1
|
Shichinohe M, Ohkawa S, Hirose Y, Eki T. Sensing chemical-induced genotoxicity and oxidative stress via yeast-based reporter assays using NanoLuc luciferase. PLoS One 2023; 18:e0294571. [PMID: 37992069 PMCID: PMC10664910 DOI: 10.1371/journal.pone.0294571] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 11/04/2023] [Indexed: 11/24/2023] Open
Abstract
Mutagens and oxidative agents damage biomolecules, such as DNA; therefore, detecting genotoxic and oxidative chemicals is crucial for maintaining human health. To address this, we have developed several types of yeast-based reporter assays designed to detect DNA damage and oxidative stress. This study aimed to develop a novel yeast-based assay using a codon-optimized stable or unstable NanoLuc luciferase (yNluc and yNluCP) gene linked to a DNA damage- or oxidative stress-responsive promoter, enabling convenient sensing genotoxicity or oxidative stress, respectively. End-point luciferase assays using yeasts with a chromosomally integrated RNR3 promoter (PRNR3)-driven yNluc gene exhibited high levels of chemiluminescence via NanoLuc luciferase and higher fold induction by hydroxyurea than a multi-copy plasmid-based assay. Additionally, the integrated reporter system detected genotoxicity caused by four different types of chemicals. Oxidants (hydrogen peroxide, tert-butyl hydroperoxide, and menadione) were successfully detected through transient expressions of luciferase activity in real-time luciferase assay using yeasts with a chromosomally integrated TRX2 promoter (PTRX2)-linked yNlucCP gene. However, the luciferase activity was gradually induced in yeasts with a multi-copy reporter plasmid, and their expression profiles were notably distinct from those observed in chromosomally integrated yeasts. The responses of yNlucCP gene against three oxidative chemicals, but not diamide and zinc oxide suspension, were observed using chromosomally integrated reporter yeasts. Given that yeast cells with chromosomally integrated PRNR3-linked yNluc and PTRX2-linked yNlucCP genes express strong chemiluminescence signals and are easily maintained and handled without restrictive nutrient medium, these yeast strains with NanoLuc reporters may prove useful for screening potential genotoxic and oxidative chemicals.
Collapse
Affiliation(s)
| | - Shun Ohkawa
- Molecular Genetics Laboratory, Toyohashi, Japan
| | - Yuu Hirose
- Department of Applied Chemistry and Life Science, Laboratory of Genomics and Photobiology, Toyohashi University of Technology, Toyohashi, Aichi, Japan
| | | |
Collapse
|
2
|
Xue SJ, Zhang JR, Zhang RX, Qin Y, Yang XB, Jin GJ, Tao YS. Oxidation-reduction potential affects medium-chain fatty acid ethyl ester production during wine alcohol fermentation. Food Res Int 2022; 157:111369. [DOI: 10.1016/j.foodres.2022.111369] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 05/04/2022] [Accepted: 05/10/2022] [Indexed: 12/24/2022]
|
3
|
Involvement of Gtr1p in the oxidative stress response in yeast Saccharomyces cerevisiae. Biochem Biophys Res Commun 2022; 598:107-112. [DOI: 10.1016/j.bbrc.2022.02.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 02/05/2022] [Indexed: 11/17/2022]
|
4
|
Zhang Z, Zhang W, Bi Y, Han Y, Zong Y, Prusky D. Cuminal Inhibits Trichothecium roseum Growth by Triggering Cell Starvation: Transcriptome and Proteome Analysis. Microorganisms 2020; 8:E256. [PMID: 32075192 PMCID: PMC7074788 DOI: 10.3390/microorganisms8020256] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 02/06/2020] [Accepted: 02/11/2020] [Indexed: 12/20/2022] Open
Abstract
