1
|
Belemnaba L, Nitiéma M, Ilboudo S, Ouédraogo GG, Ouédraogo N, Belemlilga MB, Compaoré S, Ouédraogo S, Ouédraogo S. Preclinical Evaluation of the Antihypertensive Effect of an Aqueous Extract of Anogeissus leiocarpa (DC) Guill et Perr. Bark of Trunk in L-NAME-Induced Hypertensive Rat. J Exp Pharmacol 2021; 13:739-754. [PMID: 34393522 PMCID: PMC8357407 DOI: 10.2147/jep.s319787] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 07/19/2021] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND The present study investigates the effect of an aqueous extract of Anogeissus leiocarpa (AEAL) on normotensive Wistar rats and its chronic antihypertensive effects in L-NAME-induced hypertensive rats by using a non-invasive tail-cuff model. METHODS The effects of AEAL (50mg/kg) and NaCl 0.9% on blood pressure were investigated by daily oral administration in normotensive Wistar rats over four weeks. L-NAME-induced hypertensive rats were produced by L-NAME (40mg/kg) daily oral administration for two weeks. For chronic antihypertensive effects, induced hypertensive rats have received L-NAME in combination with AEAL (10 or 50mg/kg/day) for two following weeks. RESULTS In normotensive rats, daily administration of AEAL (50mg/kg) has no significant effect on their blood pressure, which was similar to that of the control group. L-NAME's daily oral administration induces a progressive increase in systolic blood pressure (SBP) from 115.8 ± 7.9mmHg to 153.5 ± 4.6mmHg after two weeks, which was maintained to the end of the treatment. In L-NAME-induced hypertensive rats, AEAL (50mg/kg/day) significantly decreases the SPB from 160.0 ± 5.8 mmHg to 108.8 ± 2.7mmHg after only four days of administration. However, the lower dose of AEAL (10mg/kg) also normalized the SBP of L-NAME-induced hypertensive rats but only evident after seven days of administration. Moreover, AEAL does not effect on the serum biochemical parameters (ALAT, ASAT, CREAT, etc.) and any macroscopic adverse effect was detected on the sensible organs involved during hypertension. In the aorta rings from treated rats, AEAL (50mg/kg/day) alone or in combination with L-NAME has enhanced the vasodilation effect of acetylcholine. However, the vasodilation effect of AEAL alone or in association with L-NAME has enhanced the sodium nitroprusside effect in treated rat aorta rings after autopsy. CONCLUSION These findings suggest that AEAL affords significant antihypertensive effects against L-NAME-induced hypertensive rats without modification of serum parameters and deleterious effects.
Collapse
Affiliation(s)
- Lazare Belemnaba
- Institut de Recherche en Sciences de la Santé/Centre National de la Recherche Scientifique et Technologique (IRSS/CNRST), 03 BP 7047, Ouagadougou, 03, Burkina Faso
| | - Mathieu Nitiéma
- Institut de Recherche en Sciences de la Santé/Centre National de la Recherche Scientifique et Technologique (IRSS/CNRST), 03 BP 7047, Ouagadougou, 03, Burkina Faso
| | - Sylvain Ilboudo
- Institut de Recherche en Sciences de la Santé/Centre National de la Recherche Scientifique et Technologique (IRSS/CNRST), 03 BP 7047, Ouagadougou, 03, Burkina Faso
| | - Gueswindé Geoffroy Ouédraogo
- Institut de Recherche en Sciences de la Santé/Centre National de la Recherche Scientifique et Technologique (IRSS/CNRST), 03 BP 7047, Ouagadougou, 03, Burkina Faso
| | - Noufou Ouédraogo
- Institut de Recherche en Sciences de la Santé/Centre National de la Recherche Scientifique et Technologique (IRSS/CNRST), 03 BP 7047, Ouagadougou, 03, Burkina Faso
| | - Mohamed Bonewendé Belemlilga
