 74:725-731. [PMID: 28345120 DOI: 10.1007/s00284-017-1241-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 03/21/2017] [Indexed: 10/19/2022]
Abstract
Polyamines are well-conserved, multifunctional polycations that contribute to a number of processes in the cells such as cell cycle, apoptosis, stress response, and gene expression. Therefore, polyamine levels should be kept under strict regulation by specific polyamine transporters and polyamine synthases. In this study, the aim is to experimentally characterize a predicted spermidine synthase gene srm1, which was identified upon sequence similarity, in fission yeast Schizosaccharomyces pombe. In an attempt to understand the role of this gene in cell cycle and stress response, deletion mutant of srm1 was generated and analyzed in terms of cell cycle regulation and environmental stress response. The results showed that srm1Δ cells had elongated cell size and were sensitive to osmotic stress, while they showed no sensitivity to DNA-damaging agents. To the best of our knowledge, this is the first experimental characterization of srm1 gene and its role in cell cycle progression and stress response.
Collapse
Affiliation(s)
- Aslıhan Örs Gevrekci
- Department of Psychology, Faculty of Science and Letters, Başkent University, Ankara, Turkey.
| |
Collapse
|
31
|
Hamana K, Furuchi T, Hayashi H, Itoh T, Ohkuma M, Niitsu M. Occurrence of two novel linear penta-amines, pyropentamine and homopyropentamine, in extremely thermophilic Thermus composti. J GEN APPL MICROBIOL 2017; 62:334-339. [PMID: 27885192 DOI: 10.2323/jgam.2016.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Koei Hamana
- Faculty of Engineering, Maebashi Institute of Technology
| | | | | | | | | | | |
Collapse
|
32
|
Li B, Lowe-Power T, Kurihara S, Gonzales S, Naidoo J, MacMillan JB, Allen C, Michael AJ. Functional Identification of Putrescine C- and N-Hydroxylases. ACS Chem Biol 2016; 11:2782-2789. [PMID: 27541336 DOI: 10.1021/acschembio.6b00629] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The small polyamine putrescine (1,4-diaminobutane) is ubiquitously and abundantly found in all three domains of life. It is a precursor, through N-aminopropylation or N-aminobutylation, for biosynthesis of the longer polyamines spermidine, sym-homospermidine, spermine, and thermospermine and longer and branched chain polyamines. Putrescine is also biochemically modified for purposes of metabolic regulation and catabolism, e.g. N-acetylation and N-glutamylation, and for incorporation into specialized metabolites, e.g. N-methylation, N-citrylation, N-palmitoylation, N-hydroxylation, and N-hydroxycinnamoylation. Only one example is known where putrescine is modified on a methylene carbon: the formation of 2-hydroxyputrescine by an unknown C-hydroxylase. Here, we report the functional identification of a previously undescribed putrescine 2-hydroxylase, a Rieske-type nonheme iron sulfur protein from the β-proteobacteria Bordetella bronchiseptica and Ralstonia solanacearum. Identification of the putrescine 2-hydroxylase will facilitate investigation of the physiological functions of 2-hydroxyputrescine. One known role of 2-hydroxyputrescine has direct biomedical relevance: its role in the biosynthesis of the cyclic hydroxamate siderophore alcaligin, a potential virulence factor of the causative agent of whooping cough, Bordetella pertussis. We also report the functional identification of a putrescine N-hydroxylase from the γ-proteobacterium Shewanella oneidensis, which is homologous to FAD- and NADPH-dependent ornithine and lysine N-monooxygenases involved in siderophore biosynthesis. Heterologous expression of the putrescine N-hydroxylase in E. coli produced free N-hydroxyputrescine, never detected previously in a biological system. Furthermore, the putrescine C- and N-hydroxylases identified here could contribute new functionality to polyamine structural scaffolds, including C-H bond functionalization in synthetic biology strategies.
