1
|
Juxtaposing Caenorhabditis elegans-Pathogenic Mould Model with Other Models; How Reliable Is This Nematode Model? A Mini Review. Curr Microbiol 2023; 80:105. [PMID: 36790616 DOI: 10.1007/s00284-023-03209-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 02/01/2023] [Indexed: 02/16/2023]
Abstract
The application of Caenorhabditis elegans as a pathogenic model has spanned decades. Its use for pathogenic mould modeling has been attracting some attention lately, though not without some reservations. Several studies have shown C. elegans to be a reliable model for evaluating moulds' virulence factors and patterns as well as for screening the pathogenicity of mutant strains alongside their parental/wild type and revertant/complementary strains. There is a very high degree of reported similarities between the virulence patterns demonstrated in C. elegans and those of other invertebrate and vertebrate models. We have here presented several works in which this nematode model was adopted for virulence evaluation, and other comparative research in which virulence in C. elegans model were juxtaposed with other models. We have further presented possible reasons why there might have been variations of virulence in a few cases, thereby validating C. elegans to be an effective and reliable tool in the study of pathogenic moulds.
Collapse
|
2
|
Nag P, Paul S, Shriti S, Das S. Defence response in plants and animals against a common fungal pathogen, Fusarium oxysporum. CURRENT RESEARCH IN MICROBIAL SCIENCES 2022; 3:100135. [PMID: 35909626 PMCID: PMC9325751 DOI: 10.1016/j.crmicr.2022.100135] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 03/24/2022] [Accepted: 04/18/2022] [Indexed: 11/10/2022] Open
Abstract
Fusarium oxysporum species complex (FOSC) is considered one of the most devastating plant pathogen. FOSC is an emerging pathogen of immunocompromised individuals. Mycotoxins produced by FOSC predisposes the host to other pathogens. Comparative immune reactions in plant and invertebrate show that several antimicrobial peptides (AMPs) and secondary metabolites maybe used as control against Fusarium infection.
Plant pathogens emerging as threat to human and animal health has been a matter of concern within the scientific community. Fusarium oxysporum, predominantly a phytopathogen, can infect both plants and animals. As a plant pathogen, F. oxysporum is one of the most economically damaging pathogen. In humans, F. oxysporum can infect immunocompromised individuals and is increasingly being considered as a problematic pathogen. Mycotoxins produced by F. oxysporum supress the innate immune pathways in both plants and animals. Hence, F. oxysporum is the perfect example for studying similarities and differences between defence strategies adopted by plants and animals. In this review we will discuss the innate immune response of plant and animal hosts for protecting against F. oxysporum infection. Such studies will be helpful for identifying genes, protein and metabolites with antifungal properties suitable for protecting humans.
Collapse
|
3
|
Transcript pattern analysis of Arf-family genes in the phytopathogen Fusarium oxysporum f. sp. lycopersici reveals the role of Arl3 in the virulence. Antonie Van Leeuwenhoek 2021; 114:1619-1632. [PMID: 34338933 DOI: 10.1007/s10482-021-01628-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 07/20/2021] [Indexed: 12/31/2022]
Abstract
Fusarium oxysporum f. sp. lycopersici is an important plant pathogen that has been used to understand the virulence mechanisms that soil inhabiting fungi exhibit during the infection process. In F. oxysporum many of the virulence factors are secreted, and the secretion process requires the formation of vesicles. Arf family members, represented by Arf (ADP- Ribosylation Factor), Arl (Arf-like), and Sar (Secretion-associated and Ras-related) proteins, are involved in the vesicle creation process. In this study we identified the Arf family members in F. oxysporum f. sp. lycopersici, which includes seven putative proteins: Arf1, Arf3, Arl1 through Arl3, Arl8B, and Sar1. Quantification of the mRNA levels of each arf encoding gene revealed that the highest expression corresponds to arf1 in all tested conditions. The phylogenetic analysis revealed that no other Arf1 paralogue, such as Arf2 from yeast, is present in F. oxysporum f. sp. lycopersici. The essential function suggested of Arf1 in F. oxysporum f. sp. lycopersici was corroborated experimentally when, after several attempts, it was impossible to obtain a knockout mutant in arf1. Moreover, arl3 mRNA levels increased significantly when plant tissue was added as a sole carbon source, suggesting that the product of these genes could play pivotal roles during plant infection, the corresponding mutant ∆arl3 was less virulent compared to the wild-type strain. These results describe the role of arl3 as a critical regulator of the virulence in F. oxysporum f. sp. lycopersici and stablish a framework for the arf family members to be studied in deeper details in this phytopathogen.
