1
|
Shakori Poshteh S, Alipour S, Varamini P. Harnessing curcumin and nanotechnology for enhanced treatment of breast cancer bone metastasis. DISCOVER NANO 2024; 19:177. [PMID: 39527354 PMCID: PMC11554965 DOI: 10.1186/s11671-024-04126-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 10/14/2024] [Indexed: 11/16/2024]
Abstract
Breast cancer (BC) bone metastasis poses a significant clinical challenge due to its impact on patient prognosis and quality of life. Curcumin (CUR), a natural polyphenol compound found in turmeric, has shown potential in cancer therapy due to its anti-inflammatory, antioxidant, and anticancer properties. However, its metabolic instability and hydrophobicity have hindered its clinical applications, leading to a short plasma half-life, poor absorption, and low bioavailability. To enhance the drug-like properties of CUR, nanotechnology-based delivery strategies have been employed, utilizing polymeric, lipidic, and inorganic nanoparticles (NPs). These approaches have effectively overcome CUR's inherent limitations by enhancing its stability and cellular bioavailability both in vitro and in vivo. Moreover, targeting molecules with high selectivity towards bone metastasized breast cancer cells can be used for site specific delivery of curcumin. Alendronate (ALN), a bone-seeking bisphosphonate, is one such moiety with high selectivity towards bone and thus can be effectively used for targeted delivery of curcumin loaded nanocarriers. This review will detail the process of bone metastasis in BC, elucidate the mechanism of action of CUR, and assess the efficacy of nanotechnology-based strategies for CUR delivery. Specifically, it will focus on how these strategies enhance CUR's stability and improve targeted delivery approaches in the treatment of BC bone metastasis.
Collapse
Affiliation(s)
- Shiva Shakori Poshteh
- School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, 2006, Australia
| | - Shohreh Alipour
- Faculty of Pharmacy, Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
- Department of Drug and Food Control, Faculty of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Pegah Varamini
- School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, 2006, Australia.
- The University of Sydney Nano Institute, University of Sydney, Sydney, NSW, 2006, Australia.
| |
Collapse
|
2
|
Zhang J, Sun J, Li C, Qiao H, Hussain Z. Functionalization of curcumin nanomedicines: a recent promising adaptation to maximize pharmacokinetic profile, specific cell internalization and anticancer efficacy against breast cancer. J Nanobiotechnology 2023; 21:106. [PMID: 36964547 PMCID: PMC10039588 DOI: 10.1186/s12951-023-01854-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 03/09/2023] [Indexed: 03/26/2023] Open
Abstract
Owing to its diverse heterogeneity, aggressive nature, enormous metastatic potential, and high remission rate, the breast cancer (BC) is among the most prevalent types of cancer associated with high mortality. Curcumin (Cur) is a potent phytoconstituent that has gained remarkable recognition due to exceptional biomedical viability against a wide range of ailments including the BC. Despite exhibiting a strong anticancer potential, the clinical translation of Cur is restricted due to intrinsic physicochemical properties such as low aqueous solubility, chemical instability, low bioavailability, and short plasma half-life. To overcome these shortcomings, nanotechnology-aided developments have been extensively deployed. The implication of nanotechnology has pointedly improved the physicochemical properties, pharmacokinetic profile, cell internalization, and anticancer efficacy of Cur; however, majority of Cur-nanomedicines are still facing grandeur challenges. The advent of various functionalization strategies such as PEGylation, surface decoration with different moieties, stimuli-responsiveness (i.e., pH, light, temperature, heat, etc.), tethering of specific targeting ligand(s) based on the biochemical targets (e.g., folic acid receptors, transferrin receptors, CD44, etc.), and multifunctionalization (multiple functionalities) has revolutionized the fate of Cur-nanomedicines. This study ponders the biomedical significance of various Cur-nanomedicines and adaptable functionalizations for amplifying the physicochemical properties, cytotoxicity via induction of apoptosis, cell internalization, bioavailability, passive and active targeting to the tumor microenvironment (TME), and anticancer efficacy of the Cur while reversing the multidrug resistance (MDR) and reoccurrence in BC. Nevertheless, the therapeutic outcomes of Cur-nanomedicines against the BC have been remarkably improved after adaptation of various functionalizations; however, this evolving strategy still demands extensive research for scalable clinical translation.
