1
|
Zhou L, Song Q, Shen J, Xu L, Xu Z, Wu R, Ge Y, Zhu J, Wu J, Dou Q, Jia R. Comparison of human adipose stromal vascular fraction and adipose-derived mesenchymal stem cells for the attenuation of acute renal ischemia/reperfusion injury. Sci Rep 2017; 7:44058. [PMID: 28276451 PMCID: PMC5343423 DOI: 10.1038/srep44058] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 02/03/2017] [Indexed: 02/06/2023] Open
Abstract
Stem cells therapy has been suggested as a promising option for the treatment of acute kidney injury (AKI). This study was performed to compare the abilities of xenogenic transplantation of human adipose stromal vascular fraction (SVF) and adipose-derived mesenchymal stem cells (AdMSCs) to facilitate the recovery of renal function and structure in a rat model of ischemia/reperfusion (IR) induced AKI. SVF or AdMSCs were transplanted to the injured kidney through intra-parenchymal injection. Significantly improved renal function and reduced tubular injury were observed in SVF and AdMSCs groups. Administration of SVF or AdMSCs contributed to significantly improved cell proliferation and markedly reduced cell apoptosis in parallel with reduced microvascular rarefaction in injured kidney. IR injury resulted in higher levels of inflammatory cytokines, whereas xenogenic transplantation of SVF or AdMSCs reduced but not induced inflammatory cytokines expression. Additionally, in vitro study showed that administration of SVF or AdMSCs could also significantly promote the proliferation and survival of renal tubular epithelial cells underwent hypoxia/reoxygenation injury through secreting various growth factors. However, cell proliferation was significantly promoted in SVF group than in AdMSCs group. In conclusion, our study demonstrated that administration of SVF or AdMSCs was equally effective in attenuating acute renal IR injury.
Collapse
Affiliation(s)
- Liuhua Zhou
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, No. 68 Changle Road, Nanjing, Jiangsu 210006, China.,Center for Renal Transplantation, Nanjing First Hospital, Nanjing Medical University, No. 68 Changle Road, Nanjing, Jiangsu 210006, China
| | - Qun Song
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, No. 68 Changle Road, Nanjing, Jiangsu 210006, China
| | - Jiangwei Shen
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, No. 68 Changle Road, Nanjing, Jiangsu 210006, China
| | - Luwei Xu
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, No. 68 Changle Road, Nanjing, Jiangsu 210006, China.,Center for Renal Transplantation, Nanjing First Hospital, Nanjing Medical University, No. 68 Changle Road, Nanjing, Jiangsu 210006, China
| | - Zheng Xu
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, No. 68 Changle Road, Nanjing, Jiangsu 210006, China.,Center for Renal Transplantation, Nanjing First Hospital, Nanjing Medical University, No. 68 Changle Road, Nanjing, Jiangsu 210006, China
| | - Ran Wu
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, No. 68 Changle Road, Nanjing, Jiangsu 210006, China.,Center for Renal Transplantation, Nanjing First Hospital, Nanjing Medical University, No. 68 Changle Road, Nanjing, Jiangsu 210006, China
| | - Yuzheng Ge
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, No. 68 Changle Road, Nanjing, Jiangsu 210006, China.,Center for Renal Transplantation, Nanjing First Hospital, Nanjing Medical University, No. 68 Changle Road, Nanjing, Jiangsu 210006, China
| | - Jiageng Zhu
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, No. 68 Changle Road, Nanjing, Jiangsu 210006, China.,Center for Renal Transplantation, Nanjing First Hospital, Nanjing Medical University, No. 68 Changle Road, Nanjing, Jiangsu 210006, China
| | - Jianping Wu
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, No. 68 Changle Road, Nanjing, Jiangsu 210006, China.,Center for Renal Transplantation, Nanjing First Hospital, Nanjing Medical University, No. 68 Changle Road, Nanjing, Jiangsu 210006, China
| | - Quanliang Dou
