1
|
Tantry IQ, Ali A, Mahmood R. Curcumin from Curcuma longa Linn. (Family: Zingiberaceae) attenuates hypochlorous acid-induced cytotoxicity and oxidative damage to human red blood cells. Toxicol In Vitro 2023; 89:105583. [PMID: 36924976 DOI: 10.1016/j.tiv.2023.105583] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 03/06/2023] [Accepted: 03/13/2023] [Indexed: 03/15/2023]
Abstract
Hypochlorous acid (HOCl) is a major oxidant produced by activated neutrophils via the myeloperoxidase catalyzed reaction. The production of HOCl eliminates a wide range of pathogens. However, HOCl can also cause significant oxidative damage in cells and tissues where it is generated. The protective effect of curcumin was studied on HOCl-induced oxidative damage to human red blood cells (RBC). Isolated RBC were incubated with HOCl at 37 °C in absence or presence of different concentrations of curcumin. Hemolysates were prepared and assayed for various biochemical parameters. Treatment of RBC with HOCl alone increased hemolysis, protein carbonyls, heme degradation and chloramines as compared to untreated control cells. This was accompanied by reduction in glutathione level, total sulfhydryls and free amino groups. HOCl also lowered the activities of major antioxidant enzymes and diminished the antioxidant power of RBC. Pre-treatment of RBC with different concentrations of curcumin resulted in concentration-dependent attenuation in all these parameters while curcumin alone had no significant effect. Scanning electron microscopy showed that curcumin prevented HOCl-induced morphological changes in RBC and restored their normal biconcave shape. Thus curcumin can be used as a chemoprotective agent to mitigate HOCl-induced oxidative damage to cells. These results also explain the beneficial effects of curcumin against Helicobacter pylori induced stomach ulcers, caused by excessive production of HOCl at the site of bacterial infection.
Collapse
Affiliation(s)
- Irfan Qadir Tantry
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202002, UP, India; Department of Biochemistry, J.N. Medical College, Aligarh Muslim University, Aligarh, 202002, UP, India
| | - Asif Ali
- Department of Biochemistry, J.N. Medical College, Aligarh Muslim University, Aligarh, 202002, UP, India
| | - Riaz Mahmood
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202002, UP, India.
| |
Collapse
|
2
|
Buljeta I, Pichler A, Šimunović J, Kopjar M. Beneficial Effects of Red Wine Polyphenols on Human Health: Comprehensive Review. Curr Issues Mol Biol 2023; 45:782-798. [PMID: 36825997 PMCID: PMC9955827 DOI: 10.3390/cimb45020052] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/12/2023] [Accepted: 01/15/2023] [Indexed: 01/18/2023] Open
Abstract
Polyphenols are secondary plant metabolites synthesized during the development of the grape berry as a response to stress conditions. They are important constituents in red wines that contribute to the sensory properties and antioxidant activity of wines. Due to the development of highly sophisticated analytical devices, it is now possible to characterize the structure of highly polymerized polyphenols and obtain a full polyphenol profile of red wines. Red wine polyphenols include the ones present in grapes as well as new polyphenol products formed during the winemaking process. Among them, the most important groups and their representatives are flavanols (catechin), stilbenes (trans-resveratrol), flavonols (quercetin) and hydroxybenzoic acids (gallic acid). It is known that polyphenols exhibit beneficial effects on human health, such as anti-inflammatory, anticarcinogenic and cardio-protective effects. Many studies have been conducted on the health effects of red wine polyphenols in cancer chemopreventive activities, neuroprotective effects and impact on cardiovascular diseases, gut microbiota in humans, etc. This review will provide major scientific findings on the impact of red wine polyphenols on human health as well as a review of polyphenols present in red wines and their main features.