Trichothecium roseum is a harmful postharvest fungus causing serious damage, together with the secretion of insidious mycotoxins, on apples, melons, and other important fruits. Cuminal, a predominant component of Cuminum cyminum essential oil has proven to successfully inhibit the growth of T. roseum in vitro and in vivo. Electron microscopic observations revealed cuminal exposure impaired the fungal morphology and ultrastructure, particularly the plasmalemma. Transcriptome and proteome analysis was used to investigate the responses of T. roseum to exposure of cuminal. In total, 2825 differentially expressed transcripts (1516 up and 1309 down) and 225 differentially expressed proteins (90 up and 135 down) were determined. Overall, notable parts of these differentially expressed genes functionally belong to subcellular localities of the membrane system and cytosol, along with ribosomes, mitochondria and peroxisomes. According to the localization analysis and the biological annotation of these genes, carbohydrate and lipids metabolism, redox homeostasis, and asexual reproduction were among the most enriched gene ontology (GO) terms. Biological pathway enrichment analysis showed that lipids and amino acid degradation, ATP-binding cassette transporters, membrane reconstitution, mRNA surveillance pathway and peroxisome were elevated, whereas secondary metabolite biosynthesis, cell cycle, and glycolysis/gluconeogenesis were down regulated. Further integrated omics analysis showed that cuminal exposure first impaired the polarity of the cytoplasmic membrane and then triggered the reconstitution and dysfunction of fungal plasmalemma, resulting in handicapped nutrient procurement of the cells. Consequently, fungal cells showed starvation stress with limited carbohydrate metabolism, resulting a metabolic shift to catabolism of the cell's own components in response to the stress. Additionally, these predicaments brought about oxidative stress, which, in collaboration with the starvation, damaged certain critical organelles such as mitochondria. Such degeneration, accompanied by energy deficiency, suppressed the biosynthesis of essential proteins and inhibited fungal growth.
Collapse
Affiliation(s)
- Zhong Zhang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Wenting Zhang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Yang Bi
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Ye Han
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Yuanyuan Zong
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Dov Prusky
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
- Department of Postharvest Science of Fresh Produce, Agricultural Research Organization, The 12 Volcani Center, Beit Dagan 50200, Israel
| |
Collapse
|
5
|
Conrad M, Kagan VE, Bayir H, Pagnussat GC, Head B, Traber MG, Stockwell BR. Regulation of lipid peroxidation and ferroptosis in diverse species. Genes Dev 2018; 32:602-619. [PMID: 29802123 PMCID: PMC6004068 DOI: 10.1101/gad.314674.118] [Citation(s) in RCA: 359] [Impact Index Per Article: 51.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
This review by Conrad et al. reviews the functions and regulation of lipid peroxidation, ferroptosis, and the antioxidant network in diverse species, including humans, other mammals and vertebrates, plants, invertebrates, yeast, bacteria, and archaea, and discusses the potential evolutionary roles of lipid peroxidation and ferroptosis. Lipid peroxidation is the process by which oxygen combines with lipids to generate lipid hydroperoxides via intermediate formation of peroxyl radicals. Vitamin E and coenzyme Q10 react with peroxyl radicals to yield peroxides, and then these oxidized lipid species can be detoxified by glutathione and glutathione peroxidase 4 (GPX4) and other components of the cellular antioxidant defense network. Ferroptosis is a form of regulated nonapoptotic cell death involving overwhelming iron-dependent lipid peroxidation. Here, we review the functions and regulation of lipid peroxidation, ferroptosis, and the antioxidant network in diverse species, including humans, other mammals and vertebrates, plants, invertebrates, yeast, bacteria, and archaea. We also discuss the potential evolutionary roles of lipid peroxidation and ferroptosis.