- Institut de Recherche en Sciences de la Santé/Centre National de la Recherche Scientifique et Technologique (IRSS/CNRST), 03 BP 7047, Ouagadougou, 03, Burkina Faso
| | - Souleymane Compaoré
- Institut de Recherche en Sciences de la Santé/Centre National de la Recherche Scientifique et Technologique (IRSS/CNRST), 03 BP 7047, Ouagadougou, 03, Burkina Faso
- Université Joseph KI-ZERBO, 03 BP 7021, Ouagadougou, 03, Burkina Faso
| | - Salfo Ouédraogo
- Institut de Recherche en Sciences de la Santé/Centre National de la Recherche Scientifique et Technologique (IRSS/CNRST), 03 BP 7047, Ouagadougou, 03, Burkina Faso
- Université Joseph KI-ZERBO, 03 BP 7021, Ouagadougou, 03, Burkina Faso
| | - Sylvin Ouédraogo
- Institut de Recherche en Sciences de la Santé/Centre National de la Recherche Scientifique et Technologique (IRSS/CNRST), 03 BP 7047, Ouagadougou, 03, Burkina Faso
| |
Collapse
|
3
|
Daher I, Le Dieu-Lugon B, Dourmap N, Lecuyer M, Ramet L, Gomila C, Ausseil J, Marret S, Leroux P, Roy V, El Mestikawy S, Daumas S, Gonzalez B, Leroux-Nicollet I, Cleren C. Magnesium Sulfate Prevents Neurochemical and Long-Term Behavioral Consequences of Neonatal Excitotoxic Lesions: Comparison Between Male and Female Mice. J Neuropathol Exp Neurol 2017; 76:883-897. [PMID: 28922852 DOI: 10.1093/jnen/nlx073] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Magnesium sulfate (MgSO4) administration to mothers at risk of preterm delivery is proposed as a neuroprotective strategy against neurological alterations such as cerebral palsy in newborns. However, long-term beneficial or adverse effects of MgSO4 and sex-specific sensitivity remain to be investigated. We conducted behavioral and neurochemical studies of MgSO4 effects in males and females, from the perinatal period to adolescence in a mouse model of cerebral neonatal lesion. The lesion was produced in 5-day-old (P5) pups by ibotenate intracortical injection. MgSO4 (600 mg/kg, i.p.) prior to ibotenate prevented lesion-induced sensorimotor alterations in both sexes at P6 and P7. The lesion increased glutamate level at P10 in the prefrontal cortex, which was prevented by MgSO4 in males. In neonatally lesioned adolescent mice, males exhibited more sequelae than females in motor and cognitive functions. In the perirhinal cortex of adolescent mice, the neonatal lesion induced an increase in vesicular glutamate transporter 1 density in males only, which was negatively correlated with cognitive scores. Long-term sequelae were prevented by neonatal MgSO4 administration. MgSO4 never induced short- or long-term deleterious effect on its own. These results also strongly suggest that sex-specific neuroprotection should be foreseen in preterm infants.
Collapse
Affiliation(s)
- Ismaël Daher
- Department of Neonatal Pediatrics and Intensive Care - Neuropediatrics, Normandie Univ, UNIROUEN, INSERM U1245, and Rouen University Hospital, Rouen, France; Normal and Pathological Glutamatergic Systems, Neuroscience Paris Seine, IBPS, INSERM U1130, CNRS UMR 8246 Université Pierre et Marie Curie, Paris, France; INSERM U1088, Laboratoire de Biochimie, Centre de Biologie Humaine, Amiens-Picardie University Hospital, Amiens, France; Normandie Univ, UNIROUEN, PSY-NCA, Rouen, France
| | - Bérénice Le Dieu-Lugon
- Department of Neonatal Pediatrics and Intensive Care - Neuropediatrics, Normandie Univ, UNIROUEN, INSERM U1245, and Rouen University Hospital, Rouen, France; Normal and Pathological Glutamatergic Systems, Neuroscience Paris Seine, IBPS, INSERM U1130, CNRS UMR 8246 Université Pierre et Marie Curie, Paris, France; INSERM U1088, Laboratoire de Biochimie, Centre de Biologie Humaine, Amiens-Picardie University Hospital, Amiens, France; Normandie Univ, UNIROUEN, PSY-NCA, Rouen, France
