1
|
Li M, Wei CB, Li HF, He K, Bai RJ, Zhang FJ. Osteopontin inhibits autophagy via CD44 and avβ3 integrin and promotes cell proliferation in osteoarthritic fibroblast-like synoviocytes. BMC Musculoskelet Disord 2025; 26:274. [PMID: 40102843 PMCID: PMC11916941 DOI: 10.1186/s12891-025-08509-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 03/07/2025] [Indexed: 03/20/2025] Open
Abstract
OBJECTIVE Osteoarthritis (OA) is closely related to aging, and autophagy is implicated in the retardation of aging. Activated synoviocytes play important roles in OA; the synoviocytes could produce osteopontin (OPN) and its main receptors CD44 and integrin, which are all involved in OA. The purpose of this study is to investigate whether OPN has an effect on autophagy in osteoarthritic synoviocytes. METHODS We cultured human OA fibroblast-like synoviocytes (FLS) and treated them with rhOPN and antibodies against CD44 and CD51/61 (αvβ3 integrin) or isotype IgG to block the interaction between receptors and ligands. Infection with lentivirus mRFP-GFP-LC3, laser confocal imaging and Western blotting were used to determine changes in the expression of autophagy markers, and cell proliferation of FLS was assessed with a CCK-8 assay. RESULTS Our results showed the expression level of autophagy marker protein LC3 II and the mRFP-GFP-LC3 puncta were significantly decreased after treatment with rhOPN when compared with the control group, when the FLS were incubated with antibodies against CD44 or CD51/61 (αvβ3 integrin) or with control isotype IgG for 1 h, followed by rhOPN treatment for 48 h, rhOPN could suppress the relative expression of LC3 II and Beclin1 via integrin and CD44 in the FLS, CCK-8 assay also showed that rhOPN significantly increased the cell proliferation and viability of FLS. CONCLUSIONS OPN could inhibit autophagy via CD44 and αvβ3 integrin and promote the proliferation of FLS, playing an important role in OA synovitis.
Collapse
Affiliation(s)
- Min Li
- Department of Orthopaedics, Wuxi Ninth People's Hospital, Soochow University, 999 Liangxi Road, Wuxi, Jiangsu, 214000, China
| | - Chang-Bao Wei
- Department of Orthopaedics, Wuxi Ninth People's Hospital, Soochow University, 999 Liangxi Road, Wuxi, Jiangsu, 214000, China
| | - Hai-Feng Li
- Department of Orthopaedics, Wuxi Ninth People's Hospital, Soochow University, 999 Liangxi Road, Wuxi, Jiangsu, 214000, China
| | - Ke He
- Hunan Key Laboratory of Joint Degeneration and Injury, Changsha, China
| | - Rui-Jun Bai
- Department of Orthopaedics, Wuxi Ninth People's Hospital, Soochow University, 999 Liangxi Road, Wuxi, Jiangsu, 214000, China.
| | - Fang-Jie Zhang
- Department of Emergency Medicine, Xiangya Hospital, Central South University, No.87 Xiangya Road, Changsha, Hunan, 410008, China.
- National Clinical Research Center for Geriatric Disorders (Xiangya Hospital), No.87 Xiangya Road, Changsha, Hunan, 410008, China.
| |
Collapse
|
2
|
Thudium CS, Rasmussen S, Karsdal MA, Bay-Jensen AC. Association between type III collagen degradation and local tissue damage of a single joint. OSTEOARTHRITIS AND CARTILAGE OPEN 2024; 6:100527. [PMID: 39502930 PMCID: PMC11535998 DOI: 10.1016/j.ocarto.2024.100527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 10/04/2024] [Indexed: 11/08/2024] Open
Abstract
Objective The development of disease-modifying drugs is limited by OA's heterogeneity and the challenge of defining clinical endpoints. Serological biomarkers are considered potential surrogate endpoints, but their contribution from single joints to systemic levels in OA patients is unclear. In this exploratory study we longitudinally assessed systemic biomarker levels' response to tissue damage and healing before and after surgery in patients undergoing knee or hip joint replacement revision for aseptic failure. Patients with chronic pain associated with a prior hip or knee arthroplasty, but not receiving revision surgery were included as control. Method The serological biomarker of MMP mediated type III collagen degradation C3M, associated with synovial tissue degradation, was measured at baseline before revision surgery, after revision surgery and at a 6-month follow-up in 48 patients with aseptic loosening of a knee or hip prosthesis and in 18 patients with chronic pain from a hip or knee prosthesis. Longitudinal changes in biomarkers were modeled using linear mixed models. Results No differences between the aseptic loosening and chronic pain groups were observed at baseline. Revision surgery in the aseptic loosening group led to a swift increase in C3M, which normalized within 2-3 months. No changes in biomarker level were observed in chronic pain patients over three months. Conclusion These findings suggest that tissue damage in a single joint significantly impacts systemic biomarker levels and underscores the relevance of systemic biomarkers in assessing local tissue remodeling.
Collapse
Affiliation(s)
| | - Sten Rasmussen
- Department of Clinical Medicine, Aalborg University, Denmark
| | | | | |
Collapse
|
3
|
Manon-Jensen T, Tangada S, Bager C, Chowdary P, Klamroth R, von Drygalski A, Windyga J, Escobar M, Frederiksen P, Engl W, Ewenstein B, Karsdal M. Evaluation of collagen turnover biomarkers as an objective measure for efficacy of treatment with rurioctocog alfa pegol in patients with hemophilia A: a secondary analysis of a randomized controlled trial. J Thromb Haemost 2024; 22:90-100. [PMID: 37717853 DOI: 10.1016/j.jtha.2023.08.035] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 08/24/2023] [Accepted: 08/25/2023] [Indexed: 09/19/2023]
Abstract
BACKGROUND Patients with hemophilia who have recurrent hemarthroses develop hemophilic arthropathy (HA). Regular prophylaxis with factor (F) VIII (FVIII) can reduce HA, but there is a need for objective outcome measures to evaluate treatment efficacy. OBJECTIVES Evaluate and assess collagen turnover biomarkers in patients with hemophilia A to determine the efficacy of rurioctocog alfa pegol treatment and understand their potential as tools for guiding treatment decisions and monitoring outcomes. METHODS Joint remodeling was assessed by analyzing serum levels of collagen remodeling products at baseline and months 3, 6, 9, and 12 in a 98 patient subset receiving pharmacokinetics-guided prophylaxis with rurioctocog alfa pegol, targeting FVIII trough levels of 1 to 3 International Units (IU)/dL or 8 to 12 IU/dL (PROPEL study, NCT0285960). RESULTS Basement membrane metabolism-related type 4 collagen remodeling products (C4M and PRO-C4) decreased after 3 months at all time points by up to 25% at 1 to 3 IU/dL (P = .049, P < .0001) and 8 to 12 IU/dL FVIII trough levels (P = .0002, P < .0001). Interstitial tissue metabolism-related type 3 (C3M) and 5 (PRO-C5) collagen remodeling products decreased after 3 months, by up to 19% at 1 to 3 IU/dL FVIII trough level (P = .0001, P = .009) and 23% at 8 to 12 IU/dL FVIII trough level (P = .0002, P = .001). An increase of up to 12% was seen for cartilage metabolism-related type 2 collagen product (PRO-C2, not C2M) after 6 months at both trough levels (P = .01, P = .005). When stratified by prior treatment, changes in C3M (P = .03) and C4M (P = .02) levels were observed between trough levels for prior on-demand treatment but not for prophylaxis prior to study entry. CONCLUSION Joint improvement measured by collagen remodeling biomarkers specific to the basement membrane, interstitial matrix, and cartilage was seen with pharmacokinetics-guided prophylaxis. These collagen remodeling biomarkers warrant further exploration as biomarkers to guide treatment toward improvement in HA.