Collapse
|
4
|
Lukácsi S, Farkas Z, Saskői É, Bajtay Z, Takács-Vellai K. Conserved and Distinct Elements of Phagocytosis in Human and C. elegans. Int J Mol Sci 2021; 22:ijms22168934. [PMID: 34445642 PMCID: PMC8396242 DOI: 10.3390/ijms22168934] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/12/2021] [Accepted: 08/17/2021] [Indexed: 12/12/2022] Open
Abstract
Endocytosis provides the cellular nutrition and homeostasis of organisms, but pathogens often take advantage of this entry point to infect host cells. This is counteracted by phagocytosis that plays a key role in the protection against invading microbes both during the initial engulfment of pathogens and in the clearance of infected cells. Phagocytic cells balance two vital functions: preventing the accumulation of cell corpses to avoid pathological inflammation and autoimmunity, whilst maintaining host defence. In this review, we compare elements of phagocytosis in mammals and the nematode Caenorhabditis elegans. Initial recognition of infection requires different mechanisms. In mammals, pattern recognition receptors bind pathogens directly, whereas activation of the innate immune response in the nematode rather relies on the detection of cellular damage. In contrast, molecules involved in efferocytosis—the engulfment and elimination of dying cells and cell debris—are highly conserved between the two species. Therefore, C. elegans is a powerful model to research mechanisms of the phagocytic machinery. Finally, we show that both mammalian and worm studies help to understand how the two phagocytic functions are interconnected: emerging data suggest the activation of innate immunity as a consequence of defective apoptotic cell clearance.
Collapse
Affiliation(s)
- Szilvia Lukácsi
- MTA-ELTE Immunology Research Group, Eötvös Loránd Research Network (ELKH), Eötvös Loránd University, Pázmány Péter s. 1/C, 1117 Budapest, Hungary; (S.L.); (Z.B.)
| | - Zsolt Farkas
- Department of Biological Anthropology, Eötvös Loránd University, Pázmány Péter s. 1/C, 1117 Budapest, Hungary; (Z.F.); (É.S.)
| | - Éva Saskői
- Department of Biological Anthropology, Eötvös Loránd University, Pázmány Péter s. 1/C, 1117 Budapest, Hungary; (Z.F.); (É.S.)
| | - Zsuzsa Bajtay
- MTA-ELTE Immunology Research Group, Eötvös Loránd Research Network (ELKH), Eötvös Loránd University, Pázmány Péter s. 1/C, 1117 Budapest, Hungary; (S.L.); (Z.B.)
- Department of Immunology, Eötvös Loránd University, Pázmány Péter s. 1/C, 1117 Budapest, Hungary
| | - Krisztina Takács-Vellai
- Department of Biological Anthropology, Eötvös Loránd University, Pázmány Péter s. 1/C, 1117 Budapest, Hungary; (Z.F.); (É.S.)
