1
|
Rehman S, Jamil QA, Noreen S, Ashraf MA, Madni A, Mahmood H, Shoukat H, Raza MR. Preparation and Evaluation of pH-Sensitive Chitosan/Alginate Nanohybrid Mucoadhesive Hydrogel Beads: An Effective Approach to a Gastro-Retentive Drug Delivery System. Pharmaceutics 2024; 16:1451. [PMID: 39598574 PMCID: PMC11597505 DOI: 10.3390/pharmaceutics16111451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 11/06/2024] [Accepted: 11/08/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUND Despite extensive research over the decades, cancer therapy is still a great challenge because of the non-specific delivery of chemotherapeutic agents, which could be overcome by limiting the distribution of chemotherapeutic agents toward cancer cells. OBJECTIVE To reduce the cytolytic effects against cancer cells, graphene oxide (GO) nanoparticles (NPs) can load anticancer medicines and genetic tools. METHODOLOGY During the current study, folic-acid-conjugated graphene oxide (Fa-GO) hybrid mucoadhesive chitosan (CS)-based hydrogel beads were fabricated through an "ion-gelation process", which allows for regulated medication release at malignant pH. RESULTS The fabricated chitosan-alginate (SA-CS) hydrogel beads were examined using surface morphology, optical microscopy, XRD, FTIR, and homogeneity analysis techniques. The size analysis indicated that the size of the Fa-GO was up to 554.2 ± 95.14 nm, whereas the beads were of a micrometer size. The folic acid conjugation was confirmed by NMR. The results showed that the craggy edges of the graphene oxide were successfully encapsulated in a polymeric matrix. The mucoadhesive properties were enhanced with the increase in the CS concentration. The nanohybrid SA-CS beads exhibited good swelling properties, and the drug release was 68.29% at pH 5.6 during a 24 h investigation. The accelerated stability study, according to ICH guidelines, indicated that the hydrogel beads have a shelf-life of more than two years. CONCLUSIONS Based on the achieved results, it can be concluded that this novel gastro-retentive delivery system may be a viable and different way to improve the stomach retention of anticancer agents and enhance their therapeutic effectiveness.
Collapse
Affiliation(s)
- Sadia Rehman
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan; (S.R.); (A.M.); (H.S.)
| | - Qazi Adnan Jamil
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan; (S.R.); (A.M.); (H.S.)
| | - Sobia Noreen
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan; (S.R.); (A.M.); (H.S.)
- Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 52, 6020 Innsbruck, Austria
| | - Muhammad Azeem Ashraf
- Department of Supply Chain, University of Management and Technology Lahore, Lahore 54770, Pakistan;
| | - Asadullah Madni
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan; (S.R.); (A.M.); (H.S.)
| | - Hassan Mahmood
- Linguistics & Literature Department, COMSATS University Islamabad, Lahore Campus, Lahore 54000, Pakistan;
| | - Hina Shoukat
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan; (S.R.); (A.M.); (H.S.)
| | - Muhammad Rafi Raza
- Department of Mechanical Engineering, COMSATS University Islamabad, Sahiwal Campus, Sahiwal 57000, Pakistan;
| |
Collapse
|
2
|
Voblikova T, Laricheva K. Bifidobacteria Encapsulation and Viability of Probiotic Culture during Oral Delivery in a Milk Drink Matrix. INTERNATIONAL JOURNAL OF FOOD SCIENCE 2023; 2023:8484835. [PMID: 37547341 PMCID: PMC10400300 DOI: 10.1155/2023/8484835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 04/19/2023] [Accepted: 05/15/2023] [Indexed: 08/08/2023]
Abstract
The use of an alginate hydrogel exclusively for the immobilization of bifidobacteria during oral delivery led to a decrease in the total number of bifidobacteria to 4.0 lg CFU/ml in pH gradients in models of the stomach and intestines, which required clarification of the composition of the protective coating. The introduction of resistant starch into the composition of the microcapsule contributed to the preservation of the viability of immobilized bifidobacteria up to 87% of the initial concentration when passing through the model environment simulating the human digestion system. The introduction of sodium carboxymethylcellulose into the composition of the hydrogel contributed to the regulation of the degradation of the polymer matrix and the controlled release of bifidobacteria. The use of sodium carboxymethylcellulose 0.5% in the formation of a polymer microcapsule provided the maximum encapsulation efficiency of 93.2% and the maximum decay rate of bacteria-loaded microcapsules of 95.7%. The modified alginate matrix contributes to maintaining the level of viable cells of probiotic microorganisms (Bifidobacterium bifidum 791) of at least 108 CFU/g when stored for three weeks. As a result of the research, a system for oral delivery of immobilized bifidobacteria in the structure of microparticles with a closed surface in the matrix of a milk drink has been developed, which increases the effectiveness of probiotics for human health in the composition of food products.