Collapse
Affiliation(s)
| | - Tiffany Lowe-Power
- Deptartment of Plant Pathology, University of Wisconsin, Madison, Wisconsin, United States
| | | | | | | | | | - Caitilyn Allen
- Deptartment of Plant Pathology, University of Wisconsin, Madison, Wisconsin, United States
| | | |
Collapse
|
33
|
Biosynthesis of polyamines and polyamine-containing molecules. Biochem J 2016; 473:2315-29. [DOI: 10.1042/bcj20160185] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 04/22/2016] [Indexed: 12/16/2022]
Abstract
Polyamines are evolutionarily ancient polycations derived from amino acids and are pervasive in all domains of life. They are essential for cell growth and proliferation in eukaryotes and are essential, important or dispensable for growth in bacteria. Polyamines present a useful scaffold to attach other moieties to, and are often incorporated into specialized metabolism. Life has evolved multiple pathways to synthesize polyamines, and structural variants of polyamines have evolved in bacteria, archaea and eukaryotes. Among the complex biosynthetic diversity, patterns of evolutionary reiteration can be distinguished, revealing evolutionary recycling of particular protein folds and enzyme chassis. The same enzyme activities have evolved from multiple protein folds, suggesting an inevitability of evolution of polyamine biosynthesis. This review discusses the different biosynthetic strategies used in life to produce diamines, triamines, tetra-amines and branched and long-chain polyamines. It also discusses the enzymes that incorporate polyamines into specialized metabolites and attempts to place polyamine biosynthesis in an evolutionary context.
Collapse
|
34
|
Yoshida T, Sakamoto A, Terui Y, Takao K, Sugita Y, Yamamoto K, Ishihama A, Igarashi K, Kashiwagi K. Effect of Spermidine Analogues on Cell Growth of Escherichia coli Polyamine Requiring Mutant MA261. PLoS One 2016; 11:e0159494. [PMID: 27434546 PMCID: PMC4951125 DOI: 10.1371/journal.pone.0159494] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2016] [Accepted: 07/04/2016] [Indexed: 12/03/2022] Open
Abstract
The effects of spermidine analogues [norspermidine (NSPD, 33), spermidine (SPD, 34), homospermidine (HSPD, 44) and aminopropylcadaverine (APCAD, 35)] on cell growth were studied using Escherichia coli polyamine-requiring mutant MA261. Cell growth was compared at 32°C, 37°C, and 42°C. All four analogues were taken up mainly by the PotABCD spermidine-preferential uptake system. The degree of stimulation of cell growth at 32°C and 37°C was NSPD ≥ SPD ≥ HSPD > APCAD, and SPD ≥ HSPD ≥ NSPD > APCAD, respectively. However, at 42°C, it was HSPD » SPD > NSPD > APCAD. One reason for this is HSPD was taken up effectively compared with other triamines. In addition, since natural polyamines (triamines and teteraamines) interact mainly with RNA, and the structure of RNA is more flexible at higher temperatures, HSPD probably stabilized RNA more tightly at 42°C. We have thus far found that 20 kinds of protein syntheses are stimulated by polyamines at the translational level. Among them, synthesis of OppA, RpoE and StpA was more strongly stimulated by HSPD at 42°C than at 37°C. Stabilization of the initiation region of oppA and rpoE mRNA was tighter by HSPD at 42°C than 37°C determined by circular dichroism (CD). The degree of polyamine stimulation of OppA, RpoE and StpA synthesis by NSPD, SPD and APCAD was smaller than that by HSPD at 42°C. Thus, the degree of stimulation of cell growth by spermidine analogues at the different temperatures is dependent on the stimulation of protein synthesis by some components of the polyamine modulon.