Collapse
Affiliation(s)
| | - Srilatha Tangada
- Takeda Development Center Americas, Inc, Cambridge, Massachusetts, USA
| | | | - Pratima Chowdary
- Katharine Dormandy Haemophilia and Thrombosis Centre, Royal Free Hospital, London, UK
| | - Robert Klamroth
- Vascular Medicine and Haemostaseology, Vivantes Klinikum im Friedrichschain, Berlin, Germany
| | - Annette von Drygalski
- Hemophilia and Thrombosis Treatment Center, UC San Diego Health, San Diego, California, USA
| | - Jerzy Windyga
- Department of Hemostasis Disorders and Internal Medicine, Institute of Hematology and Transfusion Medicine, Warsaw, Poland
| | - Miguel Escobar
- University of Texas Health and Science Center at Houston, Houston, Texas, USA
| | | | - Werner Engl
- Baxalta Innovations GmbH, a Takeda company, Vienna, Austria
| | - Bruce Ewenstein
- Takeda Development Center Americas, Inc, Cambridge, Massachusetts, USA
| | | |
Collapse
|
4
|
Kalogera S, Jansen MP, Bay-Jensen AC, Frederiksen P, Karsdal MA, Thudium CS, Mastbergen SC. Relevance of Biomarkers in Serum vs. Synovial Fluid in Patients with Knee Osteoarthritis. Int J Mol Sci 2023; 24:ijms24119483. [PMID: 37298434 DOI: 10.3390/ijms24119483] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 05/25/2023] [Accepted: 05/26/2023] [Indexed: 06/12/2023] Open
Abstract
The association between structural changes and pain sensation in osteoarthritis (OA) remains unclear. Joint deterioration in OA leads to the release of protein fragments that can either systemically (serum) or locally (synovial fluid; SF) be targeted as biomarkers and describe structural changes and potentially pain. Biomarkers of collagen type I (C1M), type II (C2M), type III (C3M), type X (C10C), and aggrecan (ARGS) degradation were measured in the serum and SF of knee OA patients. Spearman's rank correlation was used to assess the correlation of the biomarkers' levels between serum and SF. Linear regression adjusted for confounders was used to evaluate the associations between the biomarkers' levels and clinical outcomes. The serum C1M levels were negatively associated with subchondral bone density. The serum C2M levels were negatively associated with KL grade and positively associated with minimum joint space width (minJSW). The C10C levels in SF were negatively associated with minJSW and positively associated with KL grade and osteophyte area. Lastly, the serum C2M and C3M levels were negatively associated with pain outcomes. Most of the biomarkers seemed to mainly be associated with structural outcomes. The overall biomarkers of extracellular matrix (ECM) remodeling in serum and SF may provide different information and reflect different pathogenic processes.
Collapse
Affiliation(s)
- Stefania Kalogera
- Nordic Bioscience, Biomarkers and Research, 2730 Herlev, Denmark
- Department of Drug Design and Pharmacology, Copenhagen University, 1165 Copenhagen, Denmark
| | - Mylène P Jansen
- Department of Rheumatology & Clinical Immunology, UMC Utrecht, Utrecht University, 3584 CX Utrecht, The Netherlands
| | | | | | - Morten A Karsdal
- Nordic Bioscience, Biomarkers and Research, 2730 Herlev, Denmark
| | | | - Simon C Mastbergen
- Department of Rheumatology & Clinical Immunology, UMC Utrecht, Utrecht University, 3584 CX Utrecht, The Netherlands
- Regenerative Medicine Center, Utrecht University, 3584 CS Utrecht, The Netherlands
| |
Collapse
|
5
|
Siefen T, Bjerregaard S, Borglin C, Lamprecht A. Assessment of joint pharmacokinetics and consequences for the intraarticular delivery of biologics. J Control Release 2022; 348:745-759. [PMID: 35714731 DOI: 10.1016/j.jconrel.2022.06.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 06/08/2022] [Accepted: 06/09/2022] [Indexed: 01/15/2023]
Abstract
Intraarticular (IA) injections provide the opportunity to deliver biologics directly to their site of action for a local and efficient treatment of osteoarthritis. However, the synovial joint is a challenging site of administration since the drug is rapidly eliminated across the synovial membrane and has limited distribution into cartilage, resulting in unsatisfactory therapeutic efficacy. In order to rationally develop appropriate drug delivery systems, it is essential to thoroughly understand the unique biopharmaceutical environments and kinetics in the joint to adequately simulate them in relevant experimental models. This review presents a detailed view on articular kinetics and drug-tissue interplay of IA administered drugs and summarizes how these can be translated into reasonable formulation strategies by identification of key factors through which the joint residence time can be prolonged and specific structures can be targeted. In this way, pros and cons of the delivery approaches for biologics will be evaluated and the extent to which biorelevant models are applicable to gain mechanistic insights and ameliorate formulation design is discussed.
Collapse
Affiliation(s)
- Tobias Siefen
- Department of Pharmaceutics, Institute of Pharmacy, University of Bonn, Bonn, Germany
| | | | | | - Alf Lamprecht
- Department of Pharmaceutics, Institute of Pharmacy, University of Bonn, Bonn, Germany; PEPITE (EA4267), University of Burgundy/Franche-Comté, Besançon, France.
| |
Collapse
|
6
|
Kalogera S, He Y, Bay-Jensen AC, Gantzel T, Sun S, Manon-Jensen T, Karsdal MA, Thudium CS. The activation fragment of PAR2 is elevated in serum from patients with rheumatoid arthritis and reduced in response to anti-IL6R treatment. Sci Rep 2021; 11:24285. [PMID: 34930943 PMCID: PMC8688421 DOI: 10.1038/s41598-021-03346-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 11/30/2021] [Indexed: 12/29/2022] Open
Abstract
AbstractOsteoarthritis (OA) and rheumatoid arthritis (RA) are serious and painful diseases. Protease-activated receptor 2 (PAR2) is involved in the pathology of both OA and RA including roles in synovial hyperplasia, cartilage destruction, osteophyogenesis and pain. PAR2 is activated via cleavage of its N-terminus by serine proteases. In this study a competitive ELISA assay was developed targeting the 36-amino acid peptide that is cleaved and released after PAR2 activation (PRO-PAR2). Technical assay parameters including antibody specificity, intra- and inter-assay variation (CV%), linearity, accuracy, analyte stability and interference were evaluated. PRO-PAR2 release was confirmed after in vitro cleavage of PAR2 recombinant protein and treatment of human synovial explants with matriptase. Serum levels of 22 healthy individuals, 23 OA patients and 15 RA patients as well as a subset of RA patients treated with tocilizumab were evaluated. The PRO-PAR2 antibody was specific for the neo-epitope and intra-inter assay CV% were 6.4% and 5.8% respectively. In vitro cleavage and matriptase treated explants showed increased PRO-PAR2 levels compared to controls. In serum, PRO-PAR2 levels were increased in RA patients and decreased in RA patients treated with tocilizumab. In conclusion, PRO-PAR2 may be a potential biomarker for monitoring RA disease and pharmacodynamics of treatment.
Collapse
|
7
|
Rousseau JC, Chapurlat R, Garnero P. Soluble biological markers in osteoarthritis. Ther Adv Musculoskelet Dis 2021; 13:1759720X211040300. [PMID: 34616494 PMCID: PMC8488516 DOI: 10.1177/1759720x211040300] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 07/27/2021] [Indexed: 12/15/2022] Open
Abstract
In recent years, markers research has focused on the structural components of cartilage matrix. Specifically, a second generation of degradation markers has been developed against type II collagen neoepitopes generated by specific enzymes. A particular effort has been made to measure the degradation of minor collagens III and X of the cartilage matrix. However, because clinical data, including longitudinal controlled studies, are very scarce, it remains unclear whether they will be useful as an alternative to or in combination with current more established collagen biological markers to assess patients with osteoarthritis (OA). In addition, new approaches using high-throughput technologies allowed to detect new types of markers and improve the knowledge about the metabolic changes linked to OA. The relative advances coming from phenotype research are a first attempt to classify the heterogeneity of OA, and several markers could improve the phenotype characterization. These phenotypes could improve the selection of patients in clinical trials limiting the size of the studies by selecting patients with OA characteristics corresponding to the metabolic pathway targeted by the molecules evaluated. In addition, the inclusion of rapid progressors only in clinical trials would facilitate the demonstration of efficacy of the investigative drug to reduce joint degradation. The combination of selective biochemical markers appears as a promising and cost-effective approach to fulfill this unmet clinical need. Among the various potential roles of biomarkers in OA, their ability to monitor drug efficacy is probably one of the most important, in association with clinical and imaging parameters. Biochemical markers have the unique property to detect changes in joint tissue metabolism within a few weeks.