Collapse
Affiliation(s)
- Ivana Buljeta
- Faculty of Food Technology, Josip Juraj Strossmayer University, F. Kuhača 18, 31000 Osijek, Croatia
| | - Anita Pichler
- Faculty of Food Technology, Josip Juraj Strossmayer University, F. Kuhača 18, 31000 Osijek, Croatia
| | - Josip Šimunović
- Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Raleigh, NC 27695, USA
| | - Mirela Kopjar
- Faculty of Food Technology, Josip Juraj Strossmayer University, F. Kuhača 18, 31000 Osijek, Croatia
- Correspondence:
| |
Collapse
|
3
|
Di Franco M, Vona R, Gambardella L, Cittadini C, Favretti M, Gioia C, Straface E, Pietraforte D. Estrogen receptors, ERK 1/2 phosphorylation and reactive oxidizing species in red blood cells from patients with rheumatoid arthritis. Front Physiol 2022; 13:1061319. [PMID: 36545284 PMCID: PMC9760673 DOI: 10.3389/fphys.2022.1061319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 11/23/2022] [Indexed: 12/11/2022] Open
Abstract
Red blood cells (RBCs) are recognized to be important pathogenetic determinants in several human cardiovascular diseases (CVD). Undergoing to functional alterations when submitted to risk factors, RBCs modify their own intracellular signaling and the redox balance, shift their status from antioxidant defense to pro-oxidant agents, become a potent atherogenic stimulus playing a key role in the dysregulation of the vascular homeostasis favoring the developing and progression of CVD. Rheumatoid arthritis (RA) is a chronic autoimmune disease associated with a significantly increased risk of cardiovascular mortality with a prevalence from two to five more likely in woman, mainly attributed to accelerated atherosclerosis. The purpose of this study was to correlate the RA disease activity and the RBCs functional characteristics. Thirty-two women (aged more than 18 years) with RA, and 25 age-matched healthy women were included in this study. The disease activity, measured as the number of swollen and painful joints (DAS-28), was correlated with 1) the expression of RBCs estrogen receptors, which modulate the RBC intracellular signaling, 2) the activation of the estrogen-linked kinase ERK½, which is a key regulator of RBC adhesion and survival, and 3) the levels of inflammatory- and oxidative stress-related biomarkers, such as the acute-phase reactants, the antioxidant capacity of plasma, the reactive oxidizing species formation and 3-nitrotyrosine. All the biomarkers were evaluated in RA patients at baseline and 6 months after treatment with disease-modifying anti-rheumatic drugs (DMARDs). We found, for the first times, that in RA patients 1) the DAS-28 correlated with RBC ER-α expression, and did not correlate with total antioxidant capacity of plasma; 2) the RBC ER-α expression correlated with systemic inflammatory biomarkers and oxidative stress parameters, as well as ERK½ phosphorylation; and 3) the DMARDs treatments improved the clinical condition measured by DAS-28 score decrease, although the RBCs appeared to be more prone to pro-oxidant status associated to the expression of survival molecules. These findings represent an important advance in the study of RA determinants favoring the developing of CVD, because strongly suggest that RBCs could also participate in the vascular homeostasis through fine modulation of an intracellular signal linked to the ER-α.