Collapse
Affiliation(s)
- Marcus Conrad
- Institute of Developmental Genetics, Helmholtz Zentrum München, Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), 85764 Neuherberg, Germany
| | - Valerian E Kagan
- Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA.,Department of Environmental Health, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA.,Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA.,Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA.,Laboratory of Navigational Lipidomics of Cell Death and Regeneration, I.M. Sechenov First Moscow State Medical University, Moscow 119992, Russia
| | - Hülya Bayir
- Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA.,Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Gabriela C Pagnussat
- Instituto de Investigaciones Biológicas, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Mar del Plata, 7600 Mar del Plata, Argentina
| | - Brian Head
- Linus Pauling Institute, Oregon State University, Corvallis, Oregon 97330.,Molecular and Cell Biology Graduate Program, Oregon State University, Corvallis, Oregon 97330, USA
| | - Maret G Traber
- Linus Pauling Institute, Oregon State University, Corvallis, Oregon 97330.,College of Public Health and Human Sciences, Oregon State University, Corvallis, Oregon 97330, USA
| | - Brent R Stockwell
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA.,Department of Chemistry, Columbia University, New York, New York 10027, USA
| |
Collapse
|
6
|
O'Doherty PJ, Khan A, Johnson AJ, Rogers PJ, Bailey TD, Wu MJ. Proteomic response to linoleic acid hydroperoxide in Saccharomyces cerevisiae. FEMS Yeast Res 2017; 17:3752509. [PMID: 28449083 DOI: 10.1093/femsyr/fox022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 04/20/2017] [Indexed: 12/12/2022] Open
Abstract
Yeast AP-1 transcription factor (Yap1p) and the enigmatic oxidoreductases Oye2p and Oye3p are involved in counteracting lipid oxidants and their unsaturated breakdown products. In order to uncover the response to linoleic acid hydroperoxide (LoaOOH) and the roles of Oye2p, Oye3p and Yap1p, we carried out proteomic analysis of the homozygous deletion mutants oye3Δ, oye2Δ and yap1Δ alongside the diploid parent strain BY4743. The findings demonstrate that deletion of YAP1 narrowed the response to LoaOOH, as the number of proteins differentially expressed in yap1Δ was 70% of that observed in BY4743. The role of Yap1p in regulating the major yeast peroxiredoxin Tsa1p was demonstrated by the decreased expression of Tsa1p in yap1Δ. The levels of Ahp1p and Hsp31p, previously shown to be regulated by Yap1p, were increased in LoaOOH-treated yap1Δ, indicating their expression is also regulated by another transcription factor(s). Relative to BY4743, protein expression differed in oye3Δ and oye2Δ under LoaOOH, underscored by superoxide dismutase (Sod1p), multiple heat shock proteins (Hsp60p, Ssa1p, and Sse1p), the flavodoxin-like protein Pst2p and the actin stabiliser tropomyosin (Tpm1p). Proteins associated with glycolysis were increased in all strains following treatment with LoaOOH. Together, the dataset reveals, for the first time, the yeast proteomic response to LoaOOH, highlighting the significance of carbohydrate metabolism, as well as distinction between the roles of Oye3p, Oye2p and Yap1p.
Collapse
Affiliation(s)
- Patrick J O'Doherty
- School of Science and Health, Western Sydney University, Locked Bag 1797, Penrith NSW 2751, Australia
| | - Alamgir Khan
- Australian Proteome Analysis Facility (APAF), Macquarie University, Sydney NSW 2109 Australia
| | - Adam J Johnson
- School of Science and Health, Western Sydney University, Locked Bag 1797, Penrith NSW 2751, Australia
| | - Peter J Rogers
- School of Biomolecular and Physical Sciences, Griffith University, Nathan QLD 4111, Australia
| | - Trevor D Bailey
- School of Science and Health, Western Sydney University, Locked Bag 1797, Penrith NSW 2751, Australia
| | - Ming J Wu
- School of Science and Health, Western Sydney University, Locked Bag 1797, Penrith NSW 2751, Australia
| |
Collapse
|
7
|
Johnson AJ, Veljanoski F, O'Doherty PJ, Zaman MS, Petersingham G, Bailey TD, Münch G, Kersaitis C, Wu MJ. Molecular insight into arsenic toxicity via the genome-wide deletion mutant screening of Saccharomyces cerevisiae. Metallomics 2016; 8:228-35. [PMID: 26688044 DOI: 10.1039/c5mt00261c] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Arsenic is omnipresent in soil, air, food and water. Chronic exposure to arsenic is a serious problem to human health. In-depth understanding of this metalloid's toxicity is a fundamental step towards development of arsenic-free foods and measures for bioremediation. By screening the complete set of gene deletion mutants (4873) of Saccharomyces cerevisiae, this study uncovered 75 sensitive and 39 resistant mutants against arsenite [As(III)]. Functional analysis of the corresponding genes revealed the molecular details for its uptake, toxicity and detoxification. On the basis of the hypersensitivity of yap3Δ, the transcription factor, Yap3p, is for the first time linked to the cell's detoxification against As(III). Apart from confirming the previously described role of the mitogen-activated protein kinase (MAPK) Hog1 pathway in combating arsenic toxicity, the results show that the regulatory subunits (Ckb1p and Ckb2p) of protein kinase CK2 are also involved in the process, suggesting possible crosstalk between the two key protein kinases. The sensitivity to As(III) conferred by deletion of the genes involved in protein degradation and chromatin remodelling demonstrates protein damage is the key mode of toxicity for the metalloid. Furthermore, the resistant phenotype of fps1Δ, snf3Δ and pho81Δ against As(III) links arsenic uptake with the corresponding plasma membrane-bound transporters-aquaglyceroporin (Fps1p), hexose (Snf3p) and phosphate transporters. The molecular details obtained in this screen for As(III) uptake, detoxification and toxicity provide the basis for future investigations into arsenic-related problems in the environment, agriculture and human health.