Collapse
Affiliation(s)
- Taketo Yoshida
- Faculty of Pharmacy, Chiba Institute of Science, 15–8 Shiomi-cho, Choshi, Chiba, 288–0025, Japan
| | - Akihiko Sakamoto
- Faculty of Pharmacy, Chiba Institute of Science, 15–8 Shiomi-cho, Choshi, Chiba, 288–0025, Japan
| | - Yusuke Terui
- Faculty of Pharmacy, Chiba Institute of Science, 15–8 Shiomi-cho, Choshi, Chiba, 288–0025, Japan
| | - Koichi Takao
- Laboratory of Bioorganic Chemistry, Department of Pharmaceutical Technology, Josai University, 1–1 Keyaki-dai, Sakado, Saitama, 350–0295, Japan
| | - Yoshiaki Sugita
- Laboratory of Bioorganic Chemistry, Department of Pharmaceutical Technology, Josai University, 1–1 Keyaki-dai, Sakado, Saitama, 350–0295, Japan
| | - Kaneyoshi Yamamoto
- Department of Frontier Bioscience, Hosei University, Koganei, Tokyo, 184–8584, Japan
| | - Akira Ishihama
- Department of Frontier Bioscience, Hosei University, Koganei, Tokyo, 184–8584, Japan
| | - Kazuei Igarashi
- Amine Pharma Research Institute, Innovation Plaza at Chiba University, 1-8-15, Inohana, Chuo-ku, Chiba, Chiba 260–0856, Japan
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, Chiba, 260–8675, Japan
| | - Keiko Kashiwagi
- Faculty of Pharmacy, Chiba Institute of Science, 15–8 Shiomi-cho, Choshi, Chiba, 288–0025, Japan
- * E-mail:
| |
Collapse
|
35
|
Abstract
Polyamines are primordial polycations found in most cells and perform different functions in different organisms. Although polyamines are mainly known for their essential roles in cell growth and proliferation, their functions range from a critical role in cellular translation in eukaryotes and archaea, to bacterial biofilm formation and specialized roles in natural product biosynthesis. At first glance, the diversity of polyamine structures in different organisms appears chaotic; however, biosynthetic flexibility and evolutionary and ecological processes largely explain this heterogeneity. In this review, I discuss the biosynthetic, evolutionary, and physiological processes that constrain or expand polyamine structural and functional diversity.
Collapse
Affiliation(s)
- Anthony J Michael
- From the Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| |
Collapse
|
36
|
Kim SK, Jin YS, Choi IG, Park YC, Seo JH. Enhanced tolerance of Saccharomyces cerevisiae to multiple lignocellulose-derived inhibitors through modulation of spermidine contents. Metab Eng 2015; 29:46-55. [PMID: 25724339 DOI: 10.1016/j.ymben.2015.02.004] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Revised: 01/06/2015] [Accepted: 02/17/2015] [Indexed: 01/13/2023]
Abstract
Fermentation inhibitors present in lignocellulose hydrolysates are inevitable obstacles for achieving economic production of biofuels and biochemicals by industrial microorganisms. Here we show that spermidine (SPD) functions as a chemical elicitor for enhanced tolerance of Saccharomyces cerevisiae against major fermentation inhibitors. In addition, the feasibility of constructing an engineered S. cerevisiae strain capable of tolerating toxic levels of the major inhibitors without exogenous addition of SPD was explored. Specifically, we altered expression levels of the genes in the SPD biosynthetic pathway. Also, OAZ1 coding for ornithine decarboxylase (ODC) antizyme and TPO1 coding for the polyamine transport protein were disrupted to increase intracellular SPD levels through alleviation of feedback inhibition on ODC and prevention of SPD excretion, respectively. Especially, the strain with combination of OAZ1 and TPO1 double disruption and overexpression of SPE3 not only contained spermidine content of 1.1mg SPD/g cell, which was 171% higher than that of the control strain, but also exhibited 60% and 33% shorter lag-phase period than that of the control strain under the medium containing furan derivatives and acetic acid, respectively. While we observed a positive correlation between intracellular SPD contents and tolerance phenotypes among the engineered strains accumulating different amounts of intracellular SPD, too much SPD accumulation is likely to cause metabolic burden. Therefore, genetic perturbations for intracellular SPD levels should be optimized in terms of metabolic burden and SPD contents to construct inhibitor tolerant yeast strains. We also found that the genes involved in purine biosynthesis and cell wall and chromatin stability were related to the enhanced tolerance phenotypes to furfural. The robust strains constructed in this study can be applied for producing chemicals and advanced biofuels from cellulosic hydrolysates.
