1
|
Visnjic D, Dembitz V, Lalic H. The Role of AMPK/mTOR Modulators in the Therapy of Acute Myeloid Leukemia. Curr Med Chem 2019; 26:2208-2229. [PMID: 29345570 DOI: 10.2174/0929867325666180117105522] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 01/01/2018] [Accepted: 01/11/2018] [Indexed: 12/13/2022]
Abstract
Differentiation therapy of acute promyelocytic leukemia with all-trans retinoic acid represents the most successful pharmacological therapy of acute myeloid leukemia (AML). Numerous studies demonstrate that drugs that inhibit mechanistic target of rapamycin (mTOR) and activate AMP-kinase (AMPK) have beneficial effects in promoting differentiation and blocking proliferation of AML. Most of these drugs are already in use for other purposes; rapalogs as immunosuppressants, biguanides as oral antidiabetics, and 5-amino-4-imidazolecarboxamide ribonucleoside (AICAr, acadesine) as an exercise mimetic. Although most of these pharmacological modulators have been widely used for decades, their mechanism of action is only partially understood. In this review, we summarize the role of AMPK and mTOR in hematological malignancies and discuss the possible role of pharmacological modulators in proliferation and differentiation of leukemia cells.
Collapse
Affiliation(s)
- Dora Visnjic
- Department of Physiology and Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Salata 12, 10 000 Zagreb, Croatia
| | - Vilma Dembitz
- Department of Physiology and Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Salata 12, 10 000 Zagreb, Croatia
| | - Hrvoje Lalic
- Department of Physiology and Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Salata 12, 10 000 Zagreb, Croatia
| |
Collapse
|
2
|
Dembitz V, Lalic H, Visnjic D. 5-Aminoimidazole-4-carboxamide ribonucleoside-induced autophagy flux during differentiation of monocytic leukemia cells. Cell Death Discov 2017; 3:17066. [PMID: 28975042 PMCID: PMC5624282 DOI: 10.1038/cddiscovery.2017.66] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 07/29/2017] [Accepted: 08/18/2017] [Indexed: 12/30/2022] Open
Abstract
Pharmacological modulators of AMP-dependent kinase (AMPK) have been suggested in treatment of cancer. The biguanide metformin and 5-aminoimidazole-4-carboxamide ribonucleoside (AICAR) have been reported to inhibit proliferation of solid tumors and hematological malignancies, but their role in differentiation is less explored. Our previous study demonstrated that AICAR alone induced AMPK-independent expression of differentiation markers in monocytic U937 leukemia cells, and no such effects were observed in response to metformin. The aim of this study was to determine the mechanism of AICAR-mediated effects and to test for the possible role of autophagy in differentiation of leukemia cells. The results showed that AICAR-mediated effects on the expression of differentiation markers were not mimicked by A769662, a more specific direct AMPK activator. Long-term incubation of U937 cells with AICAR and other differentiation agents, all-trans-retinoic acid (ATRA) and phorbol 12-myristate 13-acetate, increased the expression of the autophagy marker LC3B-II, and these effects were not observed in response to metformin. Western blot and immunofluorescence analyses of U937 cells treated with bafilomycin A1 or transfected with mRFP-GFP-LC3 proved that the increase in the expression of LC3B-II was due to an increase in autophagy flux, and not to a decrease in lysosomal degradation. 3-Methyladenine inhibited the expression of differentiation markers in response to all inducers, but had stimulatory effects on autophagy flux at dose that effectively inhibited the production of phosphatidylinositol 3-phosphate. The small inhibitory RNA-mediated down-modulation of Beclin 1 and hVPS34 had no effects on AICAR and ATRA-mediated increase in the expression of differentiation markers. These results show that AICAR and other differentiation agents induce autophagy flux in U937 cells and that the effects of AICAR and ATRA on the expression of differentiation markers do not depend on the normal levels of key proteins of the classical or canonical autophagy pathway.