Collapse
Affiliation(s)
- Tatiana Voblikova
- Yaroslav-the-Wise Novgorod State University, 173003 Veliky Novgorod, Russia
| | - Kristina Laricheva
- Yaroslav-the-Wise Novgorod State University, 173003 Veliky Novgorod, Russia
| |
Collapse
|
3
|
Radu ER, Voicu SI, Thakur VK. Polymeric Membranes for Biomedical Applications. Polymers (Basel) 2023; 15:polym15030619. [PMID: 36771921 PMCID: PMC9919920 DOI: 10.3390/polym15030619] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 01/16/2023] [Accepted: 01/21/2023] [Indexed: 01/27/2023] Open
Abstract
Polymeric membranes are selective materials used in a wide range of applications that require separation processes, from water filtration and purification to industrial separations. Because of these materials' remarkable properties, namely, selectivity, membranes are also used in a wide range of biomedical applications that require separations. Considering the fact that most organs (apart from the heart and brain) have separation processes associated with the physiological function (kidneys, lungs, intestines, stomach, etc.), technological solutions have been developed to replace the function of these organs with the help of polymer membranes. This review presents the main biomedical applications of polymer membranes, such as hemodialysis (for chronic kidney disease), membrane-based artificial oxygenators (for artificial lung), artificial liver, artificial pancreas, and membranes for osseointegration and drug delivery systems based on membranes.
Collapse
Affiliation(s)
- Elena Ruxandra Radu
- Department of Analytical Chemistry and Environmental Engineering, University Politehnica of Bucharest, 011061 Bucharest, Romania
- Advanced Polymers Materials Group, University Politehnica of Bucharest, 011061 Bucharest, Romania
| | - Stefan Ioan Voicu
- Department of Analytical Chemistry and Environmental Engineering, University Politehnica of Bucharest, 011061 Bucharest, Romania
- Advanced Polymers Materials Group, University Politehnica of Bucharest, 011061 Bucharest, Romania
- Correspondence: (S.I.V.); (V.K.T.)
| | - Vijay Kumar Thakur
- Biorefining and Advanced Materials Research Center, Scotland’s Rural College (SRUC), Kings Buildings, Edinburgh EH9 3JG, UK
- School of Engineering, University of Petroleum & Energy Studies (UPES), Dehradun 248007, Uttarakhand, India
- Centre for Research & Development, Chandigarh University, Mohali 140413, Punjab, India
- Correspondence: (S.I.V.); (V.K.T.)
| |
Collapse
|
4
|
On-demand therapeutic delivery of hydrogen sulfide aided by biomolecules. J Control Release 2022; 352:586-599. [PMID: 36328076 DOI: 10.1016/j.jconrel.2022.10.055] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 10/22/2022] [Accepted: 10/26/2022] [Indexed: 11/06/2022]
Abstract
Hydrogen sulfide (H2S), known as the third gasotransmitter, exerts various physiological functions including cardiac protection, angiogenesis, anti-inflammatory, and anti-cancer capability. Given its promising therapeutic potential as well as severe perniciousness if improper use, the sustained and tunable H2S delivery systems are highly required for H2S-based gas therapy with enhanced bioactivity and reduced side effects. To this end, a series of stimuli-responsive compounds capable of releasing H2S (termed H2S donors) have been designed over the past two decades to mimic the endogenous generation of H2S and elucidate the biological functions. Further to improve the stability of H2S donors and achieve the targeted delivery, various delivery systems have been constructed. In this review, we focus on the recent advances of an emerging subset, biomolecular-based H2S delivery systems, which combine H2S donors with biomolecular vectors including polysaccharide, peptide, and protein. We demonstrated their basic structures, building strategies, and therapeutic applications respectively to unfold their inherent merits endued by biomolecules including biocompatibility, biodegradability as well as expansibility. The varied development potentials of biomolecular-based H2S delivery systems based on their specific properties are also discussed. At the end, brief future outlooks and upcoming challenges are presented as well.