- Correspondence:
| |
Collapse
|
5
|
Scorzoni L, Alves de Paula e Silva AC, de Oliveira HC, Tavares dos Santos C, de Lacorte Singulani J, Akemi Assato P, Maria Marcos C, Teodoro Oliveira L, Ferreira Fregonezi N, Rossi DCP, Buffoni Roque da Silva L, Pelleschi Taborda C, Fusco-Almeida AM, Soares Mendes-Giannini MJ. In Vitro and In Vivo Effect of Peptides Derived from 14-3-3 Paracoccidioides spp. Protein. J Fungi (Basel) 2021; 7:jof7010052. [PMID: 33451062 PMCID: PMC7828505 DOI: 10.3390/jof7010052] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 12/28/2020] [Accepted: 01/05/2021] [Indexed: 02/06/2023] Open
Abstract
Background: Paracoccidioidomycosis (PCM) is a chronic disease that causes sequelae and requires prolonged treatment; therefore, new therapeutic approaches are necessary. In view of this, three peptides from Paracoccidioides brasiliensis 14-3-3 protein were selected based on its immunogenicity and therapeutic potential. Methods: The in vitro antifungal activity and cytotoxicity of the 14-3-3 peptides were evaluated. The influence of the peptides in immunological and survival aspects was evaluated in vivo, using Galleria mellonella and the expression of antimicrobial peptide genes in Caenorhabditis elegans. Results: None of the peptides were toxic to HaCaT (skin keratinocyte), MRC-5 (lung fibroblast), and A549 (pneumocyte) cell lines, and only P1 exhibited antifungal activity against Paracoccidioides spp. The peptides could induce an immune response in G. mellonella. Moreover, the peptides caused a delay in the death of Paracoccidioides spp. infected larvae. Regarding C. elegans, the three peptides were able to increase the expression of the antimicrobial peptides. These peptides had essential effects on different aspects of Paracoccidioides spp. infection showing potential for a therapeutic vaccine. Future studies using mammalian methods are necessary to validate our findings.
Collapse
Affiliation(s)
- Liliana Scorzoni
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo 14800-903, Brazil; (L.S.); (A.C.A.d.P.eS.); (H.C.d.O.); (C.T.d.S.); (J.d.L.S.); (P.A.A.); (C.M.M.); (L.T.O.); (N.F.F.); (A.M.F.-A.)
| | - Ana Carolina Alves de Paula e Silva
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo 14800-903, Brazil; (L.S.); (A.C.A.d.P.eS.); (H.C.d.O.); (C.T.d.S.); (J.d.L.S.); (P.A.A.); (C.M.M.); (L.T.O.); (N.F.F.); (A.M.F.-A.)
| | - Haroldo Cesar de Oliveira
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo 14800-903, Brazil; (L.S.); (A.C.A.d.P.eS.); (H.C.d.O.); (C.T.d.S.); (J.d.L.S.); (P.A.A.); (C.M.M.); (L.T.O.); (N.F.F.); (A.M.F.-A.)
| | - Claudia Tavares dos Santos
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo 14800-903, Brazil; (L.S.); (A.C.A.d.P.eS.); (H.C.d.O.); (C.T.d.S.); (J.d.L.S.); (P.A.A.); (C.M.M.); (L.T.O.); (N.F.F.); (A.M.F.-A.)
| | - Junya de Lacorte Singulani
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo 14800-903, Brazil; (L.S.); (A.C.A.d.P.eS.); (H.C.d.O.); (C.T.d.S.); (J.d.L.S.); (P.A.A.); (C.M.M.); (L.T.O.); (N.F.F.); (A.M.F.-A.)
| | - Patricia Akemi Assato
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo 14800-903, Brazil; (L.S.); (A.C.A.d.P.eS.); (H.C.d.O.); (C.T.d.S.); (J.d.L.S.); (P.A.A.); (C.M.M.); (L.T.O.); (N.F.F.); (A.M.F.-A.)
| | - Caroline Maria Marcos
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo 14800-903, Brazil; (L.S.); (A.C.A.d.P.eS.); (H.C.d.O.); (C.T.d.S.); (J.d.L.S.); (P.A.A.); (C.M.M.); (L.T.O.); (N.F.F.); (A.M.F.-A.)
| | - Lariane Teodoro Oliveira
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo 14800-903, Brazil; (L.S.); (A.C.A.d.P.eS.); (H.C.d.O.); (C.T.d.S.); (J.d.L.S.); (P.A.A.); (C.M.M.); (L.T.O.); (N.F.F.); (A.M.F.-A.)
| | - Nathália Ferreira Fregonezi
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo 14800-903, Brazil; (L.S.); (A.C.A.d.P.eS.); (H.C.d.O.); (C.T.d.S.); (J.d.L.S.); (P.A.A.); (C.M.M.); (L.T.O.); (N.F.F.); (A.M.F.-A.)
| | - Diego Conrado Pereira Rossi
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, Brazil; (D.C.P.R.); (L.B.R.d.S.); (C.P.T.)