Collapse
Affiliation(s)
- Manuela Di Franco
- Rheumatology Unit, Department of Clinical Internal, Anesthetic and Cardiovascular Sciences, Sapienza University of Rome, Rome, Italy
| | - Rosa Vona
- Biomarkers Unit, Center for Gender-Specific Medicine, National Institute of Health (ISS), Rome, Italy
| | - Lucrezia Gambardella
- Biomarkers Unit, Center for Gender-Specific Medicine, National Institute of Health (ISS), Rome, Italy
| | - Camilla Cittadini
- Biomarkers Unit, Center for Gender-Specific Medicine, National Institute of Health (ISS), Rome, Italy
| | - Martina Favretti
- Rheumatology Unit, Department of Clinical Internal, Anesthetic and Cardiovascular Sciences, Sapienza University of Rome, Rome, Italy
| | - Chiara Gioia
- Rheumatology Unit, Department of Clinical Internal, Anesthetic and Cardiovascular Sciences, Sapienza University of Rome, Rome, Italy
| | - Elisabetta Straface
- Biomarkers Unit, Center for Gender-Specific Medicine, National Institute of Health (ISS), Rome, Italy
| | - Donatella Pietraforte
- Core Facilities, National Institute of Health (ISS), Rome, Italy,*Correspondence: Donatella Pietraforte,
| |
Collapse
|
4
|
Russo GL, Moccia S, Russo M, Spagnuolo C. Redox regulation by carotenoids: Evidence and conflicts for their application in cancer. Biochem Pharmacol 2021; 194:114838. [PMID: 34774845 DOI: 10.1016/j.bcp.2021.114838] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 11/06/2021] [Accepted: 11/09/2021] [Indexed: 12/29/2022]
Abstract
Carotenoids have been constantly investigated since the early fifty for their chemical, biochemical and biological properties being presence in foods. Among the more than 1100 carotenoids synthesized by plants and microorganisms, approximately 50 are present in the human diet, and about 20 can be detected in human blood and tissues. Review articles that discuss the anticancer and cancer preventing activity of phytochemicals have often in common the difficulty to find a coherency between the results deriving from experimental studies and the controversial or weak clinical indications arising from epidemiological and interventional studies. In this scenario, the class of carotenoids does not represent an exception. In fact, according with World Cancer Research Fund, strong evidence exists that high-dose supplementation of β-carotene increases the risk of lung cancer, while for other types of cancer, the protective or harmful effects of food-containing carotenoids or carotenoid supplements have been considered limited, suggestive or unlikely. The analysis of the mechanistic evidence is complicated by the double nature of carotenoids being molecules acting either as antioxidant or pro-oxidant compounds. The present review analyzes the ambiguity and the unexpected results deriving from the epidemiological and interventional studies and discusses how the effects of carotenoids on cancer risk can be explained by understanding their capacity to modulate the cellular antioxidant response, depending on the concentration applied and the cellular metabolism. In the final part, a new global approach is proposed to study the contribution of carotenoids, but also of other phytochemicals, to disease prevention, including cancer.
Collapse
Affiliation(s)
- Gian Luigi Russo
- National Research Council, Institute of Food Sciences, 83100 Avellino, Italy.
| | - Stefania Moccia
- National Research Council, Institute of Food Sciences, 83100 Avellino, Italy
| | - Maria Russo
- National Research Council, Institute of Food Sciences, 83100 Avellino, Italy
| | - Carmela Spagnuolo
- National Research Council, Institute of Food Sciences, 83100 Avellino, Italy
| |
Collapse
|
5
|
Stankiewicz B, Cieślicka M, Kujawski S, Piskorska E, Kowalik T, Korycka J, Skarpańska-Stejnborn A. Effects of antioxidant supplementation on oxidative stress balance in young footballers- a randomized double-blind trial. J Int Soc Sports Nutr 2021; 18:44. [PMID: 34098993 PMCID: PMC8185910 DOI: 10.1186/s12970-021-00447-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 05/25/2021] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Intensive physical exercise that competitive sports athletes participate in can negatively affect their pro-oxidative-antioxidant balance. Compounds with high antioxidant potential, such as those present in chokeberry (Aronia melanocarpa), can prevent these adverse changes. We here investigated the effect of antioxidant supplementation on oxidative stress balance in young footballers. METHODS The study was designed as a double-blind randomized trial. Diet of a group of young football players (male; n = 20; mean age, 15.8 years-old) was supplemented with 200 ml of chokeberry juice per day, for 7 weeks. The players were randomly assigned to the experimental (supplemented, FP-S; n = 12) and control (placebo, FB-C; n = 8) groups. Before and after the supplementation period, the participants performed a beep test. Venous blood was sampled for serum analysis before, immediately after, 3 h, and 24 h after the beep test. Serum levels of thiobarbituric acid reactive products, 8-hydroxy-2'-deoxyguanosine, total antioxidant capacity, iron, hepcidin, ferritin, myoglobin, and albumin, and morphological blood parameters (red blood cells, (RBC), haemoglobin (HGB), haematocrit (HCT) mean corpuscular volume (MCV) mean corpuscular haemoglobin (MCH), mean corpuscular haemoglobin concentration (MCHC), and lactic acid) were determined. RESULTS Chokeberry juice supplementation did not significantly affect the outcome of the beep test. The supplementation did not significantly affect any of the morphological, biochemical, or performance parameters analysed. CONCLUSIONS Chokeberry juice supplementation did not affect the measured parameters in the studied population, which may indicate insufficient antioxidant capacity of the juice.
