1
|
Zhang Z, Zhang Y, Deng Y, Li S, Zhou W, Yang C, Xu X, Li T. Polymerized human placenta haemoglobin attenuates myocardial injury and aortic endothelial dysfunction in a rat model of severe burns. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2017; 46:1141-1145. [PMID: 29103326 DOI: 10.1080/21691401.2017.1396999] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
This study was designed to investigate the effect of polymerized human placenta haemoglobin (PolyPHb) on cardiac dysfunction after severe burns. A total of 60 male Sprague-Dawley rats were randomly divided into 3 groups: Sham, Burn and Burn + PolyPHb groups. Rats were subjected to third-degree burns to 30% of total body surface area and the haemodynamics, cardiac enzyme release and aortic endothelium ultrastructure/function were measured. PolyPHb (0.5 gHb/kg) greatly improved mean arterial pressure, left ventricular developed pressure (LVDP), maximum LVDP increase and decrease rate and reduced left ventricular end-diastolic pressure as compared to the Burn group. The plasma levels of cardiac enzyme including CK-MB and troponin I were also significantly down-regulated in the Burn + PolyPHb group. In addition, PolyPHb treatment markedly restored the endothelium-dependent relaxation impaired by severe burns and pathological changes of endothelium in aorta. Therefore, our data suggest that PolyPHb can limit severe burn-induced myocardial injury, which is associated with protection of aortic endothelium.
Collapse
Affiliation(s)
- Zhenyu Zhang
- a Department of Burn and Plastic Surgery , West China Hospital, Sichuan University , Chengdu , PR China
| | - Yingyi Zhang
- a Department of Burn and Plastic Surgery , West China Hospital, Sichuan University , Chengdu , PR China
| | - Yan Deng
- b Translational Neuroscience Centre and Department of Anesthesiology , West China Hospital, Sichuan University , Chengdu , PR China
| | - Shen Li
- c Institute of Blood Transfusion , Chinese Academy of Medical Sciences , Chengdu , PR China
| | - Wentao Zhou
- c Institute of Blood Transfusion , Chinese Academy of Medical Sciences , Chengdu , PR China
| | - Chengmin Yang
- c Institute of Blood Transfusion , Chinese Academy of Medical Sciences , Chengdu , PR China
| | - Xuewen Xu
- a Department of Burn and Plastic Surgery , West China Hospital, Sichuan University , Chengdu , PR China
| | - Tao Li
- b Translational Neuroscience Centre and Department of Anesthesiology , West China Hospital, Sichuan University , Chengdu , PR China
| |
Collapse
|
2
|
High-Dose Polymerized Hemoglobin Fails to Alleviate Cardiac Ischemia/Reperfusion Injury due to Induction of Oxidative Damage in Coronary Artery. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2015:125106. [PMID: 26161234 PMCID: PMC4487275 DOI: 10.1155/2015/125106] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2014] [Revised: 12/19/2014] [Accepted: 12/22/2014] [Indexed: 02/05/2023]
Abstract
Objective. Ischemia/reperfusion (I/R) injury is an unavoidable event for patients in cardiac surgery under cardiopulmonary bypass (CPB). This study was designed to investigate whether glutaraldehyde-polymerized human placenta hemoglobin (PolyPHb), a hemoglobin-based oxygen carrier (HBOC), can protect heart against CPB-induced I/R injury or not and to elucidate the underlying mechanism. Methods and Results. A standard dog CPB model with 2-hour cardiac arrest and 2-hour reperfusion was established. The results demonstrated that a low-dose PolyPHb (0.1%, w/v) provided a significant protection on the I/R heart, whereas the high-dose PolyPHb (3%, w/v) did not exhibit cardioprotective effect, as evidenced by the impaired cardiac function, decreased myocardial oxygen utilization, and elevated enzymes release and pathological changes. Further study indicated that exposure of isolated coronary arteries or human umbilical vein endothelial cells (HUVECs) to a high-dose PolyPHb caused impaired endothelium-dependent relaxation, which was companied with increased reactive oxygen species (ROS) production, reduced superoxide dismutase (SOD) activity, and elevated malonaldehyde (MDA) formation. Consistent with the increased oxidative stress, the NAD(P)H oxidase activity and subunits expression, including gp91phox, p47phox, p67phox, and Nox1, were greatly upregulated. Conclusion. The high-dose PolyPHb fails to protect heart from CPB-induced I/R injury, which was due to overproduction of NAD(P)H oxidase-induced ROS and resultant endothelial dysfunction.