Collapse
Affiliation(s)
- Sun-Ki Kim
- Department of Agricultural Biotechnology and Center for Food and Bioconvergence, Seoul National University, Seoul 151-921, Republic of Korea
| | - Yong-Su Jin
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - In-Geol Choi
- College of Life sciences and Biotechnology, Korea University, Seoul 136-713, Republic of Korea
| | - Yong-Cheol Park
- Department of Bio and Fermentation Convergence, Kookmin University, Seoul 136-702, Republic of Korea
| | - Jin-Ho Seo
- Department of Agricultural Biotechnology and Center for Food and Bioconvergence, Seoul National University, Seoul 151-921, Republic of Korea.
| |
Collapse
|
37
|
Analysis of polyamines in biological samples by HPLC involving pre-column derivatization with o-phthalaldehyde and N-acetyl-l-cysteine. Amino Acids 2014; 46:1557-64. [DOI: 10.1007/s00726-014-1717-z] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Accepted: 02/25/2014] [Indexed: 12/14/2022]
|
38
|
Gürkan AC, Arisan ED, Obakan P, Palavan-Ünsal N. Inhibition of polyamine oxidase prevented cyclin-dependent kinase inhibitor-induced apoptosis in HCT 116 colon carcinoma cells. Apoptosis 2013; 18:1536-47. [PMID: 23892915 DOI: 10.1007/s10495-013-0885-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Roscovitine and purvalanol are novel cyclin-dependent kinase (CDK) inhibitors that prevent cell proliferation and induce apoptotic cell death in various cancer cell lines. Although a number of studies have demonstrated the potential apoptotic role of roscovitine, there is limited data about the therapeutic efficiency of purvalanol on cancer cells. The natural polyamines (PAs) putrescine, spermidine, and spermine have essential roles in the regulation of cell differentiation, growth, and proliferation, and increased levels of these compounds have been associated with cancer progression. Recently, depletion of intracellular PA levels because of modulation of PA catabolic enzymes was shown to be an indicator of the efficacy of chemotherapeutic agents. In this study, our aim was to investigate the potential role of PA catabolic enzymes in CDK inhibitor-induced apoptosis in HCT 116 colon carcinoma cells. Exposure of cells to roscovitine or purvalanol decreased cell viability in a dose- and time-dependent manner. The selected concentrations of roscovitine and purvalanol inhibited cell viability by 50 % compared with control cells and induced apoptosis by activating the mitochondria-mediated pathway in a caspase-dependent manner. However, the apoptotic effect of purvalanol was stronger than that of roscovitine in HCT 116 cells. In addition, we found that CDK inhibitors decreased PA levels and significantly upregulated expression of key PA catabolic enzymes such as polyamine oxidase (PAO) and spermine oxidase (SMO). MDL-72,527, a specific inhibitor of PAO and SMO, decreased apoptotic potential of CDK inhibitors on HCT 116 cells. Moreover, transient silencing of PAO was also reduced prevented CDK inhibitor-induced apoptosis in HCT 116 cells. We conclude that the PA catabolic pathway, especially PAO, is a critical target for understanding the molecular mechanism of CDK inhibitor-induced apoptosis.
Collapse
Affiliation(s)
- Ajda Coker Gürkan
- Molecular Biology and Genetics Department, Science and Literature Faculty, Istanbul Kultur University, Atakoy Campus, 34156, Istanbul, Turkey
| | | | | | | |
Collapse
|
39
|
A wider role for polyamines in biofilm formation. Biotechnol Lett 2013; 35:1715-7. [PMID: 23881324 DOI: 10.1007/s10529-013-1286-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2013] [Accepted: 06/17/2013] [Indexed: 10/26/2022]
Abstract
Polyamines play an essential role in biofilm formation of diverse Gram-negative and Gram-positive bacteria. Biosynthetic pathways and transport systems for diverse polyamines have been identified as key components of bacterial biofilm formation.