| | - Leandro Buffoni Roque da Silva
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, Brazil; (D.C.P.R.); (L.B.R.d.S.); (C.P.T.)
| | - Carlos Pelleschi Taborda
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, Brazil; (D.C.P.R.); (L.B.R.d.S.); (C.P.T.)
| | - Ana Marisa Fusco-Almeida
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo 14800-903, Brazil; (L.S.); (A.C.A.d.P.eS.); (H.C.d.O.); (C.T.d.S.); (J.d.L.S.); (P.A.A.); (C.M.M.); (L.T.O.); (N.F.F.); (A.M.F.-A.)
| | - Maria José Soares Mendes-Giannini
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo 14800-903, Brazil; (L.S.); (A.C.A.d.P.eS.); (H.C.d.O.); (C.T.d.S.); (J.d.L.S.); (P.A.A.); (C.M.M.); (L.T.O.); (N.F.F.); (A.M.F.-A.)
- Correspondence:
| |
Collapse
|
6
|
Cultivable fungi present in deep-sea sediments of Antarctica: taxonomy, diversity, and bioprospecting of bioactive compounds. Extremophiles 2019; 24:227-238. [PMID: 31758267 DOI: 10.1007/s00792-019-01148-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 11/07/2019] [Indexed: 12/24/2022]
Abstract
We accessed the culturable mycobiota present in marine sediments at different depths in Antarctica Ocean. Acremonium fusidioides, Penicillium allii-sativi, Penicillium chrysogenum, Penicillium palitans, Penicillium solitum, and Pseudogymnoascus verrucosus were identified. Penicillium allii-sativi was the dominant species. At least one isolate of each species was capable to present antifungal, trypanocidal, leishmanicidal, antimalarial, nematocidal, or herbicidal activities. Penicillium produced extracts with strong trypanocidal and antimalarial activities, and the extracts of P. solitum and P. chrysogenum demonstrated strong antimalarial activities. Acremonium fusidioides and P. verrucosus displayed strong selective herbicidal properties. The 1H NMR signals for extracts of A. fusidioides, P. chrysogenum, and P. solitum indicated the presence of highly functionalized secondary metabolites, which may be responsible for the biological activities detected. In the deep marine Antarctic sediments, we detected fungal assemblages in which the Penicillium species were found to be dominant and demonstrated capabilities to survive and/or colonise that poly-extreme habitat. Penicillium being a polyextremophile Antarctic species, exhibited strong biological activities and the presence of aromatic compounds in its extracts may indicate that they are wild ancient strains with high genetic and biochemical potentials that enable them to produce bioactive compounds which can be researched in further studies and used in the chemotherapy of neglected tropical diseases as well as in agriculture.
Collapse
|
7
|
Caenorhabditis elegans as a model animal for investigating fungal pathogenesis. Med Microbiol Immunol 2019; 209:1-13. [PMID: 31555911 DOI: 10.1007/s00430-019-00635-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 09/18/2019] [Indexed: 12/27/2022]
Abstract
The morbidity and mortality associated with systemic fungal infections in humans cannot be underestimated. The nematode Caenorhabditis elegans has become popular for the in vivo study of the pathogenesis of human fungal pathogens and as an antifungal drug-screening tool. C. elegans offers many advantages as a model organism for the study of human fungal diseases, including lack of ethics requirements, easy maintenance in the laboratory, fully sequenced genome, availability of genetic mutants, and the possibility of liquid assays for high-throughput antifungal screening. Its major drawbacks include the inability to grow at 37 °C and absence of an adaptive immune response. However, several virulence factors involved in the pathogenesis of medically important fungal pathogens have been identified using the C. elegans model, consequently providing new leads for drug discovery and potential drug targets. We review the use of C. elegans as a model animal to understand the pathogenesis of medically important human fungal pathogens and the discovery of novel antifungal compounds. The review makes a case for C. elegans as a suitable invertebrate model for a plethora of practical applications in the investigation of fungal pathogenesis as well as its amenability for liquid-based high-throughput screening of potential antifungal compounds.