Collapse
Affiliation(s)
- Jinku Zhang
- Department of Pathology, Baoding First Central Hospital, Baoding, 071000, Hebei, China.
| | - Jirui Sun
- Department of Pathology, Baoding First Central Hospital, Baoding, 071000, Hebei, China
| | - Chong Li
- Core Facility for Protein Research, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Haizhi Qiao
- Department of Pathology, Baoding First Central Hospital, Baoding, 071000, Hebei, China
| | - Zahid Hussain
- Department of Pharmaceutics and Pharmaceutical Technology, College of Pharmacy, University of Sharjah, 27272, Sharjah, United Arab Emirates
- Research Institute for Medical and Health Sciences, University of Sharjah, 27272, Sharjah, United Arab Emirates
| |
Collapse
|
3
|
The Effect of Curcumin-Loaded Glucan Nanoparticles on Immune Cells: Size as a Critical Quality Attribute. Pharmaceutics 2023; 15:pharmaceutics15020623. [PMID: 36839945 PMCID: PMC9959491 DOI: 10.3390/pharmaceutics15020623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 02/08/2023] [Accepted: 02/11/2023] [Indexed: 02/16/2023] Open
Abstract
Curcumin is known for its multiple health benefits, largely due to its antioxidant and anti-inflammatory properties. It has been extensively studied as a therapeutic agent, however, it does not have good clinical efficacy due to its poor water solubility and bioavailability. Despite accepting the encapsulation of this compound in polymeric particles as one of the most promising strategies to increase its therapeutic value, these nanoparticles have fallen short of expectations due to a lack of assessment of their possible adverse effects on the immune system. Therefore, in this work, we report on a new method to encapsulate curcumin into glucan nanoparticles and their effects on cells of the immune system were evaluated. Two different-sized curcumin-loaded glucan NPs (GluCur 100 and GluCur 380) were produced, each with an encapsulation efficiency close to 100%, and were characterized regarding their size distribution, surface properties, and morphology. The results revealed the greatest hemolytic effect and cytotoxicity for the smallest particles (100 nm) tested in human PBMCs and RAW 264.7 cells. Although GluCur 380 NPs showed a weaker ROS production, they were able to inhibit the production of NO by macrophages. Furthermore, we found that the coagulation time was not affected by both sized-particles as well as platelet function. Additionally, both nanoparticles induced lymphocyte proliferation and TNF-α secretion by Mo-DCs. In conclusion, this report emphasizes the importance of the immunotoxicity assessment and how this is dependent on the intrinsic properties of nanomaterials, hopefully contributing to increasing the safety of nanomedicines.
Collapse
|
4
|
Controlled release and targeted drug delivery with poly(lactic-co-glycolic acid) nanoparticles: reviewing two decades of research. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2022. [DOI: 10.1007/s40005-022-00584-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
5
|
Ziaei E, Emami J, Rezazadeh M, Kazemi M. Pulmonary Delivery of Docetaxel and Celecoxib by PLGA Porous Microparticles for Their Synergistic Effects Against Lung Cancer. Anticancer Agents Med Chem 2021; 22:951-967. [PMID: 34382530 DOI: 10.2174/1871520621666210811111152] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 05/31/2021] [Accepted: 06/05/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND using a combination of chemotherapeutic agents with novel drug delivery platforms to enhance the anticancer efficacy of the drug and minimizing the side effects, is very imperative for lung cancer treatments. OBJECTIVE The aim of the present study was to develop, characterize, and optimize porous poly (D, L-lactic-co-glycolic acid) (PLGA) microparticles for simultaneous delivery of docetaxel (DTX) and celecoxib (CXB) through the pulmonary route for lung cancer. METHODS Drug-loaded porous microparticles were prepared by an emulsion solvent evaporation method. The impact of various processing and formulation variables including PLGA amount, dichloromethane volume, homogenization speed, polyvinyl alcohol volume and concentration were assessed on entrapment efficiency, mean release time, particle size, mass median aerodynamic diameter, fine particle fraction and geometric standard deviation using a two-level factorial design. An optimized formulation was prepared and evaluated in terms of size and morphology using a scanning electron microscope. RESULTS FTIR, DSC, and XRD analysis confirmed drug entrapment and revealed no drug-polymer chemical interaction. Cytotoxicity of DTX along with CXB against A549 cells was significantly enhanced compared to DTX and CXB alone and the combination of DTX and CXB showed the greatest synergistic effect at a 1/500 ratio. CONCLUSION In conclusion, the results of the present study suggest that encapsulation of DTX and CXB in porous PLGA microspheres with desirable features are feasible and their pulmonary co-administration would be a promising strategy for the effective and less toxic treatment of various lung cancers.