Collapse
Affiliation(s)
- Jean-Charles Rousseau
- INSERM Unit 1033, Pavillon F, Hôpital E. Herriot, 5 Place d’Arsonval, 69437 Lyon Cedex 03, France
- Biochemical Marker Assay Laboratory for Clinical Research (PMO-Lab), Lyon, France
- INSERM 1033, Lyon, France
| | - Roland Chapurlat
- Biochemical Marker Assay Laboratory for Clinical Research (PMO-Lab), Lyon, France
- INSERM UMR 1033, Lyon, France
- Université de Lyon, Lyon, France
- Hôpital Edouard Herriot, Hospice Civils de Lyon, Lyon, France
| | - Patrick Garnero
- Biochemical Marker Assay Laboratory for Clinical Research (PMO-Lab), Lyon, France
- INSERM UMR 1033, Lyon, France
| |
Collapse
|
8
|
Kraus VB, Karsdal MA. Osteoarthritis: Current Molecular Biomarkers and the Way Forward. Calcif Tissue Int 2021; 109:329-338. [PMID: 32367210 DOI: 10.1007/s00223-020-00701-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 04/25/2020] [Indexed: 12/12/2022]
Abstract
The ultimate hope of researchers and patients is a pathway to development of treatments for osteoarthritis to modify the disease process in addition to the symptoms. However, development of disease modifying drugs requires objective endpoints such as measures of joint structure, joint tissue homeostasis and/or joint survival-measures such as provided by imaging biomarkers, molecular biomarkers and joint replacement frequency, respectively. Although biomarkers supporting investigational drug use and drug approval include surrogate endpoints that may not necessarily reflect or directly correlate with the clinical outcome of interest, a formal biomarker qualification process currently exists that is a rigorous three stage process that yields biomarker approvals (or denials) for specific contexts of use. From a cost perspective, biochemical biomarkers are the 'ones to beat'; however, even well-validated biomarkers may not cross the translation gaps for eventual use in healthcare unless they offer an advantage in terms of cost per quality adjusted life year. This review summarizes the case FOR and AGAINST biomarkers in drug development and highlights the current data for a subset of biomarkers in the osteoarthritis research field informing on cartilage homeostasis, joint inflammation and altered subchondral bone remodeling.
Collapse
Affiliation(s)
- Virginia Byers Kraus
- Division of Rheumatology, Duke Molecular Physiology Institute, Duke University School of Medicine, 300 North Duke St, Box 104775, Durham, NC, 27701, USA.
| | - Morten A Karsdal
- Rheumatology, Biomarkers and Research, Nordic Bioscience, Herlev, Denmark
| |
Collapse
|
9
|
Alexander LC, McHorse G, Huebner JL, Bay-Jensen AC, Karsdal MA, Kraus VB. A matrix metalloproteinase-generated neoepitope of CRP can identify knee and multi-joint inflammation in osteoarthritis. Arthritis Res Ther 2021; 23:226. [PMID: 34465395 PMCID: PMC8407005 DOI: 10.1186/s13075-021-02610-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 08/20/2021] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVE To compare C-reactive protein (CRP) and matrix metalloproteinase-generated neoepitope of CRP (CRPM) as biomarkers of inflammation and radiographic severity in patients with knee osteoarthritis. METHODS Participants with symptomatic osteoarthritis (n=25) of at least one knee underwent knee radiographic imaging and radionuclide etarfolatide imaging to quantify inflammation of the knees and other appendicular joints. For purposes of statistical analysis, semi-quantitative etarfolatide and radiographic imaging scores were summed across the knees; etarfolatide scores were also summed across all joints to provide a multi-joint synovitis measure. Multiple inflammation and collagen-related biomarkers were measured by ELISA including CRP, CRPM, MMP-generated neoepitopes of type I collagen and type III collagen in serum (n=25), and CD163 in serum (n=25) and synovial fluid (n=18). RESULTS BMI was associated with CRP (p=0.001), but not CRPM (p=0.753). Adjusting for BMI, CRP was associated with radiographic knee osteophyte score (p=0.002), while CRPM was associated with synovitis of the knee (p=0.017), synovitis of multiple joints (p=0.008), and macrophage marker CD163 in serum (p=0.009) and synovial fluid (p=0.03). CRP correlated with MMP-generated neoepitope of type I collagen in serum (p=0.045), and CRPM correlated with MMP-generated neoepitope of type III collagen in serum (p<0.0001). No biomarkers correlated with age, knee pain, or WOMAC pain. CONCLUSIONS To our knowledge, this is the first time that CRPM has been shown to be associated with knee and multi-joint inflammation based on objective imaging (etarfolatide) and biomarker (CD163) measures. These results demonstrate the capability of biomarker measurements to reflect complex biological processes and for neoepitope markers to more distinctly reflect acute processes than their precursor proteins. CRPM is a promising biomarker of local and systemic inflammation in knee OA that is associated with cartilage degradation and is independent of BMI. CRPM is a potential molecular biomarker alternative to etarfolatide imaging for quantitative assessment of joint inflammation.
Collapse
Affiliation(s)
- Louie C. Alexander
- Duke Molecular Physiology Institute, Duke University School of Medicine, PO Box 104775, Carmichael Building, 300 N. Duke St, Durham, NC 27701 USA
| | - Grant McHorse
- Duke Molecular Physiology Institute, Duke University School of Medicine, PO Box 104775, Carmichael Building, 300 N. Duke St, Durham, NC 27701 USA
| | - Janet L. Huebner
- Duke Molecular Physiology Institute, Duke University School of Medicine, PO Box 104775, Carmichael Building, 300 N. Duke St, Durham, NC 27701 USA
| | | | | | - Virginia B. Kraus
- Duke Molecular Physiology Institute, Duke University School of Medicine, PO Box 104775, Carmichael Building, 300 N. Duke St, Durham, NC 27701 USA
- Department of Medicine, Duke University School of Medicine, PO Box 104775, Carmichael Building, 300 N. Duke St, Durham, NC 27701 USA
| |
Collapse
|
10
|
Maglaviceanu A, Wu B, Kapoor M. Fibroblast-like synoviocytes: Role in synovial fibrosis associated with osteoarthritis. Wound Repair Regen 2021; 29:642-649. [PMID: 34021514 DOI: 10.1111/wrr.12939] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 05/02/2021] [Accepted: 05/08/2021] [Indexed: 12/12/2022]
Abstract
The synovial membrane undergoes a variety of structural changes throughout the pathogenesis of osteoarthritis (OA), including the development of fibrosis. Fibroblast-like synoviocytes (FLS) are a heterogenous cell population of the synovium that are suggested to drive the fibrotic response, but the exact mechanisms associated with their activation in OA remain unclear. Once activated, FLS are suggested to acquire a myofibroblast-like phenotype that drives fibrogenesis through excessive extracellular matrix (ECM) component deposition and an enhanced contractile function. In this review, we define FLS in the synovium, discuss how select extracellular or endogenous factors potentially induce their activation in OA, and describe how the activity of myofibroblast-like cells affects the structure of the synovial membrane.