Collapse
|
8
|
Scorzoni L, de Lucas MP, Singulani JDL, de Oliveira HC, Assato PA, Fusco-Almeida AM, Mendes-Giannini MJS. Evaluation of Caenorhabditis elegans as a host model for Paracoccidioides brasiliensis and Paracoccidioides lutzii. Pathog Dis 2018; 76:4816731. [PMID: 29361158 DOI: 10.1093/femspd/fty004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 01/17/2018] [Indexed: 12/24/2022] Open
Abstract
Paracoccidioidomycosis is a systemic fungal infection affecting mainly Latin American countries that is caused by Paracoccidioides brasiliensis and Paracoccidioides lutzii. During the study of fungal pathogenesis, in vivo studies are crucial to understand the overall mechanisms involving the infection as well as to search for new therapeutic treatments and diagnosis. Caenorhabditis elegans is described as an infection model for different fungi species and a well-characterized organism to study the innate immune response. This study evaluates C. elegans as an infection model for Paracoccidioides spp. It was observed that both species do not cause infection in C. elegans, as occurs with Candida albicans, and one possible explanation is that the irregular size and shape of Paracoccidioides spp. difficult the ingestion of these fungi by the nematode. Besides this difficulty in the infection, we could observe that the simple exposition of C. elegans to Paracoccidioides species was able to trigger a distinct pattern of expression of antimicrobial peptide genes. The expression of cnc-4, nlpl-27 and nlp-31 was superior after the exposure to P. brasiliensis in comparison to P. lutzii (P < 0.05), and these findings demonstrate important differences regarding innate immune response activation caused by the two species of the Paracoccidioides genus.
Collapse
Affiliation(s)
- Liliana Scorzoni
- Laboratório de Micologia Clínica, Departamento de Análises Clínicas, Universidade Estadual Paulista (UNESP), Faculdade de Ciências Farmacêuticas, Araraquara, Brazil
| | - Maria Pilar de Lucas
- Unidad de Biología Celular, Unidad Funcional de Investigación de Enfermedades Crónicas, Instituto de Salud Carlos III, Majadahonda, Spain
| | - Junya de Lacorte Singulani
- Laboratório de Micologia Clínica, Departamento de Análises Clínicas, Universidade Estadual Paulista (UNESP), Faculdade de Ciências Farmacêuticas, Araraquara, Brazil
| | - Haroldo Cesar de Oliveira
- Laboratório de Micologia Clínica, Departamento de Análises Clínicas, Universidade Estadual Paulista (UNESP), Faculdade de Ciências Farmacêuticas, Araraquara, Brazil
| | - Patricia Akemi Assato
- Laboratório de Micologia Clínica, Departamento de Análises Clínicas, Universidade Estadual Paulista (UNESP), Faculdade de Ciências Farmacêuticas, Araraquara, Brazil
| | - Ana Marisa Fusco-Almeida
- Laboratório de Micologia Clínica, Departamento de Análises Clínicas, Universidade Estadual Paulista (UNESP), Faculdade de Ciências Farmacêuticas, Araraquara, Brazil
| | - Maria José Soares Mendes-Giannini
- Laboratório de Micologia Clínica, Departamento de Análises Clínicas, Universidade Estadual Paulista (UNESP), Faculdade de Ciências Farmacêuticas, Araraquara, Brazil
| |
Collapse
|
9
|
Nag P, Aggarwal PR, Ghosh S, Narula K, Tayal R, Maheshwari N, Chakraborty N, Chakraborty S. Interplay of neuronal and non-neuronal genes regulates intestinal DAF-16-mediated immune response during Fusarium infection of Caenorhabditis elegans. Cell Death Discov 2017; 3:17073. [PMID: 29152379 PMCID: PMC5684781 DOI: 10.1038/cddiscovery.2017.73] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 08/02/2017] [Accepted: 09/13/2017] [Indexed: 12/21/2022] Open
Abstract
Although precisely controlled innate immune response is governed by conserved cellular events in phylogenetically diverse hosts, the underlying molecular mechanisms by which this process is regulated against a multi-host pathogen remain unknown. Fusarium oxysporum is a model multi-host pathogen, known to be associated with neuronal stress in humans and vascular wilt in plants. The interaction between innate immune and neuronal pathways is the basis of many diverse biological responses. How these processes are coordinated in response to fungal disease is not well understood. Here, we show that F. oxysporum f. sp. ciceri causes neuronal stress and