1
|
Wu M, Zhou Y, Guo Z, Lian D, Chen H, Li R, Lin J, Ali F, Shen A, Peng J. Isoliensinine promotes vasorelaxation and inhibits constriction by regulating the calcium channel in hypertension: In vitro and in vivo approaches. Eur J Pharmacol 2025:177765. [PMID: 40414594 DOI: 10.1016/j.ejphar.2025.177765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 04/19/2025] [Accepted: 05/22/2025] [Indexed: 05/27/2025]
Abstract
Isoliensinine, a bioactive alkaloid derived from Nelumbo nucifera Gaertn, has antihypertension effects. This study investigated its antihypertensive effect and molecular mechanism. Spontaneously hypertensive rats (SHRs) and Wistar Kyoto rats (n=6 per group) were treated with 2.5, 5 or 10 mg/kg isoliensinine or 7 mg/kg valsartan for 10 weeks. Ultrasonography, histology, immunohistochemistry, RNA-sequencing analysis, vascular tension, calcium imaging, and virtual docking were performed. Isoliensinine effectively attenuated the elevation of blood pressure, pulse wave velocity, and medial thickness of the abdominal aortas in SHRs. It reversed 253-upregulated and 161-downregulated differentially expressed transcripts in the abdominal aorta of SHRs, with enrichment in vascular smooth muscle contraction and calcium signaling pathways. Isoliensinine significantly attenuated the vasoconstriction induced by angiotensin II (Ang II), norepinephrine (NE), or potassium chloride (KCl) and maintained its inhibitory effects across increasing calcium concentrations. It promotes vasodilation in the abdominal aorta rings induced by NE or KCl independent of the endothelium and potassium ion channels but is associated with the modulation of L-type calcium channels. Isoliensinine also suppressed calcium release in vascular smooth muscle cells after KCl, Ang II, or NE stimulation. Isoliensinine upregulated the expression of MLCP but downregulated that of p-MLC2 in the abdominal aorta of SHRs. Virtual docking analysis revealed lower binding energy values for isoliensinine with MLCP, suggesting a potential interaction. Isoliensinine lowers blood pressure by regulating vascular smooth muscle contraction and relaxation, and its effects are potentially mediated by regulating calcium signaling pathways.
Collapse
Affiliation(s)
- Meizhu Wu
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China; College of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China; Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China
| | - Yuting Zhou
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China; College of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China; Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China
| | - Zhi Guo
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China; College of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China; Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China
| | - Dawei Lian
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China; College of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China; Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China
| | - Hong Chen
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China; College of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China; Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China
| | - Renfeng Li
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China; College of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China; Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China
| | - Jing Lin
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China; College of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China; Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China
| | - Farman Ali
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China; College of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China; Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China
| | - Aling Shen
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China; College of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China; Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China.
| | - Jun Peng
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China; College of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China; Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China
| |
Collapse
|
2
|
Koch JN, Dahlen SA, Owens EA, Osei-Owusu P. Regulator of G Protein Signaling 2 Facilitates Uterine Artery Adaptation During Pregnancy in Mice. J Am Heart Assoc 2020; 8:e010917. [PMID: 31030617 PMCID: PMC6512123 DOI: 10.1161/jaha.118.010917] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Background Decreased uterine blood flow is known to contribute to pregnancy complications such as gestational hypertension and preeclampsia. Previously, we showed that the loss of regulator of G protein signaling 2 ( RGS 2), a GTP ase activating protein for Gq/11 and Gi/o class G proteins, decreases uterine blood flow in the nonpregnant state in mice. Here, we examined the effects of the absence of RGS 2 and 5 on uterine blood flow and uterine vascular structure and function at early, mid, and late gestation, as well as peripartum period in mice. Methods and Results Abdominal Doppler ultrasonography was performed on adult female wild-type, Rgs2-/-, and Rgs5-/- mice at pre-pregnancy, gestational days 10, 15, and 18, and postpartum day 3. Uterine artery structure and function were also assessed by vessel myograph studies. At mid-pregnancy, uterine blood flow decreased in both Rgs2-/- and Rgs5-/- mice, whereas resistive index increased only in Rgs2-/- mice. In uterine arteries from wild-type mice, mRNA expression of RGS 2 and 4 increased, whereas RGS 5 expression remained elevated at mid-pregnancy. These changes in gene expression were unique to uterine arteries because they were absent in mesenteric arteries and the aorta of wild-type mice. In Rgs2-/- mice, uterine artery medial cross-sectional area and G protein-coupled receptor-mediated vasoconstriction increased in mid-pregnancy, implicating a role for RGS 2 in structural and functional remodeling of uterine arteries during pregnancy. In contrast, RGS 5 absence increased vasoconstriction only in the peripartum period. Conclusions These data together indicate that RGS 2 plays a critical role in the structural and functional remodeling of uterine arteries to impact uterine blood flow during pregnancy. Targeting the signaling pathway regulated by RGS 2 may therefore be a therapeutic strategy for ameliorating utero-placental perfusion disorders during pregnancy.
