1
|
Wang XJ, Ma MM, Zhou LB, Jiang XY, Hao MM, Teng RKF, Wu E, Tang BS, Li JY, Teng JF, Ding XB. Autonomic ganglionic injection of α-synuclein fibrils as a model of pure autonomic failure α-synucleinopathy. Nat Commun 2020; 11:934. [PMID: 32071315 PMCID: PMC7028908 DOI: 10.1038/s41467-019-14189-9] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Accepted: 12/18/2019] [Indexed: 11/18/2022] Open
Abstract
α-Synucleinopathies are characterized by autonomic dysfunction and motor impairments. In the pure autonomic failure (PAF), α-synuclein (α-Syn) pathology is confined within the autonomic nervous system with no motor features, but mouse models recapitulating PAF without motor dysfunction are lacking. Here, we show that in TgM83+/- mice, inoculation of α-Syn preformed fibrils (PFFs) into the stellate and celiac ganglia induces spreading of α-Syn pathology only through the autonomic pathway to both the central nervous system (CNS) and the autonomic innervation of peripheral organs bidirectionally. In parallel, the mice develop autonomic dysfunction, featured by orthostatic hypotension, constipation, hypohidrosis and hyposmia, without motor dysfunction. Thus, we have generated a mouse model of pure autonomic dysfunction caused by α-Syn pathology. This model may help define the mechanistic link between transmission of pathological α-Syn and the cardinal features of autonomic dysfunction in α-synucleinopathy.
Collapse
Affiliation(s)
- Xue-Jing Wang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China.
- Institute of Parkinson and Movement Disorder, Zhengzhou University, Zhengzhou, Henan, 450052, China.
| | - Ming-Ming Ma
- Department of Neurology, Affiliated People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, Henan, 450003, China
| | - Le-Bo Zhou
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
- Institute of Parkinson and Movement Disorder, Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Xiao-Yi Jiang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
- Institute of Parkinson and Movement Disorder, Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Miao-Miao Hao
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
- Institute of Parkinson and Movement Disorder, Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Robert K F Teng
- Collage of Electronic and Information Engineering, Shenzhen University, Shen Zhen, Guangdong, 518060, China
| | - Erxi Wu
- Neuroscience Institute and Department of Neurosurgery, Baylor Scott & White Health, Temple, Texas, 76508, USA
| | - Bei-Sha Tang
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, 410008, China.
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, 410008, China.
| | - Jia-Yi Li
- Neural Plasticity and Repair Unit, Wallenberg Neuroscience Center, Department of Experimental Medical Science, Lund University, BMC A10, 221 84, Lund, Sweden.
- Institute of Health Sciences, China Medical University, 110112, Shenyang, China.
| | - Jun-Fang Teng
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China.
- Institute of Parkinson and Movement Disorder, Zhengzhou University, Zhengzhou, Henan, 450052, China.
| | - Xue-Bing Ding
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China.
- Institute of Parkinson and Movement Disorder, Zhengzhou University, Zhengzhou, Henan, 450052, China.
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, 410008, China.
| |
Collapse
|
2
|
Homeostatic Response of Mouse renin Gene Transcription in a Hypertensive Environment Is Mediated by a Novel 5' Enhancer. Mol Cell Biol 2018; 38:MCB.00566-17. [PMID: 29358217 DOI: 10.1128/mcb.00566-17] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 01/17/2018] [Indexed: 01/22/2023] Open
Abstract
The renin-angiotensin system plays an essential role in blood pressure homeostasis. Because renin activity is reflected as a blood pressure phenotype, its gene expression in the kidney is tightly regulated by a feedback mechanism; i.e., renin gene transcription is suppressed in a hypertensive state. To address the molecular mechanisms controlling hypertension-responsive mouse renin (mRen) gene regulation, we deleted either 5' (17-kb) or 3' (78-kb) regions of the endogenous mRen gene and placed the animals in a hypertensive environment. While the mRen gene bearing the 3' deletion was appropriately downregulated, the one bearing the 5' deletion lost this hypertension responsiveness. Because the 17-kb sequence exhibited enhancer activity in vivo and in vitro, we narrowed down the enhancer to a 2.3-kb core using luciferase assays in As4.1 cells. When this 2.3-kb sequence was removed from the endogenous mRen gene in the mouse, its basal expression was dramatically reduced, and the hypertension responsiveness was significantly attenuated. Furthermore, we demonstrated that the angiotensin II signal played an important role in mRen gene suppression. We propose that in a hypertensive environment, the activity of this novel enhancer is attenuated, and, as a consequence, mRen gene transcription is suppressed to maintain blood pressure.