Collapse
Affiliation(s)
- Elham Ziaei
- Department of Pharmaceutics, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, I.R.. Iran
| | - Jaber Emami
- Department of Pharmaceutics, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, I.R.. Iran
| | - Mahboubeh Rezazadeh
- Department of Pharmaceutics, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, I.R.. Iran
| | - Moloud Kazemi
- Nanotechnology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz. Iran
| |
Collapse
|
6
|
Jadon RS, Sharma G, Garg NK, Tandel N, Gajbhiye KR, Salve R, Gajbhiye V, Sharma U, Katare OP, Sharma M, Tyagi RK. Efficient in vitro and in vivo docetaxel delivery mediated by pH-sensitive LPHNPs for effective breast cancer therapy. Colloids Surf B Biointerfaces 2021; 203:111760. [PMID: 33872827 DOI: 10.1016/j.colsurfb.2021.111760] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 03/10/2021] [Accepted: 04/07/2021] [Indexed: 02/07/2023]
Abstract
The present study was designed to develop pH-sensitive lipid polymer hybrid nanoparticles (pHS-LPHNPs) for specific cytosolic-delivery of docetaxel (DTX). The pHS-LPHNPs-DTX formulation was prepared by self-assembled nano-precipitation technique and characterized for zeta potential, particle size, entrapment efficiency, polydispersity index (PDI), and in vitro drug release. In vitro cytotoxicity of pHS-LPHNPs-DTX was assessed on breast cancer cells (MDA-MB-231 and MCF-7) and compared with DTX-loaded conventional LPHNPs and bare DTX. In vitro cellular uptake in MDA-MB-231 cell lines showed better uptake of pHS-LPHNPs. Further, a significant reduction in the IC50 of pHS-LPHNPs-DTX against both breast cancer cells was observed. Flow cytometry results showed greater apoptosis in case of pHS-LPHNPs-DTX treated MDA-MB-231 cells. Breast cancer was experimentally induced in BALB/c female mice, and the in vivo efficacy of the developed pHS-LPHNPs formulation was assessed with respect to the pharmacokinetics, biodistribution in the vital organs (liver, kidney, heart, lungs, and spleen), percentage tumor burden, and survival of breast cancer-bearing animals. In vivo studies showed improved pharmacokinetic and target-specificity with minimum DTX circulation in the deep-seated organs in the case of pHS-LPHNPs-DTX compared to the LPHNPs-DTX and free DTX. Mice treated with pHS-LPHNPs-DTX exhibited a significantly lesser tumor burden than other treatment groups. Also, reduced distribution of DTX in the serum was evident for pHS-LPHNPs-DTX treated mice compared to the LPHNPs-DTX and free DTX. In essence, pHS-LPHNPs mediated delivery of DTX presents a viable platform for developing therapeutic-interventions against breast-cancer.
Collapse
Affiliation(s)
- Rajesh Singh Jadon
- School of Studies in Pharmaceutical Sciences, Jiwaji University, Gwalior, MP, 474002, India; Divine International Group of Institutions, Gwalior, MP, India
| | - Gajanand Sharma
- University Institute of Pharmaceutical Sciences, UGC Centre for Advanced Studies, Panjab University, CH, 160014, India
| | - Neeraj K Garg
- University Institute of Pharmaceutical Sciences, UGC Centre for Advanced Studies, Panjab University, CH, 160014, India
| | - Nikunj Tandel
- Institute of Science, Nirma University, Ahmedabad, GJ, 382481, India
| | - Kavita R Gajbhiye
- Poona College of Pharmacy, Bharati Vidyapeeth, Pune, MH, 411038, India
| | - Rajesh Salve
- Nanobioscience, Agharkar Research Institute, Pune, MH, 411004, India
| | - Virendra Gajbhiye
- Nanobioscience, Agharkar Research Institute, Pune, MH, 411004, India
| | - Ujjawal Sharma
- Department of Community Medicine & School of Public Health, PGIMER Chandigarh, India
| | - Om Prakash Katare
- University Institute of Pharmaceutical Sciences, UGC Centre for Advanced Studies, Panjab University, CH, 160014, India
| | - Manoj Sharma
- School of Studies in Pharmaceutical Sciences, Jiwaji University, Gwalior, MP, 474002, India.