Collapse
Affiliation(s)
- Jennifer N Koch
- 1 Department of Pharmacology and Physiology Drexel University College of Medicine Philadelphia PA
| | - Shelby A Dahlen
- 1 Department of Pharmacology and Physiology Drexel University College of Medicine Philadelphia PA
| | - Elizabeth A Owens
- 1 Department of Pharmacology and Physiology Drexel University College of Medicine Philadelphia PA
| | - Patrick Osei-Owusu
- 1 Department of Pharmacology and Physiology Drexel University College of Medicine Philadelphia PA
| |
Collapse
|
3
|
George T, Chakraborty M, Giembycz MA, Newton R. A bronchoprotective role for Rgs2 in a murine model of lipopolysaccharide-induced airways inflammation. Allergy Asthma Clin Immunol 2018; 14:40. [PMID: 30305828 PMCID: PMC6166284 DOI: 10.1186/s13223-018-0266-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 05/22/2018] [Indexed: 02/07/2023] Open
Abstract
Background Asthma exacerbations are associated with the recruitment of neutrophils to the lungs. These cells release proteases and mediators, many of which act at G protein-coupled receptors (GPCRs) that couple via Gq to promote bronchoconstriction and inflammation. Common asthma therapeutics up-regulate expression of the regulator of G protein signalling (RGS), RGS2. As RGS2 reduces signaling from Gq-coupled GPCRs, we have defined role(s) for this GTPase-activating protein in an acute neutrophilic model of lung inflammation. Methods Wild type and Rgs2−/− C57Bl6 mice were exposed to nebulized lipopolysaccharide (LPS). Lung function (respiratory system resistance and compliance) was measured using a SCIREQ flexivent small animal ventilator. Lung inflammation was assessed by histochemistry, cell counting and by cytokine and chemokine expression in bronchoalveolar lavage (BAL) fluid. Results Lipopolysaccharide inhalation induced transient airways hyperreactivity (AHR) and neutrophilic lung inflammation. While AHR and inflammation was greatest 3 h post-LPS exposure, BAL neutrophils persisted for 24 h. At 3 h post-LPS inhalation, multiple inflammatory cytokines (CSF2, CSF3, IL6, TNF) and chemokines (CCL3, CCL4, CXCL1, CXCL2) were highly expressed in the BAL fluid, prior to declining by 24 h. Compared to wild type counterparts, Rgs2−/− mice developed significantly greater airflow resistance in response to inhaled methacholine (MCh) at 3 h post-LPS exposure. At 24 h post-LPS exposure, when lung function was recovering in the wild type animals, MCh-induced resistance was increased, and compliance decreased, in Rgs2−/− mice. Thus, Rgs2−/− mice show AHR and stiffer lungs 24 h post-LPS exposure. Histological markers of inflammation, total and differential cell counts, and major cytokine and chemokine expression in BAL fluid were similar between wild type and Rgs2−/− mice. However, 3 and 24 h post-LPS exposure, IL12B expression was significantly elevated in BAL fluid from Rgs2−/− mice compared to wild type animals. Conclusions While Rgs2 is bronchoprotective in acute neutrophilic inflammation, no clear anti-inflammatory effect was apparent. Nevertheless, elevated IL12B expression in Rgs2−/− animals raises the possibility that RGS2 could dampen Th1 responses. These findings indicate that up-regulation of RGS2, as occurs in response to inhaled corticosteroids and long-acting β2-adrenoceptor agonists, may be beneficial in acute neutrophilic exacerbations of airway disease, including asthma. Electronic supplementary material The online version of this article (10.1186/s13223-018-0266-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Tresa George
- 1Airways Inflammation Research Group, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB T2N 4Z6 Canada
| | - Mainak Chakraborty
- 2Immunology Research Group, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB T2N 4Z6 Canada
| | - Mark A Giembycz
- 1Airways Inflammation Research Group, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB T2N 4Z6 Canada
| | - Robert Newton
- 1Airways Inflammation Research Group, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB T2N 4Z6 Canada
| |
Collapse
|
4
|
Lewis S, Little R, Baudoin F, Prehar S, Neyses L, Cartwright EJ, Austin C. Acute inhibition of PMCA4, but not global ablation, reduces blood pressure and arterial contractility via a nNOS-dependent mechanism. J Cell Mol Med 2017; 22:861-872. [PMID: 29193716 PMCID: PMC5783868 DOI: 10.1111/jcmm.13371] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2017] [Accepted: 07/28/2017] [Indexed: 12/30/2022] Open
Abstract
Cardiovascular disease is the world's leading cause of morbidity and mortality, with high blood pressure (BP) contributing to increased severity and number of adverse outcomes. Plasma membrane calcium ATPase 4 (PMCA4) has been previously shown to modulate systemic BP. However, published data are conflicting, with both overexpression and inhibition of PMCA4 in vivo shown to increase arterial contractility. Hence, our objective was to determine the role of PMCA4 in the regulation of BP and to further understand how PMCA4 functionally regulates BP using a novel specific inhibitor to PMCA4, aurintricarboxylic acid (ATA). Our approach assessed conscious BP and contractility of resistance arteries from PMCA4 global knockout (PMCA4KO) mice compared to wild‐type animals. Global ablation of PMCA4 had no significant effect on BP, arterial structure or isolated arterial contractility. ATA treatment significantly reduced BP and arterial contractility in wild‐type mice but had no significant effect in PMCA4KO mice. The effect of ATAin vivo and ex vivo was abolished by the neuronal nitric oxide synthase (nNOS) inhibitor Vinyl‐l‐NIO. Thus, this highlights differences in the effects of PMCA4 ablation and acute inhibition on the vasculature. Importantly, for doses here used, we show the vascular effects of ATA to be specific for PMCA4 and that ATA may be a further experimental tool for elucidating the role of PMCA4.