intestinal disintegration, ultimately leading to the death of Caenorhabditis elegans. To explore the regulatory framework of Fusarium-associated disease, we analysed the gene expression during infection, integrated temporal gene expression, and network analysis with genetic inactivation data in Caenorhabditis elegans. We identified 1024 genes showing significant changes in expression (corrected P-values <0.05) in response to Fusarium infection. Co-expression network analysis of our data identified prognostic genes related to disease progression. These genes were dynamically expressed in various neuronal and non-neuronal tissues exhibiting diverse biological functions, including cellular homeostasis, organ patterning, stress response, and lipid metabolism. The RNA-seq analysis further identified shared and unique signalling pathways regulated by DAF-16/FOXO and SIR-2.1 linking neuronal stress, which facilitates negative regulation of intestinal innate immunity. Genetic analysis revealed that GCY-5 in ASE functions upstream of DAF-16, whereas ASI-specific SRD-1 regulates behavioural immunity. Overall, our results indicate that a ubiquitous response occurs during Fusarium infection mediated by highly conserved regulatory components and pathways, which can be exploited further for the identification of disease-responsive genes conserved among animals and plants. Finally, this study provided a novel insight into cross-species immune signalling and may facilitate the discovery of cellular therapeutic targets for Fusarium-associated disease.
Collapse
Affiliation(s)
- Papri Nag
- National Institute of Plant Genome Research,
Aruna Asaf Ali Marg, New Delhi, India
| | - Pooja Rani Aggarwal
- National Institute of Plant Genome Research,
Aruna Asaf Ali Marg, New Delhi, India
| | - Sudip Ghosh
- National Institute of Plant Genome Research,
Aruna Asaf Ali Marg, New Delhi, India
| | - Kanika Narula
- National Institute of Plant Genome Research,
Aruna Asaf Ali Marg, New Delhi, India
| | - Rajul Tayal
- National Institute of Plant Genome Research,
Aruna Asaf Ali Marg, New Delhi, India
| | - Nidhi Maheshwari
- National Institute of Plant Genome Research,
Aruna Asaf Ali Marg, New Delhi, India
| | - Niranjan Chakraborty
- National Institute of Plant Genome Research,
Aruna Asaf Ali Marg, New Delhi, India
| | - Subhra Chakraborty
- National Institute of Plant Genome Research,
Aruna Asaf Ali Marg, New Delhi, India
| |
Collapse
|
10
|
Mylonakis E, Podsiadlowski L, Muhammed M, Vilcinskas A. Diversity, evolution and medical applications of insect antimicrobial peptides. Philos Trans R Soc Lond B Biol Sci 2017; 371:rstb.2015.0290. [PMID: 27160593 PMCID: PMC4874388 DOI: 10.1098/rstb.2015.0290] [Citation(s) in RCA: 153] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/08/2016] [Indexed: 12/30/2022] Open
Abstract
Antimicrobial peptides (AMPs) are short proteins with antimicrobial activity. A large portion of known AMPs originate from insects, and the number and diversity of these molecules in different species varies considerably. Insect AMPs represent a potential source of alternative antibiotics to address the limitation of current antibiotics, which has been caused by the emergence and spread of multidrug-resistant pathogens. To get more insight into AMPs, we investigated the diversity and evolution of insect AMPs by mapping their phylogenetic distribution, allowing us to predict the evolutionary origins of selected AMP families and to identify evolutionarily conserved and taxon-specific families. Furthermore, we highlight the use of the nematode Caenorhabditis elegans as a whole-animal model in high-throughput screening methods to identify AMPs with efficacy against human pathogens, including Acinetobacter baumanii and methicillin-resistant Staphylococcus aureus. We also discuss the potential medical applications of AMPs, including their use as alternatives for conventional antibiotics in ectopic therapies, their combined use with antibiotics to restore the susceptibility of multidrug-resistant pathogens, and their use as templates for the rational design of peptidomimetic drugs that overcome the disadvantages of therapeutic peptides. The article is part of the themed issue ‘Evolutionary ecology of arthropod antimicrobial peptides’.
