1
|
Zhang H, Wu H, Wang L, Galarza LM, Wu C, Li M, Wang Z, Zhou E, Han J. Preparation and Characterization of Ternary Complexes to Improve the Solubility and Dissolution Performance of a Proteolysis-Targeting Chimera Drug. Pharmaceutics 2025; 17:671. [PMID: 40430961 PMCID: PMC12115006 DOI: 10.3390/pharmaceutics17050671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2025] [Revised: 04/26/2025] [Accepted: 05/06/2025] [Indexed: 05/29/2025] Open
Abstract
Background/Objectives: Proteolysis-targeting chimeras (PROTACs) have shown significant potential in the treatment of intractable diseases. However, their clinical applications are limited by poor water solubility and permeability. In this study, the cyclodextrin inclusion method was employed for the first time to prepare the PROTAC-CD complex with the aim of improving the dissolution of a PROTAC drug (LC001). Methods: Initially, sulfobutyl ether-β-cyclodextrin (SBE-β-CD) was selected to improve the solubility of LC001. The polymer TPGS was screened based on the phase solubility method to enhance the efficiency of complexation and solubilization capacity, and its ratio with SBE-β-CD was optimized. The ternary complex was prepared by lyophilization with an SBE-β-CD/TPGS molar ratio of 1:0.03. Differential scanning calorimetry, powder X-ray diffraction, and scanning electron microscopy results confirmed the formation of an amorphous complex. Fourier-transform infrared and molecular docking simulations indicated the formation of hydrogen bond interactions between components. Results: The results showed that the ternary complexes significantly improved the dissolution rate and release amount of LC001 in PBS (pH 6.8) and were unaffected by changes in gastric pH compared to the binary complexes and physical mixtures. The lack of crystal structure in the lyophilized particles and the formation of nano aggregates in solution may be the reasons for the improved dissolution of the ternary complex. Conclusions: In conclusion, the addition of TPGS to the LC001-SBE-β-CD binary system has a synergistic effect on improving the solubility and dissolution of LC001. This ternary complex is a promising formulation for enhancing the dissolution of LC001.
Collapse
Affiliation(s)
- Heng Zhang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China;
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng 252000, China
| | - Hengqian Wu
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng 252000, China
| | - Lili Wang
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng 252000, China
| | | | - Chuanyu Wu
- School of Chemistry and Chemical Engineering, University of Surrey, Guildford GU2 7XH, UK
| | - Mingzhong Li
- School of Pharmacy, De Montfort University, Leicester LE1 9BH, UK
| | - Zhengping Wang
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng 252000, China
- Liaocheng High-Tech Biotechnology Co., Ltd., Liaocheng 252000, China
| | - Erpeng Zhou
- College of Chemical Engineering, Shijiazhuang University, Hebei International Joint Research Center for Biopharmaceutical, Shijiazhuang 050035, China
| | - Jun Han
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China;
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng 252000, China
- Liaocheng High-Tech Biotechnology Co., Ltd., Liaocheng 252000, China
| |
Collapse
|
2
|
Pardeshi CV, Kothawade RV, Markad AR, Pardeshi SR, Kulkarni AD, Chaudhari PJ, Longhi MR, Dhas N, Naik JB, Surana SJ, Garcia MC. Sulfobutylether-β-cyclodextrin: A functional biopolymer for drug delivery applications. Carbohydr Polym 2022; 301:120347. [DOI: 10.1016/j.carbpol.2022.120347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 11/10/2022] [Accepted: 11/10/2022] [Indexed: 11/17/2022]
|
3
|
Bagde A, Patel N, Patel K, Nottingham E, Singh M. Sustained release dosage form of noscapine HCl using hot melt extrusion (HME) technique: formulation and pharmacokinetics. Drug Deliv Transl Res 2020; 11:1156-1165. [PMID: 32880879 DOI: 10.1007/s13346-020-00838-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Sustained release formulation of noscapine (Nos) HCl could be useful in maintaining plasma Nos HCl level for prolonged period of time, which is important for chemo-sensitization. However, weakly basic drugs like Nos HCl have pH-dependent solubility. Therefore, the purpose of this study was to achieve pH-independent drug release by developing the sustained release dosage form of Nos HCl using biodegradable polymer Eudragit RLPO and FDA-approved pH modifier citric acid (CA) by hot melt extrusion (HME) technique. Nos HCl was successfully formulated using 