1
|
Ko T, Fumoto S, Kurosaki T, Nakashima M, Miyamoto H, Sasaki H, Nishida K. Interaction of γ-Polyglutamic Acid/Polyethyleneimine/Plasmid DNA Ternary Complexes with Serum Components Plays a Crucial Role in Transfection in Mice. Pharmaceutics 2024; 16:522. [PMID: 38675183 PMCID: PMC11053868 DOI: 10.3390/pharmaceutics16040522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 03/20/2024] [Accepted: 03/30/2024] [Indexed: 04/28/2024] Open
Abstract
Typical examples of non-viral vectors are binary complexes of plasmid DNA with cationic polymers such as polyethyleneimine (PEI). However, problems such as cytotoxicity and hemagglutination, owing to their positively charged surfaces, hinder their in vivo use. Coating binary complexes with anionic polymers, such as γ-polyglutamic acid (γ-PGA), can prevent cytotoxicity and hemagglutination. However, the role of interactions between these complexes and serum components in in vivo gene transfer remains unclear. In this study, we analyzed the contribution of serum components to in vivo gene transfer using PEI/plasmid DNA binary complexes and γ-PGA/PEI/plasmid DNA ternary complexes. In binary complexes, heat-labile components in the serum greatly contribute to the hepatic and splenic gene expression of the luciferase gene. In contrast, serum albumin and salts affected the hepatic and splenic gene expression in the ternary complexes. Changes in physicochemical characteristics, such as increased particle size and decreased absolute values of ζ-potential, might be involved in the enhanced gene expression. These findings would contribute to a better understanding of in vivo non-viral gene transfer using polymers, such as PEI and γ-PGA.
Collapse
Affiliation(s)
- Tomotaka Ko
- Graduate School of Biomedical Sciences, Nagasaki University, 1-7-1 Sakamoto, Nagasaki 852-8501, Japan
| | - Shintaro Fumoto
- Graduate School of Biomedical Sciences, Nagasaki University, 1-7-1 Sakamoto, Nagasaki 852-8501, Japan
| | - Tomoaki Kurosaki
- Graduate School of Biomedical Sciences, Nagasaki University, 1-7-1 Sakamoto, Nagasaki 852-8501, Japan
| | - Moe Nakashima
- Graduate School of Biomedical Sciences, Nagasaki University, 1-7-1 Sakamoto, Nagasaki 852-8501, Japan
| | - Hirotaka Miyamoto
- Graduate School of Biomedical Sciences, Nagasaki University, 1-7-1 Sakamoto, Nagasaki 852-8501, Japan
| | - Hitoshi Sasaki
- Institute of Tropical Medicine, Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
| | - Koyo Nishida
- Graduate School of Biomedical Sciences, Nagasaki University, 1-7-1 Sakamoto, Nagasaki 852-8501, Japan
| |
Collapse
|
2
|
Sasaki H. Development of Multi-functional Nanoparticles for Clinical Application to Gene and Nucleic Acid Medicines. Biol Pharm Bull 2021; 43:1147-1153. [PMID: 32741935 DOI: 10.1248/bpb.b20-00156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Gene and nucleic medicines have recently gained attention as novel drugs with the advancement of molecular biology and genetics; however, they have low bioavailability and low target delivery due to their low stability and poor membrane permeability. Therefore, the development of an effective drug delivery system (DDS) is necessary for the practical use of gene and nucleic acid medicines; however, despite considerable research, both safety and efficiency remain poor. Furthermore, the healthcare needs are not met by traditional DDS. Therefore, we developed an effective multi-functional DDS, which is constructed using materials that are safe for human consumption. This DDS involves several ternary complexes as novel gene delivery carriers constructed by coating the cationic complex of the gene and nucleic acid medicines as well as the biodegradable cationic polymer with a biocompatible anionic polymer. Early implementation of the ternary complex in clinical studies is expected due to their efficacy and safety. Furthermore, these complexes may be prepared using large-scale manufacturing. In addition, personalized DDS may be prepared according to the patient's disease stage, which is useful for advanced therapy.