| | - Rajeev K Tyagi
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, Vanderbilt University Medical Centre (VUMC), 2215 Garland Avenue, 1075 Lab Suite MRB IV, Nashville, TN, 37232, USA; Biomedical Parasitology and Nano-immunology Lab, CSIR Institute of Microbial Technology (IMTECH), CH, India.
| |
Collapse
|
7
|
Rawal S, Bora V, Patel B, Patel M. Surface-engineered nanostructured lipid carrier systems for synergistic combination oncotherapy of non-small cell lung cancer. Drug Deliv Transl Res 2020; 11:2030-2051. [PMID: 33215254 DOI: 10.1007/s13346-020-00866-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/07/2020] [Indexed: 12/24/2022]
Abstract
Nanoparticle-aided combination chemotherapy offers several advantages like ratiometric drug delivery, dose reduction, multi-targeted therapy, synergism, and overcoming multi-drug resistance. The current research was instigated to facilitate targeted and ratiometric co-delivery of docetaxel (DT) and curcumin (CR) through the development of folate (FA)-appended nanostructured lipid carriers (NLCs), i.e., FA-DTCR-NLCs to lung cancer cells. The FA-DTCR-NLCs were formulated by employing a scaleable and solvent-free high-pressure homogenization approach. The FA-DTCR-NLCs were evaluated for in vitro and in vivo characteristics using suitable analytical and statistical techniques. The FA-DTCR-NLCs demonstrated physicochemical properties and particokinetics suitable for targeted, ratiometric co-delivery of the anticancer agents. This was further affirmed by significantly better in vivo relative bioavailability of DT (24.85 fold) with FA-DTCR-NLCs as compared with Taxotere® (p < 0.05) and cell line studies. A significant tumor regression was observed from the results of tumor staging in a murine model of lung carcinoma (p < 0.05). Immunostaining of the tumor sections with tumor differentiation biomarkers suggested considerably higher apoptotic, anti-proliferative, anti-angiogenic, and anti-metastatic potential of FA-DTCR-NLCs compared with Taxotere®. In vivo toxicity assessment of the FA-DTCR-NLCs demonstrated a noteworthy reduction in DT associated side effects. The in vitro and in vivo pre-clinical findings prove the therapeutic and safety pre-eminence of FA-DTCR-NLCs for the treatment of NSCLC.
Collapse
Affiliation(s)
- Shruti Rawal
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, SG Highway Ahmedabad 382481, Gujarat, Chharodi, India
| | - Vivek Bora
- Department of Pharmacology, Institute of Pharmacy, Nirma University, SG Highway Ahmedabad 382481, Gujarat, Chharodi, India
| | - Bhoomika Patel
- Department of Pharmacology, Institute of Pharmacy, Nirma University, SG Highway Ahmedabad 382481, Gujarat, Chharodi, India
| | - Mayur Patel
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, SG Highway Ahmedabad 382481, Gujarat, Chharodi, India.
| |
Collapse
|
8
|
Colaço M, Marques AP, Jesus S, Duarte A, Borges O. Safe-by-Design of Glucan Nanoparticles: Size Matters When Assessing the Immunotoxicity. Chem Res Toxicol 2020; 33:915-932. [PMID: 32138518 DOI: 10.1021/acs.chemrestox.9b00467] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Glucan (from Alcaligenes faecalis) is a polymer composed of β-1,3-linked glucose residues, and it has been addressed in different medical fields, namely in nanotechnology, as a vaccine or a drug delivery system. However, due to their small size, nanomaterials may present new risks and uncertainties. Thus, this work aims to describe the production of glucan nanoparticles (NPs) with two different sizes, and to evaluate the influence of the NPs size on immunotoxicity. Results showed that, immediately after production, glucan NPs presented average sizes of 129.7 ± 2.5 and 355.4 ± 41.0 nm. Glucan NPs of 130 nm presented greater ability to decrease human peripheral blood mononuclear cells and macrophage viability and to induce reactive oxygen species production than glucan NPs of 355 nm. Both NP sizes caused hemolysis and induced a higher metabolic activity in lymphocytes, although the concentration required to observe such effect was lower for the 130 nm glucan NPs. Regarding pro-inflammatory cytokines, only the larger glucan NPs (355 nm) were able to induce the secretion of IL-6 and TNF-α, probably due to their recognition by dectin-1. This higher immunomodulatory effect of the larger NPs was also observed in its ability to stimulate the production of nitric oxide (NO) and IL-1β. On the contrary, a small amount of Glu 130 NPs inhibited NO production. In conclusion, on the safe-by-design of glucan NPs, the size of the particles should be an important critical quality attribute to guarantee the safety and effectiveness of the nanomedicine.