10% CA with 91.2 ± 1.34% drug recovery through the extruder. X-ray diffraction (XRD) results showed that drug was completely dispersed in the polymer and changed to amorphous from its crystalline form. In vitro drug release studies in pH 6.8 buffer showed that formulation containing 10% CA released 70.99 ± 3.85% drug in 24 h after initial burst release of 40.04 ± 2.39% compared to formulation without CA. Furthermore, in vivo pharmacokinetic data showed the sustained release plasma concentration time curve with significant (p < 0.05) increase in area under curve (AUC) in Nos HCl extrudate compared to Nos HCl solution. Overall, HME can be used to enhance the bioavailability and achieve the pH-independent solubility of weakly basic drugs like Nos HCl. Graphical abstract.
Collapse
Affiliation(s)
- Arvind Bagde
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL, 32307, USA
| | - Nilkumar Patel
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL, 32307, USA
| | - Ketan Patel
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL, 32307, USA.,College of Pharmacy and Health Sciences, St. John's University, Queens, NY, 11439, USA
| | - Ebony Nottingham
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL, 32307, USA
| | - Mandip Singh
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL, 32307, USA.
| |
Collapse
|
4
|
Mehta P, Al-Kinani AA, Arshad MS, Singh N, van der Merwe SM, Chang MW, Alany RG, Ahmad Z. Engineering and Development of Chitosan-Based Nanocoatings for Ocular Contact Lenses. J Pharm Sci 2019; 108:1540-1551. [DOI: 10.1016/j.xphs.2018.11.036] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 10/28/2018] [Accepted: 11/07/2018] [Indexed: 12/15/2022]
|
5
|
Esnaashari SS, Amani A. Optimization of Noscapine-Loaded mPEG-PLGA Nanoparticles and Release Study: a Response Surface Methodology Approach. J Pharm Innov 2018. [DOI: 10.1007/s12247-018-9318-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
6
|
Kim DS, Kim DW, Kim KS, Choi JS, Seo YG, Youn YS, Oh KT, Yong CS, Kim JO, Jin SG, Choi HG. Development of a novel l-sulpiride-loaded quaternary microcapsule: Effect of TPGS as an absorption enhancer on physicochemical characterization and oral bioavailability. Colloids Surf B Biointerfaces 2016; 147:250-257. [DOI: 10.1016/j.colsurfb.2016.08.010] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 07/14/2016] [Accepted: 08/07/2016] [Indexed: 12/24/2022]
|
7
|
Godugu C, Doddapaneni R, Patel AR, Singh R, Mercer R, Singh M. Novel Gefitinib Formulation with Improved Oral Bioavailability in Treatment of A431 Skin Carcinoma. Pharm Res 2016; 33:137-54. [PMID: 26286185 PMCID: PMC4774891 DOI: 10.1007/s11095-015-1771-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2015] [Accepted: 08/05/2015] [Indexed: 12/22/2022]
Abstract
PURPOSE Oral administration of anticancer agents presents a series of advantages for patients. However, most of the anticancer drugs have poor water solubility leading to low bioavailability. METHODS Controlled released spray dried matrix system of Gefitinib with hydroxypropyl β-cyclodextrin, chitosan, hydroxy propyl methyl cellulose, vitamin E TPGS, succinic acid were used for the design of formulations to improve the oral absorption of Gefitinib. Spray drying with a customized spray gun which allows simultaneous/pulsatile flow of two different liquid systems through single nozzle was used to prepare Gefitinib spray dried formulations (Gef-SD). Formulation was characterized by in vitro drug release and Caco-2 permeability studies. Pharmacokinetic studies were performed in Sprague Dawley rats. Efficacy of Gef-SD was carried out in A431 xenografts models in nude mice. RESULTS In Gef-SD group 9.14-fold increase in the AUC was observed compared to free Gef. Improved pharmacokinetic profile of Gef-SD translated into increase (1.75 fold compared to Gef free drug) in anticancer effects. Animal survival was significantly increased in Gef formulation treated groups, with superior reduction in the tumor size (1.48-fold) and volumes (1.75-fold) and also increase in the anticancer effects (TUNEL positive apoptotic cells) was observed in Gef-SD treated groups. Further, western blot, immunohistochemical and proteomics analysis demonstrated the increased pharmacodynamic effects of Gef-SD formulations in A431 xenograft tumor models. CONCLUSION Our studies suggested that Gefitinib can be successfully incorporated into control release microparticles based oral formulation with enhanced pharmacokinetic and pharmacodynamic activity. This study demonstrates the novel application of Gef in A431 tumor models.