Collapse
|
5
|
Dey M, Ghosh B, Giri TK. Enhanced intestinal stability and pH sensitive release of quercetin in GIT through gellan gum hydrogels. Colloids Surf B Biointerfaces 2020; 196:111341. [DOI: 10.1016/j.colsurfb.2020.111341] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 05/16/2020] [Accepted: 08/13/2020] [Indexed: 11/17/2022]
|
6
|
Lee T, Chang YH. Structural, physicochemical, and in-vitro release properties of hydrogel beads produced by oligochitosan and de-esterified pectin from yuzu (Citrus junos) peel as a quercetin delivery system for colon target. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2020.106086] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
7
|
Sohail R, Abbas SR. Evaluation of amygdalin-loaded alginate-chitosan nanoparticles as biocompatible drug delivery carriers for anticancerous efficacy. Int J Biol Macromol 2020; 153:36-45. [PMID: 32097740 DOI: 10.1016/j.ijbiomac.2020.02.191] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 02/17/2020] [Accepted: 02/17/2020] [Indexed: 01/17/2023]
Abstract
Amygdalin, despite possessing anticancerous properties, has been viewed as a controversial choice due to the presence of the cyanide group. Here, we synthesise and investigate the potential of alginate-chitosan nanoparticles (ACNPs) as drug delivery agents for amygdalin encapsulation and its delivery to cancer cells. Amygdalin loaded ACNPs were made with both anionic and cationic outer layer to further investigate charge dependency on drug delivery and cytotoxicity. ACNPs encapsulating amygdalin were monodisperse, colloidally stable with ~90% drug encapsulation efficiency and were entirely made from natural materials. The nanoparticles exhibited sustained drug release for a duration of 10 h and significant swelling rates in neutral and slightly acidic environments. The ACNPs successfully adhered to porcine mucin type II when assessed for its mucoadhesion and shown to transmigrate with an average velocity of 1.68 μm/s in uncoated channels, under biomimicked flow conditions. To investigate charge dependency on drug delivery and cytotoxicity, amygdalin loaded ACNPs were made with both anionic and cationic outer layer and assessed. ACNPs demonstrated greater yet sustained anti-cancerous effect on H1299 cell lines in a dose-dependent manner than free amygdalin suggesting greater cellular uptake of the former. In conclusion, biocompatible and biodegradable alginate-chitosan nanoparticles can be used as an effective drug delivery system for sustained and controlled amygdalin release with its improved cytotoxic effect on cancerous cells while protecting normal cells and tissues.
Collapse
Affiliation(s)
- Rabia Sohail
- Department of Industrial Biotechnology, Atta ur Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad 44000, Pakistan
| | - Shah Rukh Abbas
- Department of Industrial Biotechnology, Atta ur Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad 44000, Pakistan.