Collapse
|
40
|
Zhao JK, Li XM, Zhang MJ, Jin JH, Jiang CY, Liu SJ. Parapedobacter pyrenivorans sp. nov., isolated from a pyrene-degrading microbial enrichment, and emended description of the genus Parapedobacter. Int J Syst Evol Microbiol 2013; 63:3994-3999. [PMID: 23710053 DOI: 10.1099/ijs.0.051938-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A novel pyrene-degrading, Gram-negative bacterium, designated strain P-4(T), was isolated from a polycyclic aromatic hydrocarbon-degrading enrichment of polluted soils from a coking chemical plant. Cells of strain P-4(T) were non-motile rods. Strain P-4(T) grew at 15-45 °C (optimum, 37 °C), pH 6.0-10.0 (optimum, pH 8.5) and 0-4 % (w/v) NaCl. Analysis of the 16S rRNA gene sequence showed that strain P-4(T) was related phylogenetically to members of the genus Parapedobacter, with sequence similarity of 93.7-95.1 %. The cellular fatty acids of strain P-4(T) were iso-C15 : 0, summed feature 3 (C16 : 1ω7c and/or C16 : 1ω6c), iso-C17 : 0 3-OH, summed feature 9 (iso-C17 : 1ω9c and/or 10-methyl C16 : 0), anteiso-C15 : 0, iso-C15 : 0 3-OH, C16 : 0, iso-C15 : 1 G, C16 : 0 3-OH and C17 : 0 2-OH. Cells contained menaquinone 7 as the major quinone. The polyamine of strain P-4(T) was homospermidine, and the main polar lipids were phosphatidylethanolamine and a sphingolipid. The G+C content of the DNA was 45.4 mol%. Strain P-4(T) showed a range of phenotypic characteristics that differentiated it from previously recognized Parapedobacter species, particularly its ability to use pyrene as a sole carbon source for growth and its alkaline optimal pH for growth (pH 8.5). On the basis of these results, it is concluded that strain P-4(T) represents a novel species of the genus Parapedobacter, for which the name Parapedobacter pyrenivorans (type strain P-4(T) = NBRC 109113(T) = CGMCC 1.12195(T)) is proposed. An emended description of the genus Parapedobacter is also provided.
Collapse
Affiliation(s)
- Jian-Kang Zhao
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Xiao-Ming Li
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Ming-Jiang Zhang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Jing-Hua Jin
- Environmental Protection Research Institute of Light Industry, Beijing 100089, PR China
| | - Cheng-Ying Jiang
- Environmental Microbiology Research Center, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China.,State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Shuang-Jiang Liu
- Environmental Microbiology Research Center, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China.,State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
| |
Collapse
|
41
|
Hamana K, Itoh T, Sakamoto M, Hayashi H. Covalently linked polyamines in the cell wall peptidoglycan of the anaerobes belonging to the order Selenomonadales. J GEN APPL MICROBIOL 2013; 58:339-47. [PMID: 22990495 DOI: 10.2323/jgam.58.339] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Koei Hamana
- Faculty of Engineering, Maebashi Institute of Technology, Maebashi, Gunma 371-0816, Japan.
| | | | | | | |
Collapse
|
42
|
A RubisCO-like protein links SAM metabolism with isoprenoid biosynthesis. Nat Chem Biol 2012; 8:926-32. [PMID: 23042035 PMCID: PMC3475740 DOI: 10.1038/nchembio.1087] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2011] [Accepted: 09/06/2012] [Indexed: 02/01/2023]
Abstract
Functional assignment of uncharacterized proteins is a challenge in the era of large-scale genome sequencing. Here, we combine in extracto-NMR, proteomics, and transcriptomics with a newly developed (knock-out) metabolomics platform to determine a potential physiological role for a ribulose-1,5-bisphosphate carboxylase/oxygenase (RubisCO)-like protein (RLP) from Rhodospirillum rubrum. Our studies unravelled an unexpected link in bacterial central carbon metabolism between S-adenosylmethionine (SAM)-dependent polyamine metabolism and isoprenoid biosynthesis and also provide an alternative approach to assign enzyme function at the organismic level.