| | - Nathalie Dourmap
- Department of Neonatal Pediatrics and Intensive Care - Neuropediatrics, Normandie Univ, UNIROUEN, INSERM U1245, and Rouen University Hospital, Rouen, France; Normal and Pathological Glutamatergic Systems, Neuroscience Paris Seine, IBPS, INSERM U1130, CNRS UMR 8246 Université Pierre et Marie Curie, Paris, France; INSERM U1088, Laboratoire de Biochimie, Centre de Biologie Humaine, Amiens-Picardie University Hospital, Amiens, France; Normandie Univ, UNIROUEN, PSY-NCA, Rouen, France
| | - Matthieu Lecuyer
- Department of Neonatal Pediatrics and Intensive Care - Neuropediatrics, Normandie Univ, UNIROUEN, INSERM U1245, and Rouen University Hospital, Rouen, France; Normal and Pathological Glutamatergic Systems, Neuroscience Paris Seine, IBPS, INSERM U1130, CNRS UMR 8246 Université Pierre et Marie Curie, Paris, France; INSERM U1088, Laboratoire de Biochimie, Centre de Biologie Humaine, Amiens-Picardie University Hospital, Amiens, France; Normandie Univ, UNIROUEN, PSY-NCA, Rouen, France
| | - Lauriane Ramet
- Department of Neonatal Pediatrics and Intensive Care - Neuropediatrics, Normandie Univ, UNIROUEN, INSERM U1245, and Rouen University Hospital, Rouen, France; Normal and Pathological Glutamatergic Systems, Neuroscience Paris Seine, IBPS, INSERM U1130, CNRS UMR 8246 Université Pierre et Marie Curie, Paris, France; INSERM U1088, Laboratoire de Biochimie, Centre de Biologie Humaine, Amiens-Picardie University Hospital, Amiens, France; Normandie Univ, UNIROUEN, PSY-NCA, Rouen, France
| | - Cathy Gomila
- Department of Neonatal Pediatrics and Intensive Care - Neuropediatrics, Normandie Univ, UNIROUEN, INSERM U1245, and Rouen University Hospital, Rouen, France; Normal and Pathological Glutamatergic Systems, Neuroscience Paris Seine, IBPS, INSERM U1130, CNRS UMR 8246 Université Pierre et Marie Curie, Paris, France; INSERM U1088, Laboratoire de Biochimie, Centre de Biologie Humaine, Amiens-Picardie University Hospital, Amiens, France; Normandie Univ, UNIROUEN, PSY-NCA, Rouen, France
| | - Jérôme Ausseil
- Department of Neonatal Pediatrics and Intensive Care - Neuropediatrics, Normandie Univ, UNIROUEN, INSERM U1245, and Rouen University Hospital, Rouen, France; Normal and Pathological Glutamatergic Systems, Neuroscience Paris Seine, IBPS, INSERM U1130, CNRS UMR 8246 Université Pierre et Marie Curie, Paris, France; INSERM U1088, Laboratoire de Biochimie, Centre de Biologie Humaine, Amiens-Picardie University Hospital, Amiens, France; Normandie Univ, UNIROUEN, PSY-NCA, Rouen, France
| | - Stéphane Marret
- Department of Neonatal Pediatrics and Intensive Care - Neuropediatrics, Normandie Univ, UNIROUEN, INSERM U1245, and Rouen University Hospital, Rouen, France; Normal and Pathological Glutamatergic Systems, Neuroscience Paris Seine, IBPS, INSERM U1130, CNRS UMR 8246 Université Pierre et Marie Curie, Paris, France; INSERM U1088, Laboratoire de Biochimie, Centre de Biologie Humaine, Amiens-Picardie University Hospital, Amiens, France; Normandie Univ, UNIROUEN, PSY-NCA, Rouen, France
| | - Philippe Leroux
- Department of Neonatal Pediatrics and Intensive Care - Neuropediatrics, Normandie Univ, UNIROUEN, INSERM U1245, and Rouen University Hospital, Rouen, France; Normal and Pathological Glutamatergic Systems, Neuroscience Paris Seine, IBPS, INSERM U1130, CNRS UMR 8246 Université Pierre et Marie Curie, Paris, France; INSERM U1088, Laboratoire de Biochimie, Centre de Biologie Humaine, Amiens-Picardie University Hospital, Amiens, France; Normandie Univ, UNIROUEN, PSY-NCA, Rouen, France
| | - Vincent Roy