| |
Collapse
|
8
|
Matai I, Garg M, Rana K, Singh S. Polydopamine functionalized hydrogel beads as magnetically separable antibacterial materials. RSC Adv 2019; 9:13444-13457. [PMID: 35519566 PMCID: PMC9063863 DOI: 10.1039/c9ra00623k] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 04/18/2019] [Indexed: 12/11/2022] Open
Abstract
In the present study, magnetically separable hydrogel beads of ionically cross-linked alginate were functionalized with polydopamine (PDA). The rationale behind this was to enhance the structural stability and antibacterial profile of PDA/Alg/Fe3O4 beads (K3). Incorporation of superparamagnetic magnetite (Fe3O4) nanoparticles endowed the hydrogel beads with magnetism. X-ray diffraction (XRD) analysis revealed the successful formation of pure Alg/Fe3O4 nanoparticles having an inverse spinel structure. Vibrating sample magnetometry (VSM) confirmed their superparamagnetic behaviour with Ms values of 36.18 and 30.46 emu g−1 at 5 and 300 K, respectively. High resolution-transmission electron microscopy (HR-TEM) images showed alginate capping and the size of the Alg/Fe3O4 nanoparticles (∼8 nm). The successful deposition of PDA granules on the K3 bead surface was verified by field emission-scanning electron microscopy (FE-SEM). The PDA functionalization was further justified by VSM, XRD and Fourier-transform infrared spectroscopy (FT-IR). During swelling experiments, K3 beads displayed appreciable structural stability compared to bare/non-functionalized beads. Wettability studies revealed K3 beads to be hydrophilic with a contact angle of ∼55°. Rheological parameters including storage modulus (G′) and shear viscosity of K3 increased upon PDA functionalization. During antibacterial tests, K3 strongly inhibited E. coli, S. typhi, S. aureus and L. monocytogenes in a concentration and time dependent manner. Fluorescence staining experiments showed that K3 could greatly alter the bacterial membrane integrity. Reusability experiments with K3 beads substantiated their effective broad-spectrum antibacterial performance for three consecutive cycles. Surface functionalization with polydopamine augments the structural stability and antibacterial profile of magnetic hydrogel beads.![]()
Collapse
Affiliation(s)
- Ishita Matai
- Central Scientific Instruments Organization (CSIR-CSIO)
- Chandigarh-160030
- India
- Academy of Scientific and Innovative Research
- CSIR-CSIO
| | - Mayank Garg
- Central Scientific Instruments Organization (CSIR-CSIO)
- Chandigarh-160030
- India
- Academy of Scientific and Innovative Research
- CSIR-CSIO
| | - Kajal Rana
- Central Scientific Instruments Organization (CSIR-CSIO)
- Chandigarh-160030
- India
| | - Suman Singh
- Central Scientific Instruments Organization (CSIR-CSIO)
- Chandigarh-160030
- India
- Academy of Scientific and Innovative Research
- CSIR-CSIO
| |
Collapse
|
9
|
Mukherjee D, Azamthulla M, Santhosh S, Dath G, Ghosh A, Natholia R, Anbu J, Teja BV, Muzammil KM. Development and characterization of chitosan-based hydrogels as wound dressing materials. J Drug Deliv Sci Technol 2018. [DOI: 10.1016/j.jddst.2018.06.008] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
10
|
Bal A, Özkahraman B, Özbaş Z. Preparation and characterization of pH responsive poly(methacrylic acid-acrylamide-N-hydroxyethyl acrylamide) hydrogels for drug delivery systems. J Appl Polym Sci 2015. [DOI: 10.1002/app.43226] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Ayça Bal
- Faculty of Engineering, Department of Chemical Engineering; Istanbul University; Avcılar Istanbul 34320 Turkey
| | - Bengi Özkahraman
- Faculty of Engineering, Department of Polymer Engineering; Hitit University; Çorum 19030 Turkey
| | - Zehra Özbaş
- Faculty of Engineering, Department of Chemical Engineering, Çankırı Karatekin University; Çankırı 18100 Turkey
| |
Collapse
|
11
|
Tavakol M, Vasheghani-Farahani E, Hashemi-Najafabadi S. The effect of polymer and CaCl 2 concentrations on the sulfasalazine release from alginate-N,O-carboxymethyl chitosan beads. Prog Biomater 2013; 2:10. [PMID: 29470666 PMCID: PMC5151116 DOI: 10.1186/2194-0517-2-10] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2012] [Accepted: 03/21/2013] [Indexed: 11/10/2022] Open
Abstract
In this study, pH-sensitive blended polymeric beads were prepared by ionic gelation of mixed alginate and N,O-carboxymethyl chitosan (NOCC) solutions in aqueous media containing calcium chloride. To prepare drug-loaded beads, sulfasalazine (SA) as a model drug was added to the initial aqueous polymer solution. These beads were characterized and evaluated in vitro as potential carriers for colon-specific drug delivery. A 32 full factorial experimental design was employed to evaluate the effect of polymer and CaCl2 concentrations on swelling and drug release behavior of the beads in simulated gastrointestinal tract fluid. It was found that the rate of swelling and drug release decreased significantly with increasing polymer and CaCl2 concentrations, but polymer concentration was more effective than CaCl2 concentration. The beads prepared using 4.5% polymer concentration and 4% CaCl2 concentration retained approximately 60% of the loaded drug before approaching the simulated colonic fluid. Based on the results, the alginate-NOCC beads prepared with high polymer concentration could be potentially suitable polymeric carriers for colon-specific delivery of SA.