Collapse
|
43
|
|
44
|
Carvajal-Gamez BI, Arroyo R, Camacho-Nuez M, Lira R, Martínez-Benitez M, Alvarez-Sánchez ME. Putrescine is required for the expression of eif-5a in Trichomonas vaginalis. Mol Biochem Parasitol 2011; 180:8-16. [PMID: 21801756 DOI: 10.1016/j.molbiopara.2011.07.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2010] [Revised: 07/04/2011] [Accepted: 07/09/2011] [Indexed: 11/21/2022]
Abstract
Recently, we found that Trichomonas vaginalis contains a eukaryotic translation initiation factor 5A (TveIF-5A) with unknown function in this parasite. eIF-5A is the only cellular protein dependent of polyamines to form a hypusine residue, an unusual basic amino acid that is post-translationally formed by modification of a single specific lysine residue in an eIF-5A precursor protein. The purpose of this study was to determine the effect of a putrescine analogue, 1,4-diamino-2-butanone (DAB), on tveif-5a mRNA and TveIF-5A protein expression. TveIF-5A protein expression was reduced by inhibition of putrescine biosynthesis, and tveif-5a mRNA levels were reduced ∼90%, as shown by western blot and immunofluorescence assays. Cycloheximide treatment reduced the amount of mature TveIF-5A protein at 4h and decreased the tveif-5a transcript level at 2h, according to western blot, RT-PCR and qRT-PCR analyses. Actinomycin D treatment showed that the tveif-5a mRNA had half-life of ∼2.5h in DAB-treated parasites. The half-life of tveif-5a mRNA was ∼4.5h under exogenous putrescine conditions. These results suggest that putrescine is required for tveif-5a mRNA stability, and it is necessary for the expression, stability and maturation of TveIF-5A protein.
Collapse
|
45
|
Joshi GS, Spontak JS, Klapper DG, Richardson AR. Arginine catabolic mobile element encoded speG abrogates the unique hypersensitivity of Staphylococcus aureus to exogenous polyamines. Mol Microbiol 2011; 82:9-20. [PMID: 21902734 DOI: 10.1111/j.1365-2958.2011.07809.x] [Citation(s) in RCA: 121] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Polyamines, including spermine (Spm) and spermidine (Spd), are aliphatic cations that are reportedly synthesized by all living organisms. They exert pleiotropic effects on cells and are required for efficient nucleic acid and protein synthesis. Here, we report that the human pathogen Staphylococcus aureus lacks identifiable polyamine biosynthetic genes, and consequently produces no Spm/Spd or their precursor compounds putrescine and agmatine. Moreover, while supplementing defined medium with polyamines generally enhances bacterial growth, Spm and Spd exert bactericidal effects on S. aureus at physiological concentrations. Small colony variants specifically lacking menaquinone biosynthesis arose after prolonged Spm exposure and exhibited reduced polyamine sensitivity. However, other respiratory-defective mutants were no less susceptible to Spm implying menaquinone itself rather than general respiration is required for full Spm toxicity. Polyamine hypersensitivity distinguishes S. aureus from other bacteria and is exhibited by all tested strains save those belonging to the USA-300 group of community-associated methicillin-resistant S. aureus (CA-MRSA). We identified one gene within the USA-300-specific arginine catabolic mobile element (ACME) encoding a Spm/Spd N-acetyltransferase that is necessary and sufficient for polyamine resistance. S. aureus encounters significant polyamine levels during infection; however, the acquisition of ACME encoded speG allows USA-300 clones to circumvent polyamine hypersensitivity, a peculiar trait of S. aureus.