Collapse
Affiliation(s)
- Anca Maglaviceanu
- Osteoarthritis Research Program, Division of Orthopaedics, Schroeder Arthritis Institute, University Health Network, Toronto, Ontario, Canada.,Krembil Research Institute, University Health Network, Toronto, Ontario, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Brian Wu
- Osteoarthritis Research Program, Division of Orthopaedics, Schroeder Arthritis Institute, University Health Network, Toronto, Ontario, Canada.,Krembil Research Institute, University Health Network, Toronto, Ontario, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Mohit Kapoor
- Osteoarthritis Research Program, Division of Orthopaedics, Schroeder Arthritis Institute, University Health Network, Toronto, Ontario, Canada.,Krembil Research Institute, University Health Network, Toronto, Ontario, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada.,Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
11
|
Siefen T, Lokhnauth J, Liang A, Larsen CC, Lamprecht A. An ex-vivo model for transsynovial drug permeation of intraarticular injectables in naive and arthritic synovium. J Control Release 2021; 332:581-591. [PMID: 33705826 DOI: 10.1016/j.jconrel.2021.03.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 02/23/2021] [Accepted: 03/04/2021] [Indexed: 01/17/2023]
Abstract
Estimation of joint residence time of a drug is a key requirement for rational development of intraarticular therapeutics. There is a great need for a predictive model to reduce the high number of animal experiments in early stage development. Here, a Franz-cell based porcine ex-vivo permeation model is proposed, and transsynovial permeation of fluorescently-labeled dextrans in the range of potential drug candidates (10-150 kDa), as well as a small molecule (fluorescein sodium) and charged dextran derivates, have been determined. In addition, a lipopolysaccharide (LPS) -induced synovitis model was assessed for inflammatory biomarker levels and its effect on permeation of the solutes. Size-dependent permeability was observed for the analytes, which distinctly differed from findings with an artificial polycarbonate membrane, which is a widely used model. LPS was found to successfully stimulate an inflammatory response and led to a reduced size selectivity of the synovial membrane. 150 kDa dextran flux was accelerated approximately 2.5-fold in the inflamed state, whereas the permeation of smaller molecules was little affected. Moreover, by varying the LPS concentrations, the ex-vivo model was shown to produce varying degrees of synovitis-like inflammation. A simple and highly relevant ex-vivo tool for investigation of transsynovial permeation was developed, offering the further advantage of mimicking synovitis-induced permeability changes. Thus, this model provides a promising method for formulation screening, while reducing the need for animal experiments.
Collapse
Affiliation(s)
- Tobias Siefen
- Department of Pharmaceutics, Institute of Pharmacy, University of Bonn, Bonn, Germany
| | | | - Alfred Liang
- Ferring Pharmaceuticals Inc, Parsippany, NJ, USA
| | | | - Alf Lamprecht
- Department of Pharmaceutics, Institute of Pharmacy, University of Bonn, Bonn, Germany; PEPITE (EA4267), University of Burgundy/Franche-Comté, Besançon, France.
| |
Collapse
|
12
|
Wei XC, Cao B, Luo CH, Huang HZ, Tan P, Xu XR, Xu RC, Yang M, Zhang Y, Han L, Zhang DK. Recent advances of novel technologies for quality consistency assessment of natural herbal medicines and preparations. Chin Med 2020; 15:56. [PMID: 32514289 PMCID: PMC7268247 DOI: 10.1186/s13020-020-00335-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 05/20/2020] [Indexed: 12/20/2022] Open
Abstract
Quality consistency is one of the basic attributes of medicines, but it is also a difficult problem that natural medicines and their preparations must face. The complex chemical composition and comprehensive pharmacological action of natural medicines make it difficult to simply apply the commonly used evaluation methods in chemical drugs. It is thus urgent to explore the novel evaluation methods suitable for the characteristics of natural medicines. With the rapid development of analytical techniques and the deepening understanding of the quality of natural herbs, increasing numbers of researchers have proposed many new ideas and technologies. This review mainly focuses on the basic principles, technical characteristics and application examples of the chemical evaluation, biological evaluation methods and their combination in quality consistency evaluation of natural herbs. On the bases of chemical evaluation and clinical efficacy, new methods reflecting their pharmacodynamic mechanism and safety characteristics will be developed, and gradually towards accurate quality control, to achieve the goal of quality consistency. We hope that this manuscript can provide new ideas and technical references for the quality consistency of natural drugs and their preparations, thus better guarantee their clinical efficacy and safety, and better promote industrial development.
Collapse
Affiliation(s)
- Xi-Chuan Wei
- School of Pharmacy, State Key Laboratory of Characteristic Chinese Drug Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, No. 1066 Avenue. Liutai, Chengdu, 611137 China
| | - Bo Cao
- School of Pharmacy, State Key Laboratory of Characteristic Chinese Drug Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, No. 1066 Avenue. Liutai, Chengdu, 611137 China
| | - Chuan-Hong Luo
- School of Pharmacy, State Key Laboratory of Characteristic Chinese Drug Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, No. 1066 Avenue. Liutai, Chengdu, 611137 China
| | - Hao-Zhou Huang
- School of Pharmacy, State Key Laboratory of Characteristic Chinese Drug Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, No. 1066 Avenue. Liutai, Chengdu, 611137 China
| | - Peng Tan
- Sichuan Academy of Traditional Chinese Medicine, State Key Laboratory of Quality Evaluation of Traditional Chinese Medicine, Chengdu, 610041 China
| | - Xiao-Rong Xu
- School of Pharmacy, State Key Laboratory of Characteristic Chinese Drug Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, No. 1066 Avenue. Liutai, Chengdu, 611137 China
| | - Run-Chun Xu
- School of Pharmacy, State Key Laboratory of Characteristic Chinese Drug Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, No. 1066 Avenue. Liutai, Chengdu, 611137 China
| | - Ming Yang
- Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004 China
| | - Yi Zhang
- Chengdu Food and Drug Control, Chengdu, 610000 China
| | - Li Han
- School of Pharmacy, State Key Laboratory of Characteristic Chinese Drug Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, No. 1066 Avenue. Liutai, Chengdu, 611137 China
| | - Ding-Kun Zhang
- School of Pharmacy, State Key Laboratory of Characteristic Chinese Drug Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, No. 1066 Avenue. Liutai, Chengdu, 611137 China
| |
Collapse
|
13
|
Sharma N, Drobinski P, Kayed A, Chen Z, Kjelgaard-Petersen CF, Gantzel T, Karsdal MA, Michaelis M, Ladel C, Bay-Jensen AC, Lindemann S, Thudium CS. Inflammation and joint destruction may be linked to the generation of cartilage metabolites of ADAMTS-5 through activation of toll-like receptors. Osteoarthritis Cartilage 2020; 28:658-668. [PMID: 31734268 DOI: 10.1016/j.joca.2019.11.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 09/30/2019] [Accepted: 11/04/2019] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Links between pain and joint degradation are poorly understood. We investigated the role of activation of Toll-like receptors (TLR) by cartilage metabolites in initiating and maintaining the inflammatory loop in OA causing joint destruction. METHODS Synovial membrane explants (SMEs) were prepared from OA patients' synovial biopsies. SMEs were cultured for 10 days under following conditions: culture medium alone, OSM + TNFα, TLR2 agonist - Pam2CSK4, Pam3CSK4 or synthetic aggrecan 32-mer, TLR4 agonist - Lipid A. Release of pro-inflammatory and degradation biomarkers (acMMP3 and C3M) were measured by ELISA in conditioned media along with IL-6. Additionally, human cartilage was digested with ADAMTS-5, with or without the ADAMTS-5 inhibiting nanobody - M6495. Digested cartilage solution (DCS) and synthetic 32-mer were tested for TLR activation in SEAP based TLR reporter assay. RESULTS Western blotting confirmed TLR2 and TLR4 in untreated OA synovial biopsies. TLR agonists showed an increase in release of biomarkers - acMMP3 and C3M in SME. Synthetic 32-mer showed no activation in the TLR reporter assay. ADAMTS-5 degraded cartilage fragments activated TLR2 in vitro. Adding M6495 - an anti-ADAMTS-5 inhibiting nanobody®, blocked ADAMTS-5-mediated DCS TLR2 activation. CONCLUSION TLR2 is expressed in synovium of OA patients and their activation by synthetic ligands causes increased tissue turnover. ADAMTS-5-mediated cartilage degradation leads to release of aggrecan fragments which activates the TLR2 receptor in vitro. M6495 suppressed cartilage degradation by ADAMTS-5, limiting the activation of TLR2. In conclusion, pain and joint destruction may be linked to generation of ADAMTS-5 cartilage metabolites.