Collapse
Affiliation(s)
- Chandraiah Godugu
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, Florida, USA
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research, (NIPER), Hyderabad, Telangana, India
| | - Ravi Doddapaneni
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, Florida, USA
| | - Apurva R Patel
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, Florida, USA
| | - Rakesh Singh
- Translational Science Laboratory, Florida State University, College of Medicine, Tallahassee, Florida, 32306, USA
| | - Roger Mercer
- Translational Science Laboratory, Florida State University, College of Medicine, Tallahassee, Florida, 32306, USA
| | - Mandip Singh
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, Florida, USA.
| |
Collapse
|
8
|
Rida PCG, LiVecche D, Ogden A, Zhou J, Aneja R. The Noscapine Chronicle: A Pharmaco-Historic Biography of the Opiate Alkaloid Family and its Clinical Applications. Med Res Rev 2015; 35:1072-96. [PMID: 26179481 DOI: 10.1002/med.21357] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Given its manifold potential therapeutic applications and amenability to modification, noscapine is a veritable "Renaissance drug" worthy of commemoration. Perhaps the only facet of noscapine's profile more astounding than its versatility is its virtual lack of side effects and addictive properties, which distinguishes it from other denizens of Papaver somniferum. This review intimately chronicles the rich intellectual and pharmacological history behind the noscapine family of compounds, the length of whose arms was revealed over decades of patient scholarship and experimentation. We discuss the intriguing story of this family of nontoxic alkaloids, from noscapine's purification from opium at the turn of the 19th century in Paris to the recent torrent of rationally designed analogs with tremendous anticancer potential. In between, noscapine's unique pharmacology; impact on cellular signaling pathways, the mitotic spindle, and centrosome clustering; use as an antimalarial drug and cough suppressant; and exceptional potential as a treatment for polycystic ovarian syndrome, strokes, and diverse malignancies are catalogued. Seminal experiments involving some of its more promising analogs, such as amino-noscapine, 9-nitronoscapine, 9-bromonoscapine, and reduced bromonoscapine, are also detailed. Finally, the bright future of these oftentimes even more exceptional derivatives is described, rounding out a portrait of a truly remarkable family of compounds.
Collapse
Affiliation(s)
- Padmashree C G Rida
- Novazoi Theranostics, Inc, Plano, Texas, 75025, USA.,Department of Biology, Georgia State University, Atlanta, GA, 30303, USA
| | - Dillon LiVecche
- Department of Biology, Georgia State University, Atlanta, GA, 30303, USA
| | - Angela Ogden
- Department of Biology, Georgia State University, Atlanta, GA, 30303, USA
| | - Jun Zhou
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Ritu Aneja
- Department of Biology, Georgia State University, Atlanta, GA, 30303, USA
| |
Collapse
|