Collapse
Affiliation(s)
- Eleftherios Mylonakis
- Division of Infectious Disease, Warren Alpert Medical School of Brown University, Rhode Island Hospital, Providence, RI, USA
| | - Lars Podsiadlowski
- Institute of Evolutionary Biology and Zooecology, University of Bonn, Bonn, Germany
| | - Maged Muhammed
- Division of Infectious Disease, Warren Alpert Medical School of Brown University, Rhode Island Hospital, Providence, RI, USA
| | - Andreas Vilcinskas
- Institute for Insect Biotechnology, Justus-Liebig-University of Giessen, Giessen, Germany Department of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, Giessen, Germany
| |
Collapse
|
11
|
Abstract
AIM Caffeic acid (3,4-dihydroxycinnamic acid) phenethyl ester (CAPE), the major constituent of propolis, is able to increase the survival of the nematode Caenorhabditis elegans after infection with the fungal pathogen Candida albicans. RESULTS CAPE increases the expression of several antimicrobial proteins involved in the immune response to C. albicans. Structural derivatives of CAPE were synthesized to identify structure-activity relationships and decrease metabolic liability, ultimately leading to a compound that has similar efficacy, but increased in vivo stability. The CED-10(Rac-1)/PAK1 pathway was essential for immunomodulation by CAPE and was a critical component involved in the immune response to fungal pathogens. CONCLUSION Caenorhabditis elegans is an efficient heterologous host to evaluate immunomodulatory compounds and identify components of the pathway(s) involved in the mode of action of compounds.
Collapse
|
12
|
Rossi SA, Trevijano-Contador N, Scorzoni L, Mesa-Arango AC, de Oliveira HC, Werther K, de Freitas Raso T, Mendes-Giannini MJS, Zaragoza O, Fusco-Almeida AM. Impact of Resistance to Fluconazole on Virulence and Morphological Aspects of Cryptococcus neoformans and Cryptococcus gattii Isolates. Front Microbiol 2016; 7:153. [PMID: 26909069 PMCID: PMC4754443 DOI: 10.3389/fmicb.2016.00153] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 01/29/2016] [Indexed: 01/12/2023] Open
Abstract
Cryptococcus sp. are responsible for around 1 million cases of meningitis every year. Fluconazole (FLU) is commonly used in the treatment of cryptococcosis, mainly in immunocompromised patients and the resistance is usually reported after long periods of treatment. In this study, the morphological characterization and virulence profile of FLU-susceptible and FLU-resistant clinical and environmental isolates of C. neoformans and C. gattii were performed both in vitro and in vivo using the Galleria mellonella model. FLU-susceptible isolates from C. neoformans were significantly more virulent than the FLU-resistant isolates. FLU-susceptible C. gattii isolates showed a different virulence profile from C. neoformans isolates where only the environmental isolate, CL, was more virulent compared with the resistant isolates. Cell morphology and capsule size were analyzed and the FLU-resistant isolates did not change significantly compared with the most sensitive isolates. Growth at 37°C was also evaluated and in both species, the resistant isolates showed a reduced growth at this temperature, indicating that FLU resistance can affect their growth. Based on the results obtained is possible suggest that FLU resistance can influence the morphology of the isolates and consequently changed the virulence profiles. The most evident results were observed for C. neoformans showing that the adaptation of isolates to antifungal selective pressure influenced the loss of virulence.