Collapse
Affiliation(s)
- Gauri S Joshi
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | | | | | |
Collapse
|
46
|
Barclay JJ, Morosi LG, Vanrell MC, Trejo EC, Romano PS, Carrillo C. Trypanosoma cruzi Coexpressing Ornithine Decarboxylase and Green Fluorescence Proteins as a Tool to Study the Role of Polyamines in Chagas Disease Pathology. Enzyme Res 2011; 2011:657460. [PMID: 21687606 PMCID: PMC3112526 DOI: 10.4061/2011/657460] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2010] [Revised: 02/24/2011] [Accepted: 03/11/2011] [Indexed: 11/20/2022] Open
Abstract
Polyamines are essential for Trypanosoma cruzi, the causative agent of Chagas disease. As T. cruzi behaves as a natural auxotrophic organism, it relies on host polyamines biosynthesis. In this paper we obtained a double-transfected T. cruzi parasite that expresses the green fluorescent protein (GFP) and a heterologous ornithine decarboxylase (ODC), used itself as a novel selectable marker. These autotrophic and fluorescent parasites were characterized; the ODC presented an apparent Km for ornithine of 0.51 ± 0.16 mM and an estimated Vmax value of 476.2 nmoles/h/mg of protein. These expressing ODC parasites showed higher metacyclogenesis capacity than the auxotrophic counterpart, supporting the idea that polyamines are engaged in this process. This double-transfected T. cruzi parasite results in a powerful tool—easy to follow by its fluorescence—to study the role of polyamines in Chagas disease pathology and in related processes such as parasite survival, invasion, proliferation, metacyclogenesis, and tissue spreading.
Collapse
Affiliation(s)
- Jeremías José Barclay
- Fundación Instituto Leloir-(FIL-IIBBA-) CONICET and Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, 1428 Buenos Aires, Argentina
| | | | | | | | | | | |
Collapse
|
47
|
Schneider J, Wendisch VF. Biotechnological production of polyamines by bacteria: recent achievements and future perspectives. Appl Microbiol Biotechnol 2011; 91:17-30. [PMID: 21552989 DOI: 10.1007/s00253-011-3252-0] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2011] [Revised: 03/14/2011] [Accepted: 03/14/2011] [Indexed: 11/26/2022]
Abstract
In Bacteria, the pathways of polyamine biosynthesis start with the amino acids L-lysine, L-ornithine, L-arginine, or L-aspartic acid. Some of these polyamines are of special interest due to their use in the production of engineering plastics (e.g., polyamides) or as curing agents in polymer applications. At present, the polyamines for industrial use are mainly synthesized on chemical routes. However, since a commercial market for polyamines as well as an industry for the fermentative production of amino acid exist, and since bacterial strains overproducing the polyamine precursors L-lysine, L-ornithine, and L-arginine are known, it was envisioned to engineer these amino acid-producing strains for polyamine production. Only recently, researchers have investigated the potential of amino acid-producing strains of Corynebacterium glutamicum and Escherichia coli for polyamine production. This mini-review illustrates the current knowledge of polyamine metabolism in Bacteria, including anabolism, catabolism, uptake, and excretion. The recent advances in engineering the industrial model bacteria C. glutamicum and E. coli for efficient production of the most promising polyamines, putrescine (1,4-diaminobutane), and cadaverine (1,5-diaminopentane), are discussed in more detail.
Collapse
Affiliation(s)
- Jens Schneider
- Genetics of Prokaryotes, Department of Biology & CeBiTec, Bielefeld University, Bielefeld, Germany
| | | |
Collapse
|
48
|
Michael AJ. Exploring polyamine biosynthetic diversity through comparative and functional genomics. Methods Mol Biol 2011; 720:39-50. [PMID: 21318865 DOI: 10.1007/978-1-61779-034-8_2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
The existence of multiple, alternative pathways for polyamine biosynthesis, and the presence of alternative polyamine structural analogs, is an indication of the physiological importance of polyamines and their long evolutionary history. Polyamine biosynthesis is modular: diamines are synthesized directly or indirectly from amino acids, and triamines are synthesized from diamines by transfer of aminopropyl, carboxyaminopropyl, or aminobutyl groups to the diamine. Diversification of polyamine biosynthesis has depended on gene duplication and functional divergence, on gene fusion, and on horizontal gene transfer. Four examples of polyamine biosynthetic diversification are presented here with a discussion of methodological and conceptual approaches for identification of new pathways.