Collapse
Affiliation(s)
- Adam J Johnson
- School of Science and Health, Western Sydney University, Locked Bag 1797, Penrith, NSW 2751, Australia.
| | - Filip Veljanoski
- School of Science and Health, Western Sydney University, Locked Bag 1797, Penrith, NSW 2751, Australia.
| | - Patrick J O'Doherty
- School of Science and Health, Western Sydney University, Locked Bag 1797, Penrith, NSW 2751, Australia.
| | - Mohammad S Zaman
- School of Science and Health, Western Sydney University, Locked Bag 1797, Penrith, NSW 2751, Australia.
| | - Gayani Petersingham
- School of Science and Health, Western Sydney University, Locked Bag 1797, Penrith, NSW 2751, Australia.
| | - Trevor D Bailey
- School of Science and Health, Western Sydney University, Locked Bag 1797, Penrith, NSW 2751, Australia.
| | - Gerald Münch
- Department of Pharmacology, School of Medicine and Molecular Medicine Research Group, Western Sydney University, Locked Bag 1797, Penrith, NSW 2751, Australia
| | - Cindy Kersaitis
- School of Science and Health, Western Sydney University, Locked Bag 1797, Penrith, NSW 2751, Australia.
| | - Ming J Wu
- School of Science and Health, Western Sydney University, Locked Bag 1797, Penrith, NSW 2751, Australia.
| |
Collapse
|
8
|
Suzuki H, Sakabe T, Hirose Y, Eki T. Development and evaluation of yeast-based GFP and luciferase reporter assays for chemical-induced genotoxicity and oxidative damage. Appl Microbiol Biotechnol 2016; 101:659-671. [PMID: 27766356 DOI: 10.1007/s00253-016-7911-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 09/21/2016] [Accepted: 09/28/2016] [Indexed: 11/30/2022]
Abstract
We aimed to develop the bioassays for genotixicity and/or oxidative damage using the recombinant yeast. A genotoxicity assay was developed using recombinant Saccharomyces cerevisiae strain BY4741 with a green fluorescent protein (GFP) reporter plasmid, driven by the DNA damage-responsive RNR3 promoter. Enhanced fluorescence induction was observed in DNA repair-deficient strains treated with methyl methanesulfonate, but not with hydrogen peroxide. A GFP reporter yeast strain driven by the oxidative stress-responsive TRX2 promoter was newly developed to assess oxidative damage, but fluorescence was poorly induced by oxidants. In place of GFP, yeast strains with luciferase gene reporter plasmids (luc2 and luc2CP, encoding stable and unstable luciferase, respectively) were prepared. Transient induction of luciferase activity was clearly detected only in a TRX2 promoter-driven luc2CP reporter strain within 90 min of oxidant exposure. However, luciferase was strongly induced by hydroxyurea in the RNR3 promoter-driven luc2 and GFP reporter strains over 8 h after the exposure, suggesting that the RNR3 promoter is continuously upregulated by DNA damage, whereas the TRX2 promoter is transiently activated by oxidative agents. Luciferase activity levels were also increased in a TRX2-promoter-driven luc2CP reporter strain treated with tert-butyl hydroperoxide and menadione and weakly induced with diamide and diethyl maleate. Weakly enhanced luciferase activity induction was detected in the sod1Δ, sod2Δ, and rad27Δ strains treated with hydrogen peroxide compared with that in the wild-type strain. In conclusion, tests using GFP and stable luciferase reporters are useful for genotoxicity, and oxidative damage can be clearly detected by assay with an unstable luciferase reporter.