- Department of Neonatal Pediatrics and Intensive Care - Neuropediatrics, Normandie Univ, UNIROUEN, INSERM U1245, and Rouen University Hospital, Rouen, France; Normal and Pathological Glutamatergic Systems, Neuroscience Paris Seine, IBPS, INSERM U1130, CNRS UMR 8246 Université Pierre et Marie Curie, Paris, France; INSERM U1088, Laboratoire de Biochimie, Centre de Biologie Humaine, Amiens-Picardie University Hospital, Amiens, France; Normandie Univ, UNIROUEN, PSY-NCA, Rouen, France
| | - Salah El Mestikawy
- Department of Neonatal Pediatrics and Intensive Care - Neuropediatrics, Normandie Univ, UNIROUEN, INSERM U1245, and Rouen University Hospital, Rouen, France; Normal and Pathological Glutamatergic Systems, Neuroscience Paris Seine, IBPS, INSERM U1130, CNRS UMR 8246 Université Pierre et Marie Curie, Paris, France; INSERM U1088, Laboratoire de Biochimie, Centre de Biologie Humaine, Amiens-Picardie University Hospital, Amiens, France; Normandie Univ, UNIROUEN, PSY-NCA, Rouen, France
| | - Stéphanie Daumas
- Department of Neonatal Pediatrics and Intensive Care - Neuropediatrics, Normandie Univ, UNIROUEN, INSERM U1245, and Rouen University Hospital, Rouen, France; Normal and Pathological Glutamatergic Systems, Neuroscience Paris Seine, IBPS, INSERM U1130, CNRS UMR 8246 Université Pierre et Marie Curie, Paris, France; INSERM U1088, Laboratoire de Biochimie, Centre de Biologie Humaine, Amiens-Picardie University Hospital, Amiens, France; Normandie Univ, UNIROUEN, PSY-NCA, Rouen, France
| | - Bruno Gonzalez
- Department of Neonatal Pediatrics and Intensive Care - Neuropediatrics, Normandie Univ, UNIROUEN, INSERM U1245, and Rouen University Hospital, Rouen, France; Normal and Pathological Glutamatergic Systems, Neuroscience Paris Seine, IBPS, INSERM U1130, CNRS UMR 8246 Université Pierre et Marie Curie, Paris, France; INSERM U1088, Laboratoire de Biochimie, Centre de Biologie Humaine, Amiens-Picardie University Hospital, Amiens, France; Normandie Univ, UNIROUEN, PSY-NCA, Rouen, France
| | - Isabelle Leroux-Nicollet
- Department of Neonatal Pediatrics and Intensive Care - Neuropediatrics, Normandie Univ, UNIROUEN, INSERM U1245, and Rouen University Hospital, Rouen, France; Normal and Pathological Glutamatergic Systems, Neuroscience Paris Seine, IBPS, INSERM U1130, CNRS UMR 8246 Université Pierre et Marie Curie, Paris, France; INSERM U1088, Laboratoire de Biochimie, Centre de Biologie Humaine, Amiens-Picardie University Hospital, Amiens, France; Normandie Univ, UNIROUEN, PSY-NCA, Rouen, France
| | - Carine Cleren
- Department of Neonatal Pediatrics and Intensive Care - Neuropediatrics, Normandie Univ, UNIROUEN, INSERM U1245, and Rouen University Hospital, Rouen, France; Normal and Pathological Glutamatergic Systems, Neuroscience Paris Seine, IBPS, INSERM U1130, CNRS UMR 8246 Université Pierre et Marie Curie, Paris, France; INSERM U1088, Laboratoire de Biochimie, Centre de Biologie Humaine, Amiens-Picardie University Hospital, Amiens, France; Normandie Univ, UNIROUEN, PSY-NCA, Rouen, France
| |
Collapse
|
4
|
Antunes TT, Callera GE, He Y, Yogi A, Ryazanov AG, Ryazanova LV, Zhai A, Stewart DJ, Shrier A, Touyz RM. Transient Receptor Potential Melastatin 7 Cation Channel Kinase: New Player in Angiotensin II-Induced Hypertension. Hypertension 2016; 67:763-73. [PMID: 26928801 DOI: 10.1161/hypertensionaha.115.07021] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 01/13/2016] [Indexed: 12/30/2022]
Abstract