Collapse
Affiliation(s)
- Błażej Stankiewicz
- Institute of Physical Education, Kazimierz Wielki University in Bydgoszcz, 2 Sportowa Str., 85-091, Bydgoszcz, Poland
| | - Mirosława Cieślicka
- Department of Physiology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 24 Karłowicza Str, 85-092, Bydgoszcz, Poland
| | - Sławomir Kujawski
- Department of Hygiene, Epidemiology, Ergonomy and Postgraduate Education, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 9 M. Curie Skłodowskiej Str., 85-094, Bydgoszcz, Poland
| | - Elżbieta Piskorska
- Department of Pathobiochemistry and Clinical Chemistry, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 9 M. Curie Skłodowskiej Str., 85-094, Bydgoszcz, Poland
| | - Tomasz Kowalik
- Institute of Physical Education, Kazimierz Wielki University in Bydgoszcz, 2 Sportowa Str., 85-091, Bydgoszcz, Poland
| | - Justyna Korycka
- Institute of Food Sciences and Agrotechnics, University of Zielona Góra, Off-Campus Faculty in Sulechów, Pałac Kalsk - Kalsk 67, 66-100, Sulechów, Poland
| | - Anna Skarpańska-Stejnborn
- Department of Morphological and Health Sciences, Faculty of Physical Culture in Gorzów Wielkopolski, 13 Estkowskiego Str, 66-400, Gorzów Wielkopolski, Poland.
| |
Collapse
|
6
|
Tedesco I, Spagnuolo C, Russo GL, Russo M, Cervellera C, Moccia S. The Pro-Oxidant Activity of Red Wine Polyphenols Induces an Adaptive Antioxidant Response in Human Erythrocytes. Antioxidants (Basel) 2021; 10:antiox10050800. [PMID: 34070135 PMCID: PMC8158335 DOI: 10.3390/antiox10050800] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 05/13/2021] [Accepted: 05/14/2021] [Indexed: 12/21/2022] Open
Abstract
The protective effect of dealcoholized red wine on human health has been partially associated with its polyphenolic components, suggesting that the pool of polyphenols, including flavonoids and anthocyanins, can be responsible for the functional effects of this beverage. We hypothesize a new role of red wine polyphenols (RWp) in modulating the antioxidant potential of erythrocytes, protecting them against oxidative stress. We previously demonstrated that RWp activated the Plasma Membrane Redox System (PMRS), which is involved in neutralizing plasma free radicals. Here, we investigated the underlying mechanism triggered by RWp in the activation of PMRS via the involvement of GSH. Hence, treatment of human erythrocytes with RWp (73 μg/mL Gallic Acid Equivalents) increased GSH intracellular concentration, which depends upon the activation of glutathione reductase (GR) and glucose-6-phosphate dehydrogenase (G6PD), whose enzymatic activities increase of about 30% and 47%, respectively. Changes in the GSH pathway induced by RWp were associated with a slight but significant increase in reactive oxygen species (ROS). We conclude that the pro-oxidant effect of RWp promoted an adaptive stress response in human erythrocytes, which enhances their antioxidant defense.