Collapse
Affiliation(s)
- Hajime Suzuki
- Molecular Genetics Laboratory, Division of Bioscience and Biotechnology, Department of Environmental and Life Sciences, Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku-cho, Toyohashi, Aichi, 441-8580, Japan
| | - Takahiro Sakabe
- Molecular Genetics Laboratory, Division of Bioscience and Biotechnology, Department of Environmental and Life Sciences, Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku-cho, Toyohashi, Aichi, 441-8580, Japan
| | - Yuu Hirose
- Molecular Genetics Laboratory, Division of Bioscience and Biotechnology, Department of Environmental and Life Sciences, Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku-cho, Toyohashi, Aichi, 441-8580, Japan.,The Electronics-Inspired Interdisciplinary Research Institute (EIIRIS), Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku-cho, Toyohashi, Aichi, 441-8580, Japan
| | - Toshihiko Eki
- Molecular Genetics Laboratory, Division of Bioscience and Biotechnology, Department of Environmental and Life Sciences, Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku-cho, Toyohashi, Aichi, 441-8580, Japan.
| |
Collapse
|
9
|
Microarray Analysis of Gene Expression in Saccharomyces cerevisiae kap108Δ Mutants upon Addition of Oxidative Stress. G3-GENES GENOMES GENETICS 2016; 6:1131-9. [PMID: 26888869 PMCID: PMC4825647 DOI: 10.1534/g3.116.027011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Protein transport between the nucleus and cytoplasm of eukaryotic cells is tightly regulated, providing a mechanism for controlling intracellular localization of proteins, and regulating gene expression. In this study, we have investigated the importance of nucleocytoplasmic transport mediated by the karyopherin Kap108 in regulating cellular responses to oxidative stress in Saccharomyces cerevisiae. We carried out microarray analyses on wild-type and kap108 mutant cells grown under normal conditions, shortly after introduction of oxidative stress, after 1 hr of oxidative stress, and 1 hr after oxidative stress was removed. We observe more than 500 genes that undergo a 40% or greater change in differential expression between wild-type and kap108Δ cells under at least one of these conditions. Genes undergoing changes in expression can be categorized in two general groups: 1) those that are differentially expressed between wild-type and kap108Δ cells, no matter the oxidative stress conditions; and 2) those that have patterns of response dependent upon both the absence of Kap108, and introduction or removal of oxidative stress. Gene ontology analysis reveals that, among the genes whose expression is reduced in the absence of Kap108 are those involved in stress response and intracellular transport, while those overexpressed are largely involved in mating and pheromone response. We also identified 25 clusters of genes that undergo similar patterns of change in gene expression when oxidative stresses are added and subsequently removed, including genes involved in stress response, oxidation–reduction processing, iron homeostasis, ascospore wall assembly, transmembrane transport, and cell fusion during mating. These data suggest that Kap108 is important for regulating expression of genes involved in a variety of specific cell functions.
Collapse
|
10
|
Johnson AJ, Veljanoski F, O'Doherty PJ, Zaman MS, Petersingham G, Bailey TD, Münch G, Kersaitis C, Wu MJ. Revelation of molecular basis for chromium toxicity by phenotypes of Saccharomyces cerevisiae gene deletion mutants. Metallomics 2016; 8:542-50. [DOI: 10.1039/c6mt00039h] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
11
|
Tun NM, O'Doherty PJ, Chen ZH, Wu XY, Bailey TD, Kersaitis C, Wu MJ. Identification of aluminium transport-related genes via genome-wide phenotypic screening of Saccharomyces cerevisiae. Metallomics 2015; 6:1558-64. [PMID: 24926745 DOI: 10.1039/c4mt00116h] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Genome-wide screening using gene deletion mutants has been widely carried out with numerous toxicants including oxidants and metal ions. The focus of such studies usually centres on identifying sensitive phenotypes against a given toxicant. Here, we screened the complete collection of yeast gene deletion mutants (5047) with increasing concentrations of aluminium sulphate (0.4, 0.8, 1.6 and 3.2 mM) in order to discover aluminium (Al(3+)) tolerant phenotypes. Fifteen genes were found to be associated with Al(3+) transport because their deletion mutants exhibited Al(3+) tolerance, including lem3Δ, hal5Δ and cka2Δ. Deletion of CKA2, a catalytic subunit of tetrameric protein kinase CK2, gives rise to the most pronounced resistance to Al(3+) by showing significantly higher growth compared to the wild type. Functional analysis revealed that both molecular regulation and endocytosis are involved in Al(3+) transport for yeast. Further investigations were extended to all the four subunits of CK2 (CKA1, CKA2, CKB1 and CKB2) and the other 14 identified mutants under a spectrum of metal ions, including Al(3+), Zn(2+), Mn(2+), Fe(2+), Fe(3+), Co(3+), Ga(3+), Cd(2+), In(3+), Ni(2+) and Cu(2+), as well as hydrogen peroxide and diamide, in order to unravel cross-tolerance amongst metal ions and the effect of the oxidants. Finally, the implication of the findings in Al(3+) transport for the other species like plants and humans is discussed.