Collapse
Affiliation(s)
- Vilma Dembitz
- Department of Physiology and Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Salata 12, Zagreb 10 000, Croatia
| | - Hrvoje Lalic
- Department of Physiology and Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Salata 12, Zagreb 10 000, Croatia
| | - Dora Visnjic
- Department of Physiology and Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Salata 12, Zagreb 10 000, Croatia
| |
Collapse
|
3
|
Dembitz V, Lalic H, Ostojic A, Vrhovac R, Banfic H, Visnjic D. The mechanism of synergistic effects of arsenic trioxide and rapamycin in acute myeloid leukemia cell lines lacking typical t(15;17) translocation. Int J Hematol 2015; 102:12-24. [PMID: 25758096 DOI: 10.1007/s12185-015-1776-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Revised: 02/27/2015] [Accepted: 03/02/2015] [Indexed: 11/28/2022]
Abstract
Arsenic trioxide (ATO) has potent clinical activity in the treatment of patients with acute promyelocytic leukemia (APL), but is much less efficacious in acute myeloid leukemia (AML) lacking t(15;17) translocation. Recent studies have indicated that the addition of mammalian target of rapamycin (mTOR) inhibitors may increase the sensitivity of malignant cells to ATO. The aim of the present study was to test for possible synergistic effects of ATO and rapamycin at therapeutically achievable doses in non-APL AML cells. In HL-60 and U937 cell lines, the inhibitory effects of low concentrations of ATO and rapamycin were synergistic and more pronounced in U937 cells. The combination of drugs increased apoptosis in HL-60 cells and increased the percentage of cells in G(0)/G(1) phase in both cell lines. In U937 cells, rapamycin alone increased the activity of mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/ERK) and the addition of ATO decreased the level of phosphorylated ERK, Ser473 phosphorylated Akt and anti-apoptotic Mcl-1 protein. Primary AML cells show high sensitivity to growth-inhibitory effects of rapamycin alone or in combination with ATO. The results of the present study reveal the mechanism of the synergistic effects of two drugs at therapeutically achievable doses in non-APL AML cells.
Collapse
Affiliation(s)
- Vilma Dembitz
- Department of Physiology and Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Salata 3, POB 978, 10 000, Zagreb, Croatia
| | | | | | | | | | | |
Collapse
|
4
|
Lalic H, Dembitz V, Lukinovic-Skudar V, Banfic H, Visnjic D. 5-Aminoimidazole-4-carboxamide ribonucleoside induces differentiation of acute myeloid leukemia cells. Leuk Lymphoma 2014; 55:2375-83. [PMID: 24359245 DOI: 10.3109/10428194.2013.876633] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Adenosine monophosphate (AMP)-activated kinase (AMPK) modulators have been shown to exert cytotoxic activity in hematological malignancies, but their role in the differentiation of acute myeloid leukemia (AML) is less explored. In this study, the effects of AMPK agonists on all-trans retinoic acid (ATRA)-mediated differentiation of acute promyelocytic leukemia (APL) and non-APL AML cell lines were investigated. The results show that AMPK agonists inhibit the growth of myeloblastic HL-60, promyelocytic NB4 and monocytic U937 cells. 5-Aminoimidazole-4-carboxamide ribonucleoside (AICAR), an AMPK activator, enhances ATRA-mediated differentiation of NB4 cells. In U937 cells, AICAR alone induces the expression of cell surface markers associated with mature monocytes and macrophages. In both cell lines, AICAR increases the activity of mitogen-activated protein kinase (MAPK), and the presence of a MAPK inhibitor reduces the expression of differentiation markers. These results reveal beneficial effects of AICAR in AML, including differentiation of non-APL AML cells.
Collapse
Affiliation(s)
- Hrvoje Lalic
- Department of Physiology and Croatian Institute for Brain Research, School of Medicine, University of Zagreb , Croatia
| | | | | | | | | |
Collapse
|
5
|
Draman MS, Grennan-Jones F, Zhang L, Taylor PN, Tun TK, McDermott J, Moriarty P, Morris D, Lane C, Sreenan S, Dayan C, Ludgate M. Effects of prostaglandin F(2α) on adipocyte biology relevant to graves' orbitopathy. Thyroid 2013; 23:1600-8. [PMID: 24001049 PMCID: PMC3868384 DOI: 10.1089/thy.2013.0194] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND In Graves' orbitopathy (GO), increased proliferation, excess adipogenesis, and hyaluronan overproduction produce GO exophthalmos. Enophthalmos occurs in some glaucoma patients treated with Bimatoprost (prostaglandin F2α, PGF2α) eye drops. We hypothesized that enophthalmos is secondary to reductions in orbital tissue proliferation, adipogenesis, and/or increased lipolysis. We aimed to determine which of these is affected by PGF2α by using the 3T3-L1 murine preadipocyte cell line and primary human orbital fibroblasts (OFs) from GO patients (n=5) and non-GO (n=5). METHODS 3T3-L1 cells and orbital OFs were cultured alone or with PGF2α (all experiments used 10(-8) to 10(-6) M) and counted on days 1/2/3 or 5, respectively; cell cycle analysis (flow cytometry) was applied. Adipogenesis (in the