Collapse
Affiliation(s)
- Hitoshi Sasaki
- Department of Hospital Pharmacy, Nagasaki University Hospital
| |
Collapse
|
3
|
Kodama Y, Tokunaga A, Hashizume J, Nakagawa H, Harasawa H, Kurosaki T, Nakamura T, Nishida K, Nakashima M, Hashida M, Kawakami S, Sasaki H. Evaluation of transgene expression characteristics and DNA vaccination against melanoma metastasis of an intravenously injected ternary complex with biodegradable dendrigraft poly-L-lysine in mice. Drug Deliv 2021; 28:542-549. [PMID: 33685317 PMCID: PMC7946064 DOI: 10.1080/10717544.2021.1895904] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
We developed a biocompatible splenic vector for a DNA vaccine against melanoma. The splenic vector is a ternary complex composed of plasmid DNA (pDNA), biodegradable dendrigraft poly-L-lysine (DGL), and γ-polyglutamic acid (γ-PGA), the selective uptake of which by the spleen has already been demonstrated. The ternary complex containing pDNA encoding luciferase (pCMV-Luc) exhibited stronger luciferase activity for RAW264.7 mouse macrophage-like cells than naked pCMV-Luc. Although the ternary complex exhibited strong luciferase activity in the spleen after its tail vein injection, luciferase activity in the liver and spleen was significantly decreased by a pretreatment with clodronate liposomes, which depleted macrophages in the liver and spleen. These results indicate that the ternary complex is mainly transfected in macrophages and is a suitable formulation for DNA vaccination. We applied the ternary complex to a pUb-M melanoma DNA vaccine. The ternary complex containing pUb-M suppressed the growth of melanoma and lung metastasis by B16-F10 mouse melanoma cells. We also examined the acute and liver toxicities of the pUb-M ternary complex at an excess pDNA dose in mice. All mice survived the injection of the excess amount of the ternary complex. Liver toxicity was negligible in mice injected with the excess amount of the ternary complex. In conclusion, we herein confirmed that the ternary complex was mainly transfected into macrophages in the spleen after its tail vein injection. We also showed the prevention of melanoma metastasis by the DNA vaccine and the safety of the ternary complex.
Collapse
Affiliation(s)
- Yukinobu Kodama
- Department of Hospital Pharmacy, Nagasaki University Hospital, Nagasaki, Japan
| | - Ayako Tokunaga
- Department of Hospital Pharmacy, Nagasaki University Hospital, Nagasaki, Japan
| | - Junya Hashizume
- Department of Hospital Pharmacy, Nagasaki University Hospital, Nagasaki, Japan
| | - Hiroo Nakagawa
- Department of Hospital Pharmacy, Nagasaki University Hospital, Nagasaki, Japan
| | - Hitomi Harasawa
- Department of Hospital Pharmacy, Nagasaki University Hospital, Nagasaki, Japan
| | - Tomoaki Kurosaki
- Department of Hospital Pharmacy, Nagasaki University Hospital, Nagasaki, Japan
| | - Tadahiro Nakamura
- Department of Hospital Pharmacy, Nagasaki University Hospital, Nagasaki, Japan.,Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Koyo Nishida
- Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Mikiro Nakashima
- Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Mitsuru Hashida
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Shigeru Kawakami
- Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Hitoshi Sasaki
- Department of Hospital Pharmacy, Nagasaki University Hospital, Nagasaki, Japan
| |
Collapse
|
4
|
Kodama Y, Hanamura H, Muro T, Nakagawa H, Kurosaki T, Nakamura T, Kitahara T, Kawakami S, Nakashima M, Sasaki H. Gene delivery system of pDNA using the blood glycoprotein fetuin. J Drug Target 2017; 26:604-609. [PMID: 29132248 DOI: 10.1080/1061186x.2017.1405425] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Fetuin is a biocompatible plasma protein and strongly enhances phagocytosis of bacteria, DNA and apoptotic cells by peripheral blood cells such as monocytes, macrophages and dendritic cells. We developed a novel gene delivery system: ternary complexes constructed with pDNA, polyethylenimine (PEI) and fetuin. Without covalent binding, fetuin was able to coat pDNA-PEI complexes, and stable anionic nanoparticles formed at a weight ratio greater than 30. Optimised pDNA-PEI-fetuin complexes significantly decreased the cytotoxicity of pDNA-PEI complexes in the melanoma cell line B16F10. Furthermore, the pDNA-PEI-fetuin complexes had higher transgene efficiency compared to that of commercial lipofectin previously reported in B16F10 cells despite an anionic surface. The pDNA-PEI-fetuin complexes did not agglutinate with erythrocytes. The pDNA-PEI-fetuin complexes had high gene expression in the spleen after intravenous administration in mice. Thus, the pDNA-PEI-fetuin complexes were a useful in vivo gene delivery system with tropism for the spleen.