Transient receptor potential melastatin 7 (TRPM7) is a bifunctional protein comprising a magnesium (Mg(2+))/cation channel and a kinase domain. We previously demonstrated that vasoactive agents regulate vascular TRPM7. Whether TRPM7 plays a role in the pathophysiology of hypertension and associated cardiovascular dysfunction is unknown. We studied TRPM7 kinase-deficient mice (TRPM7Δkinase; heterozygous for TRPM7 kinase) and wild-type (WT) mice infused with angiotensin II (Ang II; 400 ng/kg per minute, 4 weeks). TRPM7 kinase expression was lower in heart and aorta from TRPM7Δkinase versus WT mice, effects that were further reduced by Ang II infusion. Plasma Mg(2+) was lower in TRPM7Δkinase versus WT mice in basal and stimulated conditions. Ang II increased blood pressure in both strains with exaggerated responses in TRPM7Δkinase versus WT groups (P<0.05). Acetylcholine-induced vasorelaxation was reduced in Ang II-infused TRPM7Δkinase mice, an effect associated with Akt and endothelial nitric oxide synthase downregulation. Vascular cell adhesion molecule-1 expression was increased in Ang II-infused TRPM7 kinase-deficient mice. TRPM7 kinase targets, calpain, and annexin-1, were activated by Ang II in WT but not in TRPM7Δkinase mice. Echocardiographic and histopathologic analysis demonstrated cardiac hypertrophy and left ventricular dysfunction in Ang II-treated groups. In TRPM7 kinase-deficient mice, Ang II-induced cardiac functional and structural effects were amplified compared with WT counterparts. Our data demonstrate that in TRPM7Δkinase mice, Ang II-induced hypertension is exaggerated, cardiac remodeling and left ventricular dysfunction are amplified, and endothelial function is impaired. These processes are associated with hypomagnesemia, blunted TRPM7 kinase expression/signaling, endothelial nitric oxide synthase downregulation, and proinflammatory vascular responses. Our findings identify TRPM7 kinase as a novel player in Ang II-induced hypertension and associated vascular and target organ damage.
Collapse
Affiliation(s)
- Tayze T Antunes
- From the Kidney Research Centre (T.T.A., G.E.C., Y.H., A.Y., R.M.T.) and Sprott Centre for Stem Cell Research and Regenerative Medicine Program (A.Z., D.J.S.), Ottawa Hospital Research Institute, University of Ottawa, Ottawa, Canada; Department of Pharmacology, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ (A.G.R., L.V.R.); Department of Physiology and Groupe de Recherche Axé sur la Structure des Protéines, McGill University, Montreal, QC, Canada (A.S.); and BHF Glasgow Cardiovascular Research Centre, Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom (R.M.T.)
| | - Glaucia E Callera
- From the Kidney Research Centre (T.T.A., G.E.C., Y.H., A.Y., R.M.T.) and Sprott Centre for Stem Cell Research and Regenerative Medicine Program (A.Z., D.J.S.), Ottawa Hospital Research Institute, University of Ottawa, Ottawa, Canada; Department of Pharmacology, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ (A.G.R., L.V.R.); Department of Physiology and Groupe de Recherche Axé sur la Structure des Protéines, McGill University, Montreal, QC, Canada (A.S.); and BHF Glasgow Cardiovascular Research Centre, Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom (R.M.T.)
| | - Ying He
- From the Kidney Research Centre (T.T.A., G.E.C., Y.H., A.Y., R.M.T.) and Sprott Centre for Stem Cell Research and Regenerative Medicine Program (A.Z., D.J.S.), Ottawa Hospital Research Institute, University of Ottawa, Ottawa, Canada; Department of Pharmacology, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ (A.G.R., L.V.R.); Department of Physiology and Groupe de Recherche Axé sur la Structure des Protéines, McGill University, Montreal, QC, Canada (A.S.); and BHF Glasgow Cardiovascular Research Centre, Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom (R.M.T.)