Collapse
Affiliation(s)
- Nay M Tun
- School of Science and Health, University of Western Sydney, Locked Bag 1797, Penrith, NSW 2751, Australia.
| | | | | | | | | | | | | |
Collapse
|
12
|
Tun N, Lennon B, O'Doherty P, Johnson A, Petersingham G, Bailey T, Kersaitis C, Wu M. Effects of metal ions and hydrogen peroxide on the phenotype of yeast hom6
Δ mutant. Lett Appl Microbiol 2014; 60:20-6. [DOI: 10.1111/lam.12336] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2014] [Revised: 09/03/2014] [Accepted: 09/25/2014] [Indexed: 11/29/2022]
Affiliation(s)
- N.M. Tun
- School of Science and Health; University of Western Sydney; Penrith NSW Australia
| | - B.R. Lennon
- School of Science and Health; University of Western Sydney; Penrith NSW Australia
| | - P.J. O'Doherty
- School of Science and Health; University of Western Sydney; Penrith NSW Australia
| | - A.J. Johnson
- School of Science and Health; University of Western Sydney; Penrith NSW Australia
| | - G. Petersingham
- School of Science and Health; University of Western Sydney; Penrith NSW Australia
| | - T.D. Bailey
- School of Science and Health; University of Western Sydney; Penrith NSW Australia
| | - C. Kersaitis
- School of Science and Health; University of Western Sydney; Penrith NSW Australia
| | - M.J. Wu
- School of Science and Health; University of Western Sydney; Penrith NSW Australia
| |
Collapse
|
13
|
O'Doherty PJ, Lyons V, Tun NM, Rogers PJ, Bailey TD, Wu MJ. Transcriptomic and biochemical evidence for the role of lysine biosynthesis against linoleic acid hydroperoxide-induced stress in Saccharomyces cerevisiae. Free Radic Res 2014; 48:1454-61. [PMID: 25184342 DOI: 10.3109/10715762.2014.961448] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Amino acid biosynthesis forms part of an integrated stress response against oxidants in Saccharomyces cerevisiae and higher eukaryotes. Here we show an essential protective role of the l-lysine biosynthesis pathway in response to the oxidative stress condition induced by the lipid oxidant-linoleic acid hydroperoxide (LoaOOH), by means of transcriptomic profiling and phenotypic analysis, and using the deletion mutant dal80∆ and lysine auxotroph lys1∆. A comprehensive up-regulation of lysine biosynthetic genes (LYS1, LYS2, LYS4, LYS9, LYS12, LYS20 and LYS21) was revealed in dal80Δ following the oxidant challenge. The lysine auxotroph (lys1∆) exhibited a significant decrease in growth compared with that of BY4743 upon exposure to LoaOOH, albeit with the sufficient provision of lysine in the medium. Furthermore, the growth of wild type BY4743 exposed to LoaOOH was also greatly reduced in lysine-deficient conditions, despite a full complement of lysine biosynthetic genes. Amino acid analysis of LoaOOH-treated yeast showed that the level of cellular lysine remained unchanged throughout oxidant challenge, suggesting that the induced lysine biosynthesis leads to a steady-state metabolism as compared to the untreated yeast cells. Together, these findings demonstrate that lysine availability and its biosynthesis pathway play an important role in protecting the cell from lipid peroxide-induced oxidative stress, which is directly related to understanding environmental stress and industrial yeast management in brewing, wine making and baking.
Collapse
Affiliation(s)
- P J O'Doherty
- School of Science and Health, University of Western Sydney , Penrith, New South Wales , Australia
| | | | | | | | | | | |
Collapse
|