Collapse
Affiliation(s)
- Anthony J Michael
- Department of Pharmacology, University of Texas Southwestern Medical Center, Forest Park, Dallas, TX, USA
| |
Collapse
|
49
|
Uemura T, Stringer DE, Blohm-Mangone KA, Gerner EW. Polyamine transport is mediated by both endocytic and solute carrier transport mechanisms in the gastrointestinal tract. Am J Physiol Gastrointest Liver Physiol 2010; 299:G517-22. [PMID: 20522643 PMCID: PMC2928537 DOI: 10.1152/ajpgi.00169.2010] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2010] [Accepted: 05/27/2010] [Indexed: 01/31/2023]
Abstract
The polyamines spermidine and spermine, and their precursor putrescine, are required for cell growth and cellular functions. The high levels of tissue polyamines are implicated in carcinogenesis. The major sources of exogenous polyamines are diet and intestinal luminal bacteria in gastrointestinal (GI) tissues. Both endocytic and solute carrier-dependent mechanisms have been described for polyamine uptake. Knocking down of caveolin-1 protein increased polyamine uptake in colon cancer-derived HCT116 cells. Dietary supplied putrescine was accumulated in GI tissues and liver in caveolin-1 knockout mice more than wild-type mice. Knocking out of nitric oxide synthase (NOS2), which has been implicated in the release of exogenous polyamines from internalized vesicles, abolished the accumulation of dietary putrescine in GI tissues. Under conditions of reduced endogenous tissue putrescine contents, caused by treatment with the polyamine synthesis inhibitor difluoromethylornithine (DFMO), small intestinal and colonic mucosal polyamine contents increased with dietary putrescine levels, even in mice lacking NOS2. Knocking down the solute carrier transporter SLC3A2 in HCT116-derived Hkh2 cells reduced the accumulation of exogenous putrescine and total polyamine contents in DFMO treated cells, relative to non-DFMO-treated cells. These data demonstrate that exogenous putrescine is transported into GI tissues by caveolin-1- and NOS2-dependent mechanisms, but that the solute carrier transporter SLC3A2 can function bidirectionally to import putrescine under conditions of low tissue polyamines.
Collapse
Affiliation(s)
- Takeshi Uemura
- The Arizona Cancer Center, University of Arizona, Tucson, USA
| | | | | | | |
Collapse
|
50
|
Tindall BJ, Rosselló-Móra R, Busse HJ, Ludwig W, Kämpfer P. Notes on the characterization of prokaryote strains for taxonomic purposes. Int J Syst Evol Microbiol 2010; 60:249-266. [DOI: 10.1099/ijs.0.016949-0] [Citation(s) in RCA: 1039] [Impact Index Per Article: 69.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Taxonomy relies on three key elements: characterization, classification and nomenclature. All three elements are dynamic fields, but each step depends on the one which precedes it. Thus, the nomenclature of a group of organisms depends on the way they are classified, and the classification (among other elements) depends on the information gathered as a result of characterization. While nomenclature is governed by the Bacteriological Code, the classification and characterization of prokaryotes is an area that is not formally regulated and one in which numerous changes have taken place in the last 50 years. The purpose of the present article is to outline the key elements in the way that prokaryotes are characterized, with a view to providing an overview of some of the pitfalls commonly encountered in taxonomic papers.
Collapse
Affiliation(s)
- B. J. Tindall
- DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH, Inhoffenstraße 7B, D-38124 Braunschweig, Germany
| | - R. Rosselló-Móra
- Grup de Microbiologia Marina, Departament d'Ecologia I Recursos Marins, IMEDEA (CSIC-UIB), C/Miquel Marqués 21, E-07190, Esporles, Spain
| | - H.-J. Busse
- Institut für Bakteriologie, Mykologie und Hygiene, University of Veterinary Medicine Vienna, Veterinärplatz 1, A-1210 Vienna, Austria
| | - W. Ludwig
- Lehrstuhl für Mikrobiologie, Technische Universität München, Am Hochanger 4, D-85354 Freising-Weihenstephan, Germany
| | - P. Kämpfer
- Institut für Angewandte Mikrobiologie, Justus-Liebig-Universität Giessen, Heinrich-Buff-Ring 26-32 (IFZ), D-35392 Giessen, Germany
| |
Collapse
|