Collapse
|
3
|
Xue H, Yan K, Zhao X, Zhu W, Liu L, Xie Z, Zhu H, Chen C. Pretreatment with pPolyHb attenuates H2O2-induced endothelial cell injury through inhibition of JNK/p38 MAPK pathway by upregulation of heme oxygenase-1. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2015; 43:163-73. [PMID: 25615876 DOI: 10.3109/21691401.2014.1001494] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Polymerized porcine hemoglobin (pPolyHb) exhibits a protective effect on ischemia/reperfusion of organ grafts. A series of experiments were performed to explore the underlying cytoprotective mechanisms of pPolyHb pretreatment on H2O2-induced cell death and apoptosis. The results showed that the pretreatment augmented heme oxygenase-1 (HO-1) expression, and at the same time, decreased the phosphorylation of JNK/p38 mitogen-activated protein kinase (MAPK) and intracellular ROS generation in H2O2-treated HUVECs. Moreover, the inhibition of HO-1 expression by tin porphyrin (SnPP) abolished the protective effects of pPolyHb, which suggested that the cytoprotective effect of pPolyHb involves upregulating HO-1 and subsequently decreasing the phosphorylation of the JNK and p38 MAPK and ROS generation.
Collapse
Affiliation(s)
- Haiyan Xue
- College of Life Science, Northwest University , Xi'an , P. R. China
| | | | | | | | | | | | | | | |
Collapse
|
4
|
Li T, Zhou R, Yao Y, Yang Q, Zhou C, Wu W, Li Q, You Z, Zhao X, Yang L, Li C, Zhu D, Qiu Y, Luo M, Tan Z, Li H, Chen Y, Gong G, Feng Y, Dian K, Liu J. Angiotensin-converting enzyme inhibitor captopril reverses the adverse cardiovascular effects of polymerized hemoglobin. Antioxid Redox Signal 2014; 21:2095-108. [PMID: 24483164 PMCID: PMC4215427 DOI: 10.1089/ars.2013.5606] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
AIM Cell-free hemoglobin-based oxygen carriers (HBOCs) may increase the risk of myocardial infarction and death. We studied the effect of an angiotensin-converting enzyme (ACE) inhibitor on HBOC-induced adverse cardiovascular outcomes and elucidated the underlying mechanisms. RESULTS With a dog cardiopulmonary bypass model, we demonstrated that a high-dose HBOC (3%, w/v) did not reduce-but aggravated-cardiac ischemia/reperfusion injury. Animals administered a high-dose HBOC experienced coronary artery constriction and depression of cardiac function. Exposure of isolated coronary arteries or human umbilical vein endothelial cells to high-dose HBOC caused impaired endothelium-dependent relaxation, increased endothelial cell necrosis/apoptosis, and elevated NAD(P)H oxidase expression (gp91(phox), p47(phox), p67(phox), and Nox1) and reactive oxygen species (ROS) production. All observed adverse outcomes could be suppressed by the ACE inhibitor captopril (100 μM). Co-incubation with free radical scavenger tempol or NAD(P)H oxidase inhibitor apocynin had no effect on captopril action, suggesting that the positive effects of captopril are ROS- and NAD(P)H oxidase dependent. ACE inhibition by captopril also contributed to these effects. In addition, bioavailable nitrite oxide (NO) reduced by high-dose HBOC was preserved by captopril. Furthermore, HBOC, at concentrations greater than 0.5%, inhibited large conductance Ca(2+)-activated K(+) channel currents in vascular smooth muscle cells in a dose-dependent manner, although captopril failed to improve current activity, providing additional evidence that captopril's effects are mediated by the endothelium, but not by the smooth muscle. INNOVATION AND CONCLUSION Captopril alleviates high-dose HBOC-induced endothelial dysfunction and myocardial toxicity, which is mediated by synergistic depression of NAD(P)H oxidase subunit overproduction and increases in vascular NO bioavailability.