Collapse
Affiliation(s)
- N Sharma
- Rheumatology, Nordic Bioscience, Herlev Hovedgade 207, DK-2730, Herlev, Denmark; Department of Biomedical Sciences, University of Copenhagen, Blegdamsvej 3, 2200, Copenhagen N, Denmark.
| | - P Drobinski
- Rheumatology, Nordic Bioscience, Herlev Hovedgade 207, DK-2730, Herlev, Denmark; Department of Biomedical Sciences, University of Copenhagen, Blegdamsvej 3, 2200, Copenhagen N, Denmark.
| | - A Kayed
- Rheumatology, Nordic Bioscience, Herlev Hovedgade 207, DK-2730, Herlev, Denmark; Department of Biomedical Sciences, University of Copenhagen, Blegdamsvej 3, 2200, Copenhagen N, Denmark.
| | - Z Chen
- Rheumatology, Nordic Bioscience, Herlev Hovedgade 207, DK-2730, Herlev, Denmark; Department of Biomedical Sciences, University of Copenhagen, Blegdamsvej 3, 2200, Copenhagen N, Denmark.
| | | | - T Gantzel
- Orthopaedic Surgery Unit, Gentofte University Hospital, Gentofte, Denmark.
| | - M A Karsdal
- Rheumatology, Nordic Bioscience, Herlev Hovedgade 207, DK-2730, Herlev, Denmark.
| | - M Michaelis
- Head of Osteoarthritis Research and Early Clinical Development, Merck KGaA, Darmstadt, Germany.
| | - C Ladel
- Clinical Biomarker & Diagnostics Lead, Merck KGaA, Darmstadt, Germany.
| | - A C Bay-Jensen
- Rheumatology, Nordic Bioscience, Herlev Hovedgade 207, DK-2730, Herlev, Denmark.
| | - S Lindemann
- Head of Exploratory Osteoarthritis, Merck KGaA, Darmstadt, Germany.
| | - C S Thudium
- Rheumatology, Nordic Bioscience, Herlev Hovedgade 207, DK-2730, Herlev, Denmark.
| |
Collapse
|
14
|
Molecular taxonomy of osteoarthritis for patient stratification, disease management and drug development: biochemical markers associated with emerging clinical phenotypes and molecular endotypes. Curr Opin Rheumatol 2020; 31:80-89. [PMID: 30461544 DOI: 10.1097/bor.0000000000000567] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
PURPOSE OF REVIEW This review focuses on the molecular taxonomy of osteoarthritis from the perspective of molecular biomarkers. We discuss how wet biochemical markers may be used to understand disease pathogenesis and progression and define molecular endotypes of osteoarthritis and how these correspond to clinical phenotypes. RECENT FINDINGS Emerging evidence suggests that osteoarthritis is a heterogeneous and multifaceted disease with multiple causes, molecular endotypes and corresponding clinical phenotypes. Biomarkers may be employed as tools for patient stratification in clinical trials, enhanced disease management in the primary care centres of the future and for directing more rational and targeted osteoarthritis drug development. Proximal molecular biomarkers (e.g synovial fluid) are more likely to distinguish between molecular endotypes because there is less interference from systemic sources of biomarker noise, including comorbidities. SUMMARY In this review, we have focused on the molecular biomarkers of four distinct osteoarthritis subtypes including inflammatory, subchondral bone remodelling, metabolic syndrome and senescent age-related endotypes, which have corresponding phenotypes. Progress in the field of osteoarthritis endotype and phenotype research requires a better understanding of molecular biomarkers that may be used in conjunction with imaging, pain and functional assessments for the design of more effective, stratified and individualized osteoarthritis treatments.
Collapse
|
15
|
Bay-Jensen AC, Engstroem A, Sharma N, Karsdal MA. Blood and urinary collagen markers in osteoarthritis: markers of tissue turnover and disease activity. Expert Rev Mol Diagn 2019; 20:57-68. [PMID: 31847627 DOI: 10.1080/14737159.2020.1704257] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Introduction: The need for diagnostic markers in osteoarthritis (OA) is acute and immediate, as sensitive and precise tools that monitor disease activity and treatment response are lacking. Collagens - types I, II, and III - are the skeleton of the extracellular matrix of joint tissues. Joint collagens are generally turned over at a low rate, but the balance between formation and degradation is disturbed, leading to the loss of, for example, cartilage.Areas covered: We discuss the markers reflecting collagen turnover and provide examples of how they have been applied in OA research, as well as how we believe these should be used in the future. We have searched PubMed for full-text articles written in English using different combinations of the following terms: OA, biomarker, and collagen. The result is a narrative review that gives examples from the literature.Expert opinion: Collagen markers show promise, as they are direct measures of tissue balance. Until now, collagen markers have mainly been tested in observational cohorts, which may provide insights into the association between the candidate marker and clinical variables; however, these do not advance the development of qualified markers that can be used for drug development or in clinical practice.
Collapse
Affiliation(s)
| | - Amalie Engstroem
- Department of Rheumatology, Nordic Bioscience, Biomarkers and Research, Herlev, Denmark.,Biomedical institute, University of Copenhagen, Copenhagen, Denmark
| | - Neha Sharma
- Department of Rheumatology, Nordic Bioscience, Biomarkers and Research, Herlev, Denmark.,Biomedical institute, University of Copenhagen, Copenhagen, Denmark
| | - Morten Asser Karsdal
- Department of Rheumatology, Nordic Bioscience, Biomarkers and Research, Herlev, Denmark
| |
Collapse
|
16
|
Metabolites of type I, II, III, and IV collagen may serve as markers of disease activity in axial spondyloarthritis. Sci Rep 2019; 9:11218. [PMID: 31375691 PMCID: PMC6677742 DOI: 10.1038/s41598-019-47502-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 07/12/2019] [Indexed: 12/26/2022] Open
Abstract
Local inflammation in axial spondyloarthritis (axSpA) leads to the release of collagen metabolites from the disease-affected tissue. We investigated whether collagen metabolites were associated with disease activity and could distinguish non-radiographic(nr)-axSpA from ankylosing spondylitis (AS). A total of 193 axSpA patients (nr-axSpA, n = 121 and AS, n = 72) and asymptomatic controls (n = 100) were included. Serum levels of metalloproteinase (MMP)-degraded collagen type I (C1M), type II (C2M), type III (C3M) and type IV (C4M2) were quantified by enzyme-linked immunosorbent assay (ELISA). All metabolites were higher in axSpA than in controls (all p < 0.001). Serum levels of C1M, C3M, and C4M2 were increased in AS compared to nr-axSpA (43.4 ng/mL vs. 34.6; p < 0.001, 15.4 vs. 12.8; p = 0.001, and 27.8 vs. 22.4; p < 0.001). The best metabolite to differentiate between axSpA and controls was C3M (AUC 0.95; specificity 92.0, sensitivity 83.4). C1M correlated with ASDAS-CRP in nr-axSpA (ρ = 0.37; p < 0.001) and AS (ρ = 0.57; p < 0.001). C1M, C3M, and C4M2 were associated with ASDAS-CRP in AS and nr-axSpA after adjustment for age, gender, and disease duration. Serum levels of collagen metabolites were significantly higher in AS and nr-axSpA than in controls. Moreover, the present study indicates that collagen metabolites reflect disease activity and are useful biomarkers of axSpA.