| | - Alvaro Yogi
- From the Kidney Research Centre (T.T.A., G.E.C., Y.H., A.Y., R.M.T.) and Sprott Centre for Stem Cell Research and Regenerative Medicine Program (A.Z., D.J.S.), Ottawa Hospital Research Institute, University of Ottawa, Ottawa, Canada; Department of Pharmacology, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ (A.G.R., L.V.R.); Department of Physiology and Groupe de Recherche Axé sur la Structure des Protéines, McGill University, Montreal, QC, Canada (A.S.); and BHF Glasgow Cardiovascular Research Centre, Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom (R.M.T.)
| | - Alexey G Ryazanov
- From the Kidney Research Centre (T.T.A., G.E.C., Y.H., A.Y., R.M.T.) and Sprott Centre for Stem Cell Research and Regenerative Medicine Program (A.Z., D.J.S.), Ottawa Hospital Research Institute, University of Ottawa, Ottawa, Canada; Department of Pharmacology, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ (A.G.R., L.V.R.); Department of Physiology and Groupe de Recherche Axé sur la Structure des Protéines, McGill University, Montreal, QC, Canada (A.S.); and BHF Glasgow Cardiovascular Research Centre, Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom (R.M.T.)
| | - Lillia V Ryazanova
- From the Kidney Research Centre (T.T.A., G.E.C., Y.H., A.Y., R.M.T.) and Sprott Centre for Stem Cell Research and Regenerative Medicine Program (A.Z., D.J.S.), Ottawa Hospital Research Institute, University of Ottawa, Ottawa, Canada; Department of Pharmacology, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ (A.G.R., L.V.R.); Department of Physiology and Groupe de Recherche Axé sur la Structure des Protéines, McGill University, Montreal, QC, Canada (A.S.); and BHF Glasgow Cardiovascular Research Centre, Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom (R.M.T.)
| | - Alexander Zhai
- From the Kidney Research Centre (T.T.A., G.E.C., Y.H., A.Y., R.M.T.) and Sprott Centre for Stem Cell Research and Regenerative Medicine Program (A.Z., D.J.S.), Ottawa Hospital Research Institute, University of Ottawa, Ottawa, Canada; Department of Pharmacology, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ (A.G.R., L.V.R.); Department of Physiology and Groupe de Recherche Axé sur la Structure des Protéines, McGill University, Montreal, QC, Canada (A.S.); and BHF Glasgow Cardiovascular Research Centre, Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom (R.M.T.)
| | - Duncan J Stewart
- From the Kidney Research Centre (T.T.A., G.E.C., Y.H., A.Y., R.M.T.) and Sprott Centre for Stem Cell Research and Regenerative Medicine Program (A.Z., D.J.S.), Ottawa Hospital Research Institute, University of Ottawa, Ottawa, Canada; Department of Pharmacology, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ (A.G.R., L.V.R.); Department of Physiology and Groupe de Recherche Axé sur la Structure des Protéines, McGill University, Montreal, QC, Canada (A.S.); and BHF Glasgow Cardiovascular Research Centre, Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom (R.M.T.)
| | - Alvin Shrier
- From the Kidney Research Centre (T.T.A., G.E.C., Y.H., A.Y., R.M.T.) and Sprott Centre for Stem Cell Research and Regenerative Medicine Program (A.Z., D.J.S.), Ottawa Hospital Research Institute, University of Ottawa, Ottawa, Canada; Department of Pharmacology, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ (A.G.R., L.V.R.); Department of Physiology and Groupe de Recherche Axé sur la Structure des Protéines, McGill University, Montreal, QC, Canada (A.S.); and BHF Glasgow Cardiovascular Research Centre, Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom (R.M.T.)
| | - Rhian M Touyz
- From the Kidney Research Centre (T.T.A., G.E.C., Y.H., A.Y., R.M.T.) and Sprott Centre for Stem Cell Research and Regenerative Medicine Program (A.Z., D.J.S.), Ottawa Hospital Research Institute, University of Ottawa, Ottawa, Canada; Department of Pharmacology, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ (A.G.R., L.V.R.); Department of Physiology and Groupe de Recherche Axé sur la Structure des Protéines, McGill University, Montreal, QC, Canada (A.S.); and BHF Glasgow Cardiovascular Research Centre, Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom (R.M.T.).
| |
Collapse
|