presence/absence of PGF2α) was evaluated (day 7 or 15 for 3T3-L1 and primary cells, respectively) morphologically by Oil Red O staining and quantitative polymerase chain reaction measurement of adipogenesis markers (glycerol-3-phosphate dehydrogenase and lipoprotein lipase, respectively). For lipolysis, in vitro-differentiated 3T3-L1 or mature orbital adipocytes were incubated with norepinephrine and PGF2α and free glycerol was assayed. Appropriate statistical tests were applied. RESULTS The population doubling time of 3T3-L1 was 27.3±1.4 hours-significantly increased by dimethyl sulfoxide 0.02% to 44.6±4.8 hours (p=0.007) and further significantly increased (p=0.049 compared with dimethyl sulfoxide) by 10(-8) M PGF2α to 93.6±19.0 hours, indicating reduced proliferation, which was caused by prolongation of G2/M. GO OFs proliferated significantly more rapidly than non-GO (population doubling time 5.36±0.34 or 6.63±0.35 days, respectively, p=0.035), but the proliferation of both was significantly reduced (dose dependent from 10(-8) M) by PGF2α, again with prolongation of G2/M. Adipogenesis in 3T3-L1 cells was minimally affected by PGF2α when assessed morphologically, but the drug significantly reduced transcripts of the glycerol-3-phosphate dehydrogenase differentiation marker. GO OFs displayed significantly higher adipogenic potential than non-GO, but in both populations, adipogenesis, evaluated by all 3 methods, was significantly reduced (dose dependent from 10(-8) M) by PGF2α. There was no effect of PGF2α on basal or norepinephrine-induced lipolysis, in 3T3-L1 or human OFs, either GO or non-GO. CONCLUSIONS The results demonstrate that PGF2α significantly reduces proliferation and adipogenesis and that human OFs are more sensitive to its effects than 3T3-L1. Consequently, PGF2α could be effective in the treatment of GO.
Collapse
Affiliation(s)
- Mohd Shazli Draman
- Institute of Molecular and Experimental Medicine, School of Medicine, Cardiff University, Heath Park, Cardiff, United Kingdom
| | - Fiona Grennan-Jones
- Institute of Molecular and Experimental Medicine, School of Medicine, Cardiff University, Heath Park, Cardiff, United Kingdom
| | - Lei Zhang
- Institute of Molecular and Experimental Medicine, School of Medicine, Cardiff University, Heath Park, Cardiff, United Kingdom
| | - Peter N Taylor
- Institute of Molecular and Experimental Medicine, School of Medicine, Cardiff University, Heath Park, Cardiff, United Kingdom
| | - Tommy Kyaw Tun
- Department of Endocrinology and Diabetes Mellitus, Royal College of Surgeons in Ireland, Connolly Hospital, Blanchardstown, Dublin, Ireland
| | - John McDermott
- Department of Endocrinology and Diabetes Mellitus, Royal College of Surgeons in Ireland, Connolly Hospital, Blanchardstown, Dublin, Ireland
| | | | - Daniel Morris
- Department of Ophthalmology, University Hospital of Wales, Heath Park, Cardiff, United Kingdom
| | - Carol Lane
- Department of Ophthalmology, University Hospital of Wales, Heath Park, Cardiff, United Kingdom
| | - Seamus Sreenan
- Department of Endocrinology and Diabetes Mellitus, Royal College of Surgeons in Ireland, Connolly Hospital, Blanchardstown, Dublin, Ireland
| | - Colin Dayan
- Institute of Molecular and Experimental Medicine, School of Medicine, Cardiff University, Heath Park, Cardiff, United Kingdom
| | - Marian Ludgate
- Institute of Molecular and Experimental Medicine, School of Medicine, Cardiff University, Heath Park, Cardiff, United Kingdom
| |
Collapse
|
6
|
Altman JK, Platanias LC. Acute myeloid leukemia: potential for new therapeutic approaches targeting mRNA translation pathways. Int J Hematol Oncol 2013; 2. [PMID: 24319589 DOI: 10.2217/ijh.13.23] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Despite advances in molecular research related to acute myeloid leukemia (AML) and a better understanding of the mechanisms of leukemogenesis and pathophysiology of the disease, the pharmacological agents used in the treatment of AML have remained essentially unchanged for the last three decades. Advances in the clinical management of AML patients have been achieved by defining better molecular prognostic markers, but there remains a need for new targeted drugs that disrupt non-overlapping pathways in leukemia cells. The mTOR cellular cascade is critical for cell metabolism, growth, proliferation and survival. Extensive preclinical work suggests that targeting mTOR may provide a powerful approach to block AML precursor cells, while other findings suggest enhanced antileukemic effects by combining mTOR inhibitors with traditional chemotherapy. Such combinations may increase antileukemic responses further, offering unique ways to overcome leukemic cell resistance and to eliminate primitive leukemic precursors.
Collapse
Affiliation(s)
- Jessica K Altman
- Robert H Lurie Comprehensive Cancer Center & Division of Hematology-Oncology, Lurie 3-107, 303 East Superior Street, Chicago, IL 60611, USA ; Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA ; Department of Medicine, Jesse Brown VA Medical Center, Chicago, IL 60612, USA
| | | |
Collapse
|