Collapse
Affiliation(s)
- Mariana Colaço
- Center for Neuroscience and Cell Biology, University of Coimbra, 3000-548 Coimbra, Portugal.,Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Ana P Marques
- Center for Neuroscience and Cell Biology, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Sandra Jesus
- Center for Neuroscience and Cell Biology, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Alana Duarte
- Center for Neuroscience and Cell Biology, University of Coimbra, 3000-548 Coimbra, Portugal.,Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Olga Borges
- Center for Neuroscience and Cell Biology, University of Coimbra, 3000-548 Coimbra, Portugal.,Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| |
Collapse
|
9
|
Liu Z, Huang P, Law S, Tian H, Leung W, Xu C. Preventive Effect of Curcumin Against Chemotherapy-Induced Side-Effects. Front Pharmacol 2018; 9:1374. [PMID: 30538634 PMCID: PMC6277549 DOI: 10.3389/fphar.2018.01374] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2018] [Accepted: 11/08/2018] [Indexed: 12/29/2022] Open
Abstract
Cancer is still a severe threat to the health of people worldwide. Chemotherapy is one of main therapeutic approaches to combat cancer. However, chemotherapy only has a limited success with severe side effects, especially causing damage to normal tissues such as bone marrow, gastrointestine, heart, liver, renal, neuron, and auditory tissues, etc. The side-effects limit clinical outcome of chemotherapy and lower patients’ quality of life, and even make many patients discontinue the chemotherapy. Thus, there is a need to explore effective adjuvant strategies to prevent and reduce the chemotherapy-induced side effects. Naturally occurring products provide a rich source for exploring effective adjuvant agents to prevent and reduce the side effects in anticancer chemotherapy. Curcumin is an active compound from natural plant Curcuma longa L., which is widely used as a coloring and flavoring agent in food industry and a herbal medicine in Asian countries for thousands of years to treat vomiting, headache, diarrhea, etc. Modern pharmacological studies have revealed that curcumin has strong antioxidative, anti-microbial, anti-inflammatory and anticancer activities. Growing evidence shows that curcumin is able to prevent carcinogenesis, sensitize cancer cells to chemotherapy, and protect normal cells from chemotherapy-induced damages. In the present article, we review the preventive effect of curcumin against chemotherapy-induced myelosuppression, gastrointestinal toxicity, cardiotoxicity, hepatotoxicity, nephrotoxicity, neurotoxicity, ototoxicity, and genotoxicity, and discuss its action mechanisms.
Collapse
Affiliation(s)
- Zhijun Liu
- Key Laboratory of Molecular Target and Clinical Pharmacology, State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Pengyun Huang
- Faculty of Medicine, School of Chinese Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong.,Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, Shenzhen, China
| | - Siukan Law
- Faculty of Medicine, School of Chinese Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong.,Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, Shenzhen, China
| | - Haiyan Tian
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University, Guangzhou, China
| | - Wingnang Leung
- Division of Chinese Medicine, School of Professional and Continuing Education, The University of Hong Kong, Pokfulam, Hong Kong
| | - Chuanshan Xu
- Key Laboratory of Molecular Target and Clinical Pharmacology, State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China.,Faculty of Medicine, School of Chinese Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong.,Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, Shenzhen, China
| |
Collapse
|
10
|
Varshosaz J, Dehkordi AJ, Setayesh S. Magnetic polyvinyl caprolactam–polyvinyl acetate–polyethylene glycol micelles for docetaxel delivery in breast cancer: an in vitro study on two cell lines of breast cancer. Pharm Dev Technol 2016; 22:659-668. [DOI: 10.1080/10837450.2016.1189562] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Jaleh Varshosaz
- Novel Drug Delivery Systems Research Center, Department of Pharmaceutics, School of Pharmacy, Isfahan University of Medical Science, Isfahan, Islamic Republic of Iran
| | - Abbas Jafarian Dehkordi
- Department of Biotechnology, Isfahan University of Medical Sciences, Isfahan, Islamic Republic of Iran
| | - Sahar Setayesh
- Department of Pharmaceutics, Isfahan University of Medical Sciences, Isfahan, Islamic Republic of Iran
| |
Collapse
|