Collapse
|
3
|
Mai TH, Garland EM, Diedrich A, Robertson D. Hepatic and renal mechanisms underlying the osmopressor response. Auton Neurosci 2017; 203:58-66. [PMID: 28143710 DOI: 10.1016/j.autneu.2017.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 12/09/2016] [Accepted: 01/18/2017] [Indexed: 02/07/2023]
Abstract
Increased blood pressure (BP) is observed in patients with impaired baroreflexes after water drinking. The stimulus for this effect is low blood osmolality, and it has been termed the osmopressor response (OPR). The BP increase is associated with activation of the sympathetic nervous system and a requirement for transient receptor potential vanilloid 4 (TRPV4) channels. However, the mechanisms underlying the OPR are poorly understood. We tested the hypothesis that hypotonicity is sensed in the portal area to initiate the OPR. Sino-aortic denervated mice were used and BP was monitored for 30min after fluid infusion while mice were under anesthesia. Infusion of hypotonic fluid (0.45% saline), but not of isotonic 0.9% saline, directly into the portal vein, produced an immediate OPR (increase in BP with saline 0.45%: 15±13 vs. 0.9%: -7±2mmHg, p=0.003; AUC: 0.45%: 150±99, n=7 vs. 0.9%: -74±60mmHg·min, n=5, p=0.003). However, 0.45% saline was not able to trigger a similar response in TRPV4-/- mice (ΔBPTRPV4: -2±5mmHg, n=8, p=0.009). Hypotonic saline did not raise BP when infused at the same speed and volume into the jugular vein (jugular: -5±6mmHg, p=0.002, compared to portal). Denervation of the splanchnic nerve by celiac ganglionectomy (CGX) did not abolish the OPR (CGX: 15±11 vs. Sham: 16±6mmHg, p=0.34). Renal denervation diminished the OPR elicited by duodenal water infusion (denervation: 9±4 vs. sham: 31±15mmHg, p=0.016). Therefore, hypotonicity in the portal circulation, probably sensed by TRPV4 channels, triggers the OPR and intact renal nerves are needed for the full response.
Collapse
Affiliation(s)
- Tu H Mai
- Department of Pharmacology, Vanderbilt University, Nashville, TN, United States; Department of Clinical Pharmacology, Vanderbilt University, Nashville, TN, United States
| | - Emily M Garland
- Department of Medicine, Vanderbilt University Medical Center, United States; Department of Clinical Pharmacology, Vanderbilt University, Nashville, TN, United States
| | - André Diedrich
- Department of Medicine, Vanderbilt University Medical Center, United States; Department of Biomedical Engineering, Vanderbilt University, United States; Department of Clinical Pharmacology, Vanderbilt University, Nashville, TN, United States
| | - David Robertson
- Department of Pharmacology, Vanderbilt University, Nashville, TN, United States; Department of Medicine, Vanderbilt University Medical Center, United States; Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, United States; Department of Clinical Pharmacology, Vanderbilt University, Nashville, TN, United States.
| |
Collapse
|
4
|
Ushiki A, Matsuzaki H, Ishida J, Fukamizu A, Tanimoto K. Long-Range Control of Renin Gene Expression in Tsukuba Hypertensive Mice. PLoS One 2016; 11:e0166974. [PMID: 27861631 PMCID: PMC5115840 DOI: 10.1371/journal.pone.0166974] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 11/07/2016] [Indexed: 01/14/2023] Open
Abstract
Renin, a rate-limiting enzyme in the renin–angiotensin system, is regulated to maintain blood pressure homeostasis: renin gene expression in the kidney is suppressed in a hypertensive environment. We found that expression of a 15-kb human RENIN (hREN) transgene was aberrantly upregulated (>4.2-fold), while the endogenous mouse renin (mRen) gene was suppressed (>1.7-fold) in Tsukuba hypertensive mice (THM), a model for genetically induced hypertension. We then generated transgenic mice using a 13-kb mRen gene fragment that was homologous to the 15-kb hREN transgene and found that its expression was also upregulated (>3.1-fold) in THM, suggesting that putative silencing elements of the renin genes were distally located in the loci. We next examined the possible role of a previously identified mouse distal enhancer (mdE) located outside of the 13-kb mRen gene fragment. Deletion of the mdE in the context of a 156-kb mRen transgene did not affect its transcriptional repression in THM, implying that although the silencing element of the mRen gene is located within the 156-kb fragment tested, it is distinct from the mdE. Consistent with these results, deletion of the 63-kb region upstream of the mdE from the endogenous mRen gene locus abrogated its transcriptional repression in THM. We finally tested whether dysregulation of the short renin transgenes also occurred in the fetal or neonatal kidneys of THM and found that their expression was not aberrantly upregulated, demonstrating that aberrant regulation of short renin transgenes commences sometime between neonate and adult periods.
Collapse
Affiliation(s)
- Aki Ushiki
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Hitomi Matsuzaki
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
- Life Science Center, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Junji Ishida
- Life Science Center, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Akiyoshi Fukamizu
- Life Science Center, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Keiji Tanimoto
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
- Life Science Center, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tsukuba, Ibaraki, Japan
- * E-mail:
| |
Collapse
|