Collapse
Affiliation(s)
- Yukinobu Kodama
- a Department of Hospital Pharmacy , Nagasaki University Hospital , Nagasaki , Japan.,b Department of Pharmacy Practice, Graduate School of Biomedical Sciences , Nagasaki University , Nagasaki , Japan
| | - Hiroki Hanamura
- b Department of Pharmacy Practice, Graduate School of Biomedical Sciences , Nagasaki University , Nagasaki , Japan
| | - Takahiro Muro
- a Department of Hospital Pharmacy , Nagasaki University Hospital , Nagasaki , Japan
| | - Hiroo Nakagawa
- a Department of Hospital Pharmacy , Nagasaki University Hospital , Nagasaki , Japan
| | - Tomoaki Kurosaki
- a Department of Hospital Pharmacy , Nagasaki University Hospital , Nagasaki , Japan
| | - Tadahiro Nakamura
- a Department of Hospital Pharmacy , Nagasaki University Hospital , Nagasaki , Japan
| | - Takashi Kitahara
- a Department of Hospital Pharmacy , Nagasaki University Hospital , Nagasaki , Japan
| | - Shigeru Kawakami
- c Department of Pharmaceutical Informatics, Graduate School of Biomedical Sciences , Nagasaki University , Nagasaki , Japan
| | - Mikiro Nakashima
- b Department of Pharmacy Practice, Graduate School of Biomedical Sciences , Nagasaki University , Nagasaki , Japan
| | - Hitoshi Sasaki
- a Department of Hospital Pharmacy , Nagasaki University Hospital , Nagasaki , Japan
| |
Collapse
|
5
|
Iwanaga M, Kodama Y, Muro T, Nakagawa H, Kurosaki T, Sato K, Nakamura T, Kitahara T, Sasaki H. Biocompatible complex coated with glycosaminoglycan for gene delivery. J Drug Target 2017; 25:370-378. [PMID: 28043182 DOI: 10.1080/1061186x.2016.1274996] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The purpose of this study was to develop a ternary complex of plasmid DNA (pDNA) electrostatically assembled with dendrigraft poly-l-lysine (DGL) and biodegradable glycosaminoglycan for effective and secure gene delivery. High gene expression of pDNA/DGL complex was confirmed with slight cytotoxicity and erythrocyte agglutination. Anionic ternary complexes of 55.4-223.8 nm were formed by the addition of a glycosaminoglycan such as chondroitin sulfate A (CS-A), chondroitin sulfate B (CS-B), chondroitin sulfate C (CS-C) or hyaluronic acid (HA). Using the cell line B16-F10, most of the ternary complexes showed only weak gene expression and little cytotoxicity, although the pDNA/DGL/CS-A complexes maintained a certain level of gene expression. In particular, the pDNA/DGL/CS-A8 complexes showed significantly higher gene expression than pDNA/DGL complexes in the presence of fetal bovine serum. Gene expression from the pDNA/DGL/CS-A8 complex was inhibited by a high concentration of CS-A and endocytosis inhibitors. After intravenous administration of the pDNA/DGL/CS-A8 complex and the pDNA/DGL complex into ddY mice, high gene expression was observed in the reticuloendothelial systems, the pDNA/DGL/CS-A complex is expected to be useful for gene therapy.
Collapse
Affiliation(s)
- Marie Iwanaga
- a Department of Hospital Pharmacy , Nagasaki University Hospital , Nagasaki , Japan.,b Department of Clinical Pharmacokinetics, Graduate School of Biomedical Sciences , Nagasaki University , Nagasaki , Japan
| | - Yukinobu Kodama
- a Department of Hospital Pharmacy , Nagasaki University Hospital , Nagasaki , Japan
| | - Takahiro Muro
- a Department of Hospital Pharmacy , Nagasaki University Hospital , Nagasaki , Japan
| | - Hiroo Nakagawa
- a Department of Hospital Pharmacy , Nagasaki University Hospital , Nagasaki , Japan
| | - Tomoaki Kurosaki
- a Department of Hospital Pharmacy , Nagasaki University Hospital , Nagasaki , Japan
| | - Kayoko Sato
- a Department of Hospital Pharmacy , Nagasaki University Hospital , Nagasaki , Japan
| | - Tadahiro Nakamura
- a Department of Hospital Pharmacy , Nagasaki University Hospital , Nagasaki , Japan
| | - Takashi Kitahara
- a Department of Hospital Pharmacy , Nagasaki University Hospital , Nagasaki , Japan
| | - Hitoshi Sasaki
- a Department of Hospital Pharmacy , Nagasaki University Hospital , Nagasaki , Japan.,b Department of Clinical Pharmacokinetics, Graduate School of Biomedical Sciences , Nagasaki University , Nagasaki , Japan
| |
Collapse
|
6
|
Kodama Y. Development of a Multi-functional Nano-device for Safe and Effective Gene Delivery to Target Organs. YAKUGAKU ZASSHI 2016; 136:1533-1539. [DOI: 10.1248/yakushi.16-00198] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Yukinobu Kodama
- Department of Pharmacy Practice, Graduate School of Biomedical Sciences, Nagasaki University
| |
Collapse
|