Collapse
|
17
|
Bonitz M, Schaffer C, Amling M, Poertner R, Schinke T, Jeschke A. Secreted factors from synovial fibroblasts immediately regulate gene expression in articular chondrocytes. Gene 2019; 698:1-8. [DOI: 10.1016/j.gene.2019.02.065] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 02/21/2019] [Indexed: 11/15/2022]
|
18
|
Novel Hybrid Gels Made of High and Low Molecular Weight Hyaluronic Acid Induce Proliferation and Reduce Inflammation in an Osteoarthritis In Vitro Model Based on Human Synoviocytes and Chondrocytes. BIOMED RESEARCH INTERNATIONAL 2019; 2019:4328219. [PMID: 31179322 PMCID: PMC6507116 DOI: 10.1155/2019/4328219] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 03/07/2019] [Accepted: 04/01/2019] [Indexed: 12/22/2022]
Abstract
High molecular weight hyaluronan (H-HA) has a pivotal role in the maintenance of normal functions of synovial fluid and structure of the articular joint, but it has been shown that its concentration is reduced in patients affected by degenerative cartilage diseases, such as osteoarthritis (OA). The aim of this study was to investigate the anti-inflammatory effects and properties of hybrid cooperative complexes based on high and low molecular weight hyaluronan (HCC) compared to H-HA on human primary cells derived by pathological joints. In addition, the rheological behavior of HCC was evaluated in order to define their potential as viscosupplement gel in degenerated joints. The experiments were performed using an in vitro model of OA based on human chondrocytes and synoviocytes isolated from degenerated joints of patients hospitalized for surgical replacement. In order to assess the anti-inflammatory effects of HCC, we evaluated NF-kB, COMP-2, IL-6, and IL-8 as specific markers at the transcriptional and/or protein level. Moreover, the proliferative properties of HCC were assessed using time lapse video microscopy. We showed that chondrocytes and synoviocytes clearly presented an altered cytokine profile compatible with a severe ongoing inflammation status. H-HA and, above all, HCC significantly reduced levels of the specific biomarkers evaluated and improved cartilage healing. The rheological profile indicated HCC suitability for intra-articular injection in joint diseases. HCC viscoelastic properties and the protective/anti-inflammatory effect on human chondrocytes and synoviocytes suggest the novel HCC-based gels as a valid support for OA management.
Collapse
|
19
|
Karsdal MA, Verburg KM, West CR, Bay-Jensen AC, Keller DS, Arends RHGP. Serological biomarker profiles of rapidly progressive osteoarthritis in tanezumab-treated patients. Osteoarthritis Cartilage 2019; 27:484-492. [PMID: 30576794 DOI: 10.1016/j.joca.2018.12.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 11/29/2018] [Accepted: 12/03/2018] [Indexed: 02/02/2023]
Abstract
UNLABELLED There is a need for efficacious and safe pain treatments for OA (osteoarthritis). The nerve growth factor (NGF) antibody tanezumab is associated with high efficacy, but when combined with chronic NSAID treatment shows an increased risk of rapidly progressive osteoarthritis (RPOA) in a small group of patients. AIM The aim of this study was to phenotype with biochemical biomarkers of bone, cartilage, soft tissue, synovial metabolism OA patients who are at risk of developing RPOA type-2, for both limited and chronic NSAIDs users. MATERIAL AND METHODS The dataset consisted of OA patients participating in tanezumab trials who used NSAIDs <90 days (limited NSAID users) or chronic users (NSAIDs ≥90 days) over an average 10 month period. Biomarker data were available for 47 cases (RPOA type-2) and 92 controls. Non-linear and linear multivariable predictive models were developed. RESULTS By use of two biomarkers at baseline the receiver operating characteristic (ROC) curve area for RPOA type-2 in limited NSAID users was 71%, [CI] (60-83%). OA subjects with this biomarker phenotype had 8-fold higher confidence interval [CI][(2-33)] relative risk of developing RPOA type-2 as compared to OA patients without this phenotype. The AUC of the model in chronic NSAIDs users based on 5 biomarkers was 78%, [CI](69-88%), with 4-fold [CI (2-6)] relative risk of developing RPOA type-2. CONCLUSION In this hypothesis generating and exploratory study, we identified combinations of biomarkers associated with OA patients who develop RPOA type-2, which may be related to the pathology of the RPOA type-2 joint.
Collapse
Affiliation(s)
- M A Karsdal
- Nordic Bioscience, Herlev Hovedgade, DK-2730 Herlev, Denmark.
| | - K M Verburg
- Pfizer Inc., 445 Eastern Point Road, Groton, CT 06340, USA.
| | - C R West
- Pfizer Inc., 445 Eastern Point Road, Groton, CT 06340, USA.
| | - A C Bay-Jensen
- Nordic Bioscience, Herlev Hovedgade, DK-2730 Herlev, Denmark.
| | - D S Keller
- Pfizer Inc., 445 Eastern Point Road, Groton, CT 06340, USA.
| | - R H G P Arends
- Pfizer Inc., 445 Eastern Point Road, Groton, CT 06340, USA.
| |
Collapse
|
20
|
Bay-Jensen AC, Platt A, Jenkins MA, Weinblatt ME, Byrjalsen I, Musa K, Genovese MC, Karsdal MA. Tissue metabolite of type I collagen, C1M, and CRP predicts structural progression of rheumatoid arthritis. BMC Rheumatol 2019; 3:3. [PMID: 30886991 PMCID: PMC6390574 DOI: 10.1186/s41927-019-0052-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 01/03/2019] [Indexed: 01/30/2023] Open
Abstract
Background Biomarkers of rheumatoid arthritis (RA) disease activity typically measure inflammation or autoimmunity (e.g. CRP, RF). C1M and C3M, metabolites of type I and III collagen, are markers reflecting tissue metabolism. These markers have been documented to provide additional prognostic and predictive value compared to commonly used biomarkers. We investigated the relationship of high serum levels of C1M or C3M to radiographic progression, and benchmarked them to CRP and RF. Methods Placebo treated patients of the OSK1, 2 and 3 studies (Phase III clinical trials testing efficacy of fostamatinib) with baseline serum biomarkers C1M, C3M, CRP and RF were included (nBL = 474). Van der Heijde mTSS was calculated at baseline and 24-week (n24 = 261). Progression was defined as moderate or rapid by ΔmTSS ≥0.5 or ≥ 5 units/year. Patients were divided into subgroups; low (L), high (H) or very high (V) C1M, C3M and CRP, or RF negative, positive and high positive. Difference in clinical parameters were analyzed by Mann-Whitney or χ2tests, and modelling for prediction of progression by logistic regression including covariates (age, gender, BMI, and clinical assessment scores). Results Levels of C1M, C3M, CRP and RF were significantly (p < 0.05) associated with measures of disease activity and mTSS at baseline. For prognostic measures, there were 2.5 and 4-fold as many rapid progressors in the C1MH and CRPH (p < 0.05), and in the C1MV and CRPV groups (p < 0.001) compared C1ML and CRPL, respectively. C1M and CRP performed similarly in the predictive analysis, where high levels predicted moderate and rapid progression with odds ratio of 2.1 to 3.8 and 3.7 to 13.1 after adjustment for covariates. C3M and RF did not provide prognostic value alone. Discussion Serum C1M and CRP showed prognostic value and may be tools for enrichment of clinical trials with structural progressor. The two markers reflect two different aspect of disease pathogenesis (tissue turnover vs. inflammation), thus may provide individual and supplementary information. Electronic supplementary material The online version of this article (10.1186/s41927-019-0052-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Anne C Bay-Jensen
- 1Rheumatology, Nordic Bioscience, Biomarkers and Research, Herlev Hovedgade 205-207, 2730 Herlev, Denmark
| | - Adam Platt
- 2Precision Medicine and Genomics, IMED Biotech Unit, AstraZeneca, Cambridge, UK
| | | | - Michael E Weinblatt
- 4Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, Boston, MA USA
| | - Inger Byrjalsen
- 1Rheumatology, Nordic Bioscience, Biomarkers and Research, Herlev Hovedgade 205-207, 2730 Herlev, Denmark
| | - Kishwar Musa
- 1Rheumatology, Nordic Bioscience, Biomarkers and Research, Herlev Hovedgade 205-207, 2730 Herlev, Denmark
| | - Mark C Genovese
- 5Division of Immunology and Rheumatology, Stanford University, Palo Alto, California, USA
| | - Morten A Karsdal
- 1Rheumatology, Nordic Bioscience, Biomarkers and Research, Herlev Hovedgade 205-207, 2730 Herlev, Denmark
| |
Collapse
|
21
|