Collapse
|
7
|
Shibuya S, Toda T, Ozawa Y, Yata MJV, Shimizu T. Acai Extract Transiently Upregulates Erythropoietin by Inducing a Renal Hypoxic Condition in Mice. Nutrients 2020; 12:nu12020533. [PMID: 32092924 PMCID: PMC7071527 DOI: 10.3390/nu12020533] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 02/12/2020] [Accepted: 02/17/2020] [Indexed: 02/06/2023] Open
Abstract
Acai (Euterpe oleracea Mart. Palmae, Arecaceae) is a palm plant native to the Brazilian Amazon. It contains many nutrients, such as polyphenols, iron, vitamin E, and unsaturated fatty acids, so in recent years, many of the antioxidant and anti-inflammatory effects of acai have been reported. However, the effects of acai on hematopoiesis have not been investigated yet. In the present study, we administered acai extract to mice and evaluated its hematopoietic effects. Acai treatment significantly increased the erythrocytes, hemoglobin, and hematocrit contents compared to controls for four days. Then, we examined the hematopoietic-related markers following a single injection. Acai administration significantly increased the levels of the hematopoietic-related hormone erythropoietin in blood compared to controls and also transiently upregulated the gene expression of Epo in the kidney. Furthermore, in the mice treated with acai extract, the kidneys were positively stained with the hypoxic probe pimonidazole in comparison to the controls. These results demonstrated that acai increases the erythropoietin expression via hypoxic action in the kidney. Acai can be expected to improve motility through hematopoiesis.
Collapse
Affiliation(s)
- Shuichi Shibuya
- Aging Stress Response Research Project Team, National Center for Geriatrics and Gerontology, 7-430 Morioka-cho, Obu, Aichi 474-8511, Japan;
- Department of Endocrinology, Hematology and Gerontology, Chiba University Graduate School of Medicine, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan; (T.T.); (Y.O.)
| | - Toshihiko Toda
- Department of Endocrinology, Hematology and Gerontology, Chiba University Graduate School of Medicine, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan; (T.T.); (Y.O.)
| | - Yusuke Ozawa
- Department of Endocrinology, Hematology and Gerontology, Chiba University Graduate School of Medicine, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan; (T.T.); (Y.O.)
| | | | - Takahiko Shimizu
- Aging Stress Response Research Project Team, National Center for Geriatrics and Gerontology, 7-430 Morioka-cho, Obu, Aichi 474-8511, Japan;
- Department of Endocrinology, Hematology and Gerontology, Chiba University Graduate School of Medicine, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan; (T.T.); (Y.O.)
- Correspondence: ; Tel.: +81-562-44-5651; Fax: +81-562-48-2373
| |
Collapse
|
8
|
Kumar P, Wadhwa R, Gupta R, Chandra P, Maurya PK. Spectroscopic determination of intracellular quercetin uptake using erythrocyte model and its implications in human aging. 3 Biotech 2018; 8:498. [PMID: 30498671 DOI: 10.1007/s13205-018-1524-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Accepted: 11/19/2018] [Indexed: 02/02/2023] Open
Abstract
The present study was carried out to detect intracellular quercetin uptake by RBCs during human aging. The study was carried out on 95 normal healthy subjects of both the sexes. Intracellular quercetin uptake was estimated by performing ethyl acetate extraction. A significant (p < 0.001) decline in intracellular quercetin uptake by human RBCs was observed in elderly as compared to young population, while plasma membrane redox system (PMRS) activity was significantly decreasing as a function of human age. To the best of our knowledge, we are the first to present quercetin uptake by erythrocytes during aging in humans with this study. It is hypothesized that intracellular uptake of quercetin may serve as an intracellular electron donor for plasma membrane redox system in red blood cells during cellular aging which plays an important role in extracellular dehydroascorbate reduction and ascorbate recycling.
Collapse
Affiliation(s)
- Prabhanshu Kumar
- 1Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida, 201303 India
| | - Ridhima Wadhwa
- 1Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida, 201303 India
| | - Riya Gupta
- 1Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida, 201303 India
| | - Pranjal Chandra
- 2Department of Bioscience and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781 039 India
| | - Pawan Kumar Maurya
- 1Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida, 201303 India
- 3Department of Biochemistry, Central University of Haryana, Jant-Pali, Mahendergarh District, Haryana 123031 India
| |
Collapse
|