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, No. 68 Changle Road, Nanjing, Jiangsu 210006, China.,Center for Renal Transplantation, Nanjing First Hospital, Nanjing Medical University, No. 68 Changle Road, Nanjing, Jiangsu 210006, China
| | - Ruipeng Jia
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, No. 68 Changle Road, Nanjing, Jiangsu 210006, China.,Center for Renal Transplantation, Nanjing First Hospital, Nanjing Medical University, No. 68 Changle Road, Nanjing, Jiangsu 210006, China
| |
Collapse
|
2
|
Wang S, Cao W, Xing H, Chen YL, Li Q, Shen T, Jiang C, Zhu D. Activation of ERK pathway is required for 15-HETE-induced angiogenesis in human umbilical vascular endothelial cells. J Recept Signal Transduct Res 2015; 36:225-32. [PMID: 26460784 DOI: 10.3109/10799893.2015.1077865] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Angiogenesis plays a critical role in the progression of cardiovascular disease, retinal ischemia, or tumorigenesis. The imbalance of endothelial cell proliferation and apoptosis disturbs the establishment of the vasculogenesis, which is affected by several arachidonic acid metabolites. 15-Hydroxyeicosatetraenoic acid (15-HETE) is one of the metabolites. However, the underlying mechanisms of angiogenesis induced by 15-HETE in human umbilical vascular endothelial cells (HUVECs) are still poorly understood. Since extracellular signal-regulated kinase (ERK) is a critical regulator of cell proliferation, there may be a crosstalk between 15-HETE-regulating angiogenic process and ERK-proliferative effect in HUVECs. To test this hypothesis, we study the effect of 15-HETE on cell proliferation, angiogenesis, and apoptosis using cell viability measurement, cell cycle analysis, western blot, scratch-wound, tube formation assay, and nuclear morphology determination. We found that 15-HETE promoted HUVEC angiogenesis, which were mediated by ERK. Moreover, 15-HETE-induced proliferation and cell cycle transition from the G(0)/G(1) phase to the G(2)/M + S phase. All these effects were reversed after blocking ERK with PD98059 (an ERK inhibitor). In addition, HUVEC apoptosis was relieved by 15-HETE through the ERK pathway. Thus, ERK is necessary for the effects of 15-HETE in the regulation of HUVEC angiogenesis, which may be a novel potential target for the treatment of angiogenesis-related diseases.
Collapse
Affiliation(s)
- Shuang Wang
- a Department of Biopharmaceutical Sciences , College of Pharmacy, Harbin Medical University , Nangang District , Harbin, Heilongjiang , People's Republic of China
| | - Weiwei Cao
- a Department of Biopharmaceutical Sciences , College of Pharmacy, Harbin Medical University , Nangang District , Harbin, Heilongjiang , People's Republic of China
| | - Hao Xing
- a Department of Biopharmaceutical Sciences , College of Pharmacy, Harbin Medical University , Nangang District , Harbin, Heilongjiang , People's Republic of China
| | - Ying Li Chen
- b Department of Biopharmaceutical Sciences , College of Pharmacy, Harbin Medical University - Daqing , Daqing, Heilongjiang Province , People's Republic of China , and
| | - Qian Li
- a Department of Biopharmaceutical Sciences , College of Pharmacy, Harbin Medical University , Nangang District , Harbin, Heilongjiang , People's Republic of China
| | - Tingting Shen
- a Department of Biopharmaceutical Sciences , College of Pharmacy, Harbin Medical University , Nangang District , Harbin, Heilongjiang , People's Republic of China
| | - Chun Jiang
- a Department of Biopharmaceutical Sciences , College of Pharmacy, Harbin Medical University , Nangang District , Harbin, Heilongjiang , People's Republic of China .,c Department of Biology , Georgia State University , Atlanta , GA , USA
| | - Daling Zhu
- a Department of Biopharmaceutical Sciences , College of Pharmacy, Harbin Medical University , Nangang District , Harbin, Heilongjiang , People's Republic of China .,b Department of Biopharmaceutical Sciences , College of Pharmacy, Harbin Medical University - Daqing , Daqing, Heilongjiang Province , People's Republic of China , and
| |
Collapse
|