Collapse
Affiliation(s)
- Tao Li
- 1 Laboratory of Anesthesiology and Translational Neuroscience Center, West China Hospital, Sichuan University , Chengdu, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Li Q, Li S, Yang Q, Li T, Liu J, Yang C. Hemoglobin-based oxygen carrier attenuates cerebral damage by improving tissue oxygen preload in a dog model of cardiopulmonary bypass. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2014; 43:87-92. [DOI: 10.3109/21691401.2014.916716] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
6
|
You Z, Li Q, Li B, Yang C, Liu J, Li T. Isovolemic hemodilution with glutaraldehyde-polymerized human placenta hemoglobin (PolyPHb) attenuated rat liver ischemia/reperfusion injury. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2014; 42:83-7. [PMID: 24621076 DOI: 10.3109/21691401.2013.796311] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
This study was to investigate whether glutaraldehyde-polymerized human placenta hemoglobin (PolyPHb) could attenuate ischemia/reperfusion (I/R)-induced liver injury. Isovolemic hemodilution of SD rats was performed by exchanging 15% total blood volume with PolyPHb. I/R was induced by left liver lobes pedicle cross-clamping for 60 min and reperfusion for 2 h. Blood pressure moderately elevated after PolyPHb infusion and returned to basal level within 10 min. The hepatic histopathological damage and the activities of liver injury markers were reduced by PolyPHb. The TUNEL staining and caspase assay indicated hepatic apoptosis was also inhibited. Therefore, our findings suggest PolyPHb can reduce liver I/R injury.
Collapse
Affiliation(s)
- Zhen You
- Department of Hepatobiliology, West China Hospital, Sichuan University , Chengdu , P. R. China
| | | | | | | | | | | |
Collapse
|
7
|
Li T, Zhang Z, Liao D, Chen Y, Yang C, Xu X, Liu J. The effect of polymerized placenta hemoglobin on renal ischemia/reperfusion injury. ARTIFICIAL CELLS, BLOOD SUBSTITUTES, AND IMMOBILIZATION BIOTECHNOLOGY 2012; 40:396-9. [PMID: 23152999 DOI: 10.3109/10731199.2012.696062] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The goal of this study was to investigate whether hemoglobin-based oxygen carrier (HBOC) attenuated ischemia/reperfusion (I/R)-induced kidney injury. Male SD rats were randomly divided into a sham group, I/R group, and HBOC group (injection of 0.1 gHb/kg PolyPHb). The ischemia was induced by bilateral renal pedicle cross-clamping for 45min. Then the clamp was released to allow 24h reperfusion. Without increasing blood pressure, PolyPHb reduced the blood urea nitrogen and creatinine in plasma and attenuated the tumor necrosis factor-α and interleukin-8 in kidney tissue. Therefore, our findings suggest that PolyPHb could reduce kidney injury after I/R injury, and this effect was probably associated with the depressed inflammatory response.
Collapse
Affiliation(s)
- Tao Li
- Laboratory of Anesthesiology and Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, China
| | | | | | | | | | | | | |
Collapse
|
8
|
Li T, Zhang Z, Wu W, Liao D, Chen Y, Li S, Yang C, Xu X, Liu J. Resuscitation with polymerized human placenta hemoglobin attenuated hemorrhagic shock-induced lung injury. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2012; 41:27-31. [PMID: 22947048 DOI: 10.3109/10731199.2012.696061] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
This study was designed to investigate whether polymerized human placenta hemoglobin (PolyPHb) attenuated hemorrhagic shock-induced lung injury. A mean arterial pressure (MAP) of 30mmHg was maintained for 60 min. Then, all the rats were randomly resuscitated with hetastarch, whole blood, or PolyPHb. The result indicated that PolyPHb greatly improved the MAP and pulmonary function, and significantly reduced the release of inflammatory cytokines, histopathological changes, and pulmonary edema. Therefore, our findings suggest that PolyPHb could reduce pulmonary injury after hemorrhagic shock, and this effect was probably associated with the depressed inflammatory response.
Collapse
Affiliation(s)
- Tao Li
- Laboratory of Anesthesiology and Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, China
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Li T, Jiang Y, Zhang Z, Zhang S, Wu W, Liao D, Chen Y, Yang C, Xu X, Liu J. Effect of polymerized human placenta hemoglobin on hemodynamic parameter and cardiac function in a rat hemorrhagic shock model. ACTA ACUST UNITED AC 2012; 40:256-60. [DOI: 10.3109/10731199.2012.663384] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|