Thudium CS, Löfvall H, Karsdal MA, Bay-Jensen AC, Bihlet AR. Protein biomarkers associated with pain mechanisms in osteoarthritis. J Proteomics 2019; 190:55-66. [DOI: 10.1016/j.jprot.2018.04.030] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 04/16/2018] [Accepted: 04/20/2018] [Indexed: 12/19/2022]
|
22
|
Bay-Jensen A, Kjelgaard-Petersen C, Petersen K, Arendt-Nielsen L, Quasnichka H, Mobasheri A, Karsdal M, Leeming D. Aggrecanase degradation of type III collagen is associated with clinical knee pain. Clin Biochem 2018; 58:37-43. [DOI: 10.1016/j.clinbiochem.2018.04.022] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 04/17/2018] [Accepted: 04/23/2018] [Indexed: 11/16/2022]
|
23
|
Kjelgaard-Petersen CF, Platt A, Braddock M, Jenkins MA, Musa K, Graham E, Gantzel T, Slynn G, Weinblatt ME, Karsdal MA, Thudium CS, Bay-Jensen AC. Translational Biomarkers and Ex Vivo Models of Joint Tissues as a Tool for Drug Development in Rheumatoid Arthritis. Arthritis Rheumatol 2018; 70:1419-1428. [PMID: 29669391 PMCID: PMC6174937 DOI: 10.1002/art.40527] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 04/10/2018] [Indexed: 12/15/2022]
Abstract
Objective Rheumatoid arthritis (RA) is a chronic and degenerative autoimmune joint disease that leads to disability, reduced quality of life, and increased mortality. Although several synthetic and biologic disease‐modifying antirheumatic drugs are available, there is still a medical need for novel drugs that control disease progression. As only 10% of experimental drug candidates for treatment of RA that enter phase I trials are eventually registered by the Food and Drug Administration, there is an immediate need for translational tools to facilitate early decision‐making in drug development. In this study, we aimed to determine if the inability of fostamatinib (a small molecule inhibitor of Syk) to demonstrate sufficient efficacy in phase III of a previous clinical study could have been predicted earlier in the development process. Methods Biomarkers of bone, cartilage, and interstitial matrix turnover (C‐telopeptide of type I collagen [CTX‐I], matrix metalloproteinase–derived types I, II, and III collagen neoepitopes [C1M, C2M, and C3M]) were measured in 450 serum samples from the Oral Syk Inhibition in Rheumatoid Arthritis 1 study (OSKIRA‐1, a phase III clinical study of the efficacy of fostamatinib in RA) at baseline and follow‐up. Additionally, the same biomarkers were subsequently measured in conditioned media from osteoclast, cartilage, and synovial membrane cultured with the active metabolite of fostamatinib, R406, to assess the level of suppression induced by the drug. Results In OSKIRA‐1 serum samples and osteoclast and cartilage cultures, fostamatinib suppressed the levels of CTX‐I and C2M. In OSKIRA‐1 serum samples and synovial membrane cultures, fostamatinib did not mediate any clinical or preclinical effect on either C1M or C3M, which have previously been associated with disease response and efficacy. Conclusion These data demonstrate that translational biomarkers are a potential tool for early assessment and decision‐making in drug development for RA treatment.
Collapse
|
24
|
Leijten EFA, Radstake TRDJ, Reedquist KA. Editorial: Lessons Learned From a "Failed" Clinical Trial. Arthritis Rheumatol 2018; 70:1364-1365. [PMID: 29669390 DOI: 10.1002/art.40526] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 04/10/2018] [Indexed: 12/15/2022]
Affiliation(s)
- E F A Leijten
- University Medical Center Utrecht, Utrecht, The Netherlands
| | | | - K A Reedquist
- University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
25
|
Biochemical marker discovery, testing and evaluation for facilitating OA drug discovery and development. Drug Discov Today 2018; 23:349-358. [DOI: 10.1016/j.drudis.2017.10.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 09/18/2017] [Accepted: 10/06/2017] [Indexed: 01/25/2023]
|
26
|
Differential involvement of synovial adipokines in pain and physical function in female patients with knee osteoarthritis. A cross-sectional study. Osteoarthritis Cartilage 2018; 26:276-284. [PMID: 29196131 DOI: 10.1016/j.joca.2017.11.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 11/09/2017] [Accepted: 11/16/2017] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Adipokines have been reported to play a role in the development, progression and severity of knee osteoarthritis but the influence of the different adipokines are not well known. The aim of this study was to evaluate the association between different synovial fluid adipokines with pain and disability knee osteoarthritis patients. METHODS Cross-sectional study with systematic inclusion of 115 symptomatic primary knee osteoarthritis female patients with ultrasound-confirmed joint effusion. Age, physical exercise, symptoms duration and different anthropometric measurements were collected. Radiographic severity was evaluated according to Kellgren-Lawrence scale. Pain and disability were assessed by WOMAC-total, -pain, -function subscales and Knee injury and Osteoarthritis Outcome Score (KOOS) pain and function scales. Seven adipokines and three inflammatory markers were measured by ELISA in synovial fluid. Partial Correlation Coefficient (PCC) and corresponding 95% confidence interval were used as a measure of association. RESULTS Leptin, osteopontin and inflammatory factors, especially TNF-alpha, were associated to pain and function. After adjustment for potential confounders including inflammatory factors and all adipokines, an association was found for adiponectin with pain (PCC 0.240 [0.012, 0.444]) and for resistin and visfatin with function (PCC 0.336 [0.117, 0.524] and -0.262 [-0.463, -0.036]). No other adipokines or inflammatory markers were statistically and independently associated. An association between physical exercise and pain and disability remained after adjustment, whereas an attenuation of the influence of anthropometric measurements was observed. CONCLUSIONS Different patterns of association between synovial fluid adipokines were observed regarding pain and disability in knee osteoarthritis patients. Specifically, adiponectin was associated to pain while resistin and visfatin were mainly related to function.
Collapse
|
27
|
Development and use of biochemical markers in osteoarthritis: current update. Curr Opin Rheumatol 2018; 30:121-128. [DOI: 10.1097/bor.0000000000000467] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
28
|
Effects of dietary weight loss with and without exercise on interstitial matrix turnover and tissue inflammation biomarkers in adults with knee osteoarthritis: the Intensive Diet and Exercise for Arthritis trial (IDEA). Osteoarthritis Cartilage 2017; 25:1822-1828. [PMID: 28756278 PMCID: PMC5650925 DOI: 10.1016/j.joca.2017.07.015] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 06/06/2017] [Accepted: 07/19/2017] [Indexed: 02/02/2023]
Abstract
OBJECTIVE To examine the effects of dietary weight loss, with and without exercise, on selected soluble biomarkers in overweight and obese older adults with symptomatic knee osteoarthritis (OA). DESIGN Blood samples were analyzed from 429 participants in the Intensive Diet and Exercise for Arthritis (IDEA) trial randomized to either an 18 month exercise control group (E), weight loss diet (D), or D + E. C1M, C2M, C3M and CRPM biomarkers and interleukin-6 (IL-6) were quantitated using ELISAs. Radiographic progression was defined as a decrease in joint space width of ≥0.7 mm. Statistical modeling of group means and associations used mixed models adjusted for visit, baseline body mass index (BMI), gender, and baseline values of the outcome. RESULTS Compared to the E control group, C1M was significantly lower in the D and D + E groups at both 6 and 18 months while C3M was significantly lower in D and D + E at 6 months and in D + E at 18 months. C2M did not change in any group. Using data from all groups, change in C1M (P < 0.0001), C3M (P < 0.0001), as well as CRPM (P = 0.0004) from baseline to 18 months was positively associated with change in weight. No marker was associated with change in Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC) pain or radiographic progression. C3M (P = 0.008) and CRPM (P = 0.028) were positively associated with change in WOMAC function. Change in IL-6 was positively associated with change in C1M, C3M, and CRPM. CONCLUSION Overweight and obese adults with knee OA who lost weight from diet and diet plus exercise reduced serum markers of interstitial matrix turnover and inflammation but not type II collagen degradation.