Collapse
Affiliation(s)
- Sophronia Lewis
- Faculty of Biology, Medicine and Health, Division of Cardiovascular Sciences, The University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Robert Little
- Faculty of Biology, Medicine and Health, Division of Cardiovascular Sciences, The University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Florence Baudoin
- Faculty of Biology, Medicine and Health, Division of Cardiovascular Sciences, The University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Sukhpal Prehar
- Faculty of Biology, Medicine and Health, Division of Cardiovascular Sciences, The University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Ludwig Neyses
- Faculty of Biology, Medicine and Health, Division of Cardiovascular Sciences, The University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Elizabeth J Cartwright
- Faculty of Biology, Medicine and Health, Division of Cardiovascular Sciences, The University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Clare Austin
- Faculty of Biology, Medicine and Health, Division of Cardiovascular Sciences, The University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| |
Collapse
|
5
|
Zhang S, Shi L, Ma H, Li H, Li Y, Lu Y, Wang Q, Li W. Dihydroartemisinin induces apoptosis in human gastric cancer cell line BGC-823 through activation of JNK1/2 and p38 MAPK signaling pathways. J Recept Signal Transduct Res 2016; 37:174-180. [DOI: 10.1080/10799893.2016.1203942] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Shuyi Zhang
- Endoscopy Center, Tianjin Union Medicine Center, Tianjin, China
| | - Lei Shi
- Endoscopy Center, Tianjin Union Medicine Center, Tianjin, China
| | - Hongwen Ma
- Endoscopy Center, Tianjin Union Medicine Center, Tianjin, China
| | - Hongzhou Li
- Endoscopy Center, Tianjin Union Medicine Center, Tianjin, China
| | - Yanru Li
- Endoscopy Center, Tianjin Union Medicine Center, Tianjin, China
| | - Ying Lu
- Endoscopy Center, Tianjin Union Medicine Center, Tianjin, China
| | - Qiaoping Wang
- Endoscopy Center, Tianjin Union Medicine Center, Tianjin, China
| | - Wen Li
- Endoscopy Center, Tianjin Union Medicine Center, Tianjin, China
| |
Collapse
|
6
|
Little R, Cartwright EJ, Neyses L, Austin C. Plasma membrane calcium ATPases (PMCAs) as potential targets for the treatment of essential hypertension. Pharmacol Ther 2016; 159:23-34. [PMID: 26820758 DOI: 10.1016/j.pharmthera.2016.01.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The incidence of hypertension, the major modifiable risk factor for cardiovascular disease, is increasing. Thus, there is a pressing need for the development of new and more effective strategies to prevent and treat hypertension. Development of these relies on a continued evolution of our understanding of the mechanisms which control blood pressure (BP). Resistance arteries are important in the regulation of total peripheral resistance and BP; changes in their structure and function are strongly associated with hypertension. Anti-hypertensives which both reduce BP and reverse changes in resistance arterial structure reduce cardiovascular risk more than therapies which reduce BP alone. Hence, identification of novel potential vascular targets which modify BP is important. Hypertension is a multifactorial disorder which may include a genetic component. Genome wide association studies have identified ATP2B1, encoding the calcium pump plasma membrane calcium ATPase 1 (PMCA1), as having a strong association with BP and hypertension. Knockdown or reduced PMCA1 expression in mice has confirmed a physiological role for PMCA1 in BP and resistance arterial regulation. Altered expression or inhibition of PMCA4 has also been shown to modulate these parameters. The mechanisms whereby PMCA1 and 4 can modulate vascular function remain to be fully elucidated but may involve regulation of intracellular calcium homeostasis and/or comprise a structural role. However, clear physiological links between PMCA and BP, coupled with experimental studies directly linking PMCA1 and 4 to changes in BP and arterial function, suggest that they may be important targets for the development of new pharmacological modulators of BP.
Collapse
Affiliation(s)
- Robert Little
- The Institute of Cardiovascular Sciences, The University of Manchester, UK
| | | | - Ludwig Neyses
- The Institute of Cardiovascular Sciences, The University of Manchester, UK
| | - Clare Austin
- Faculty of Health and Social Care, Edge Hill University, UK.
| |
Collapse
|