Collapse
Affiliation(s)
- Moslem Tavakol
- Biotechnology Group, Faculty of Chemical Engineering, Tarbiat Modares University, P.O. Box 14115-143, Tehran, Iran
| | - Ebrahim Vasheghani-Farahani
- Biotechnology Group, Faculty of Chemical Engineering, Tarbiat Modares University, P.O. Box 14115-143, Tehran, Iran.
| | - Sameereh Hashemi-Najafabadi
- Biotechnology Group, Faculty of Chemical Engineering, Tarbiat Modares University, P.O. Box 14115-143, Tehran, Iran
| |
Collapse
|
12
|
Fonseca AC, Ferreira P, Cordeiro RA, Mendonça PV, Góis JR, Gil MH, Coelho JFJ. Drug Delivery Systems for Predictive Medicine: Polymers as Tools for Advanced Applications. NEW STRATEGIES TO ADVANCE PRE/DIABETES CARE: INTEGRATIVE APPROACH BY PPPM 2013. [DOI: 10.1007/978-94-007-5971-8_16] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
13
|
Gao X, He C, ZHUANG X, ZHAO C, XIAO C, CHEN X. SYNTHESIS AND SWELLING BEHAVIOR OF DEGRADABLE pH-SENSITIVE HYDROGELS COMPOSED OF POLY(L-GLUTAMIC ACID) AND POLY(ACRYLIC ACID). ACTA POLYM SIN 2011. [DOI: 10.3724/sp.j.1105.2011.10118] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
14
|
Ulery BD, Nair LS, Laurencin CT. Biomedical Applications of Biodegradable Polymers. JOURNAL OF POLYMER SCIENCE. PART B, POLYMER PHYSICS 2011; 49:832-864. [PMID: 21769165 PMCID: PMC3136871 DOI: 10.1002/polb.22259] [Citation(s) in RCA: 1233] [Impact Index Per Article: 88.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Utilization of polymers as biomaterials has greatly impacted the advancement of modern medicine. Specifically, polymeric biomaterials that are biodegradable provide the significant advantage of being able to be broken down and removed after they have served their function. Applications are wide ranging with degradable polymers being used clinically as surgical sutures and implants. In order to fit functional demand, materials with desired physical, chemical, biological, biomechanical and degradation properties must be selected. Fortunately, a wide range of natural and synthetic degradable polymers has been investigated for biomedical applications with novel materials constantly being developed to meet new challenges. This review summarizes the most recent advances in the field over the past 4 years, specifically highlighting new and interesting discoveries in tissue engineering and drug delivery applications.
Collapse
Affiliation(s)
- Bret D. Ulery
- Department of Orthopaedic Surgery, New England Musculoskeletal Institute, University of Connecticut Health Center, Farmington, Connecticut 06030
- Institute of Regenerative Engineering, University of Connecticut Health Center, Farmington, Connecticut 06030
| | - Lakshmi S. Nair
- Department of Orthopaedic Surgery, New England Musculoskeletal Institute, University of Connecticut Health Center, Farmington, Connecticut 06030
- Institute of Regenerative Engineering, University of Connecticut Health Center, Farmington, Connecticut 06030
- Department of Chemical, Materials & Biomolecular Engineering, University of Connecticut, Storrs, Connecticut 06268
| | - Cato T. Laurencin
- Department of Orthopaedic Surgery, New England Musculoskeletal Institute, University of Connecticut Health Center, Farmington, Connecticut 06030
- Institute of Regenerative Engineering, University of Connecticut Health Center, Farmington, Connecticut 06030
- Department of Chemical, Materials & Biomolecular Engineering, University of Connecticut, Storrs, Connecticut 06268
| |
Collapse
|