Collapse
|
29
|
Matrix Metalloproteinases and Synovial Joint Pathology. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2017; 148:305-325. [PMID: 28662824 DOI: 10.1016/bs.pmbts.2017.03.003] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Matrix metalloproteinases (MMPs) are zinc-dependent enzymes. These enzymes play a critical role in the destruction of articular cartilage in rheumatoid arthritis (RA), osteoarthritis (OA), psoriatic arthritis (PsA), and the spondyloarthropathies. MMP gene expression is upregulated in these synovial joint pathologies in response to elevated levels of proinflammatory cytokines and soluble mediators such as tumor necrosis factor-α, interleukin-1 (IL-1), IL-6, IL-17, and interferon-γ. These molecules are capable of activating the mitogen-activated protein kinase and Janus kinase/signal transducers and activators of transcription (JAK/STAT) pathways by binding the cytokine to their respective receptors on immune cells, macrophages, chondrocytes, synoviocytes, and osteocytes leading to increased synthesis of MMPs. Biologic drugs and/or small-molecule inhibitors designed to block cytokine to cytokine receptor interactions or to selectively inhibit JAKs have clinical efficacy in RA, PsA, and ankylosing spondylitis which correlated with a reduction in MMPs. Although there are currently no OA-selective drugs, it is likely that such a drug would have to reduce MMP gene expression to have clinical efficacy.
Collapse
|
30
|
Biomarker of extracellular matrix remodelling C1M and proinflammatory cytokine interleukin 6 are related to synovitis and pain in end-stage knee osteoarthritis patients. Pain 2017; 158:1254-1263. [DOI: 10.1097/j.pain.0000000000000908] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
31
|
Mobasheri A, Bay-Jensen AC, van Spil WE, Larkin J, Levesque MC. Osteoarthritis Year in Review 2016: biomarkers (biochemical markers). Osteoarthritis Cartilage 2017; 25:199-208. [PMID: 28099838 DOI: 10.1016/j.joca.2016.12.016] [Citation(s) in RCA: 108] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Revised: 12/09/2016] [Accepted: 12/14/2016] [Indexed: 02/02/2023]
Abstract
PURPOSE The aim of this "Year in Review" article is to summarize and discuss the implications of biochemical marker related articles published between the Osteoarthritis Research Society International (OARSI) 2015 Congress in Seattle and the OARSI 2016 Congress in Amsterdam. METHODS The PubMed/MEDLINE bibliographic database was searched using the combined keywords: 'biomarker' and 'osteoarthritis'. The PubMed/MEDLINE literature search was conducted using the Advanced Search Builder function (http://www.ncbi.nlm.nih.gov/pubmed/advanced). RESULTS Over two hundred new biomarker-related papers were published during the literature search period. Some papers identified new biomarkers whereas others explored the biological properties and clinical utility of existing markers. There were specific references to several adipocytokines including leptin and adiponectin. ADAM Metallopeptidase with Thrombospondin Type 1 motif 4 (ADAMTS-4) and aggrecan ARGS neo-epitope fragment (ARGS) in synovial fluid (SF) and plasma chemokine (CeC motif) ligand 3 (CCL3) were reported as potential new knee biomarkers. New and refined proteomic technologies and novel assays including a fluoro-microbead guiding chip (FMGC) for measuring C-telopeptide of type II collagen (CTX-II) in serum and urine and a novel magnetic nanoparticle-based technology (termed magnetic capture) for collecting and concentrating CTX-II, were described this past year. CONCLUSION There has been steady progress in osteoarthritis (OA) biomarker research in 2016. Several novel biomarkers were identified and new technologies have been developed for measuring existing biomarkers. However, there has been no "quantum leap" this past year and identification of novel early OA biomarkers remains challenging. During the past year, OARSI published a set of recommendations for the use of soluble biomarkers in clinical trials, which is a major step forward in the clinical use of OA biomarkers and bodes well for future OA biomarker development.
Collapse
Affiliation(s)
- A Mobasheri
- Department of Veterinary Pre-Clinical Sciences, School of Veterinary Medicine, University of Surrey, Guildford, GU2 7AL, United Kingdom; Faculty of Health and Medical Sciences, Duke of Kent Building, University of Surrey, Guildford, Surrey, GU2 7XH, United Kingdom; Arthritis Research UK Centre for Sport, Exercise and Osteoarthritis, Queen's Medical Centre, Nottingham, NG7 2UH, United Kingdom.
| | - A-C Bay-Jensen
- Rheumatology, Biomarkers and Research, Nordic Bioscience A/S, Herlev, Denmark
| | - W E van Spil
- Department of Rheumatology & Clinical Immunology, University Medical Center Utrecht, PO Box 85500, 3508 GA, Utrecht, The Netherlands
| | - J Larkin
- C3 DPU, Immunoinflammation Therapeutic Area, GlaxoSmithKline, King of Prussia, PA, 19406, United States
| | - M C Levesque
- AbbVie Bioresearch Center, 100 Research Drive, Worcester, MA, 01605, United States
| |
Collapse
|
32
|
Abstract
Arthritic diseases are a major cause of disability and morbidity, and cause an enormous burden for health and social care systems globally. Osteoarthritis (OA) is the most common form of arthritis. The key risk factors for the development of OA are age, obesity, joint trauma or instability. Metabolic and endocrine diseases can also contribute to the pathogenesis of OA. There is accumulating evidence to suggest that OA is a whole-organ disease that is influenced by systemic mediators, inflammaging, innate immunity and the low-grade inflammation induced by metabolic syndrome. Although all joint tissues are implicated in disease progression in OA, articular cartilage has received the most attention in the context of aging, injury and disease. There is increasing emphasis on the early detection of OA as it has the capacity to target and treat the disease more effectively. Indeed it has been suggested that this is the era of "personalized prevention" for OA. However, the development of strategies for the prevention of OA require new and sensitive biomarker tools that can detect the disease in its molecular and pre-radiographic stage, before structural and functional alterations in cartilage integrity have occurred. There is also evidence to support a role for biomarkers in OA drug discovery, specifically the development of disease modifying osteoarthritis drugs. This Special Issue of Biomarkers is dedicated to recent progress in the field of OA biomarkers. The papers in this Special Issue review the current state-of-the-art and discuss the utility of OA biomarkers as diagnostic and prognostic tools.
Collapse
Affiliation(s)
- Ali Mobasheri
- Department of Veterinary Pre-Clinical Sciences, School of Veterinary Medicine, University of Surrey,
Guildford,
UK
- Faculty of Health and Medical Sciences, Duke of Kent Building, University of Surrey,
Guildford, Surrey,
UK
- Arthritis Research UK Centre for Sport, Exercise and Osteoarthritis, Arthritis Research UK Pain Centre, Medical Research Council and Arthritis Research UK Centre for Musculoskeletal Ageing Research, Queen’s Medical Centre,
Nottingham,
UK
- Center of Excellence in Genomic Medicine Research (CEGMR), King Fahd Medical Research Center (KFMRC), Faculty of Applied Medical Sciences, King Abdulaziz University,
Jeddah,
Kingdom of Saudi Arabia
| | - Yves Henrotin
- Bone and Cartilage Research Unit, Arthropole Liege, Department of Motricity Sciences, Institute of Pathology, University of Liege,
Liege,
Belgium
- Physical Therapy and Rehabilitation Department, Princess Paola Hospital,
Marche-en-Famenne,
Belgium
| |
Collapse
|