Collapse
Affiliation(s)
- Suélen A Rossi
- Faculdade de Ciências Farmacêuticas, UNESP - Universidade Estadual Paulista, Campus Araraquara, Departamento de Análises Clíncas São Paulo, Brazil
| | - Nuria Trevijano-Contador
- Centro Nacional de Microbiologia, Unidad de Micologia, Instituto de Salud Carlos III, Majadahonda Madrid, Spain
| | - Liliana Scorzoni
- Faculdade de Ciências Farmacêuticas, UNESP - Universidade Estadual Paulista, Campus Araraquara, Departamento de Análises Clíncas São Paulo, Brazil
| | | | - Haroldo C de Oliveira
- Faculdade de Ciências Farmacêuticas, UNESP - Universidade Estadual Paulista, Campus Araraquara, Departamento de Análises Clíncas São Paulo, Brazil
| | - Karin Werther
- Faculdade de Medicina Veterinária e Zootecnia, USP - Universidade de São Paulo, Departamento de Patologia São Paulo, Brazil
| | - Tânia de Freitas Raso
- Faculdade de Medicina Veterinária e Zootecnia, USP - Universidade de São Paulo, Departamento de Patologia São Paulo, Brazil
| | - Maria J S Mendes-Giannini
- Faculdade de Ciências Farmacêuticas, UNESP - Universidade Estadual Paulista, Campus Araraquara, Departamento de Análises Clíncas São Paulo, Brazil
| | - Oscar Zaragoza
- Centro Nacional de Microbiologia, Unidad de Micologia, Instituto de Salud Carlos III, Majadahonda Madrid, Spain
| | - Ana M Fusco-Almeida
- Faculdade de Ciências Farmacêuticas, UNESP - Universidade Estadual Paulista, Campus Araraquara, Departamento de Análises Clíncas São Paulo, Brazil
| |
Collapse
|
13
|
Muhammed M, Arvanitis M, Mylonakis E. Whole animal HTS of small molecules for antifungal compounds. Expert Opin Drug Discov 2015; 11:177-84. [PMID: 26593386 DOI: 10.1517/17460441.2016.1122591] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION The high morbidity and mortality among patients with invasive fungal infections and the growing problem of fungal resistance have resulted in an urgent need for new antifungal agents. AREAS COVERED This review covers the importance of antifungal drug discovery with an emphasis on whole-animal high-throughput techniques. More specifically, the authors focus on Caenorhabditis elegans, as a substitute model host and discuss C. elegans as an alternative model host for the study of microbial pathogenesis and the identification of novel antifungal compounds. EXPERT OPINION There are significant advantages from using the substitute model host C. elegans in high-throughput drug discovery. The C. elegans-microbe model provides a whole animal system where host-pathogen interactions can be studied along with the evaluation of antimicrobial efficacy of compounds. This approach allows the study of compound characteristics, such as toxicity and solubility, during the initial screen and compounds discovered using C. elegans are affective in mammalian models.
Collapse
Affiliation(s)
- Maged Muhammed
- a Division of Infectious Diseases , Rhode Island Hospital , Providence , RI , USA.,b Warren Alpert Medical School of Brown University , Providence , RI , USA
| | - Marios Arvanitis
- c Department of Medicine , Boston Medical Center, Boston University , Boston , MA , USA
| | - Eleftherios Mylonakis
- a Division of Infectious Diseases , Rhode Island Hospital , Providence , RI , USA.,b Warren Alpert Medical School of Brown University , Providence , RI , USA
| |
Collapse
|
14
|
de Oliveira HC, Assato PA, Marcos CM, Scorzoni L, de Paula E Silva ACA, Da Silva JDF, Singulani JDL, Alarcon KM, Fusco-Almeida AM, Mendes-Giannini MJS. Paracoccidioides-host Interaction: An Overview on Recent Advances in the Paracoccidioidomycosis. Front Microbiol 2015; 6:1319. [PMID: 26635779 PMCID: PMC4658449 DOI: 10.3389/fmicb.2015.01319] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 11/09/2015] [Indexed: 11/13/2022] Open
Abstract
Paracoccidioides brasiliensis and P. lutzii are etiologic agents of paracoccidioidomycosis (PCM), an important endemic mycosis in Latin America. During its evolution, these fungi have developed characteristics and mechanisms that allow their growth in adverse conditions within their host through which they efficiently cause disease. This process is multi-factorial and involves host-pathogen interactions (adaptation, adhesion, and invasion), as well as fungal virulence and host immune response. In this review, we demonstrated the glycoproteins and polysaccharides network, which composes the cell wall of Paracoccidioides spp. These are important for the change of conidia or mycelial (26°C) to parasitic yeast (37°C). The morphological switch, a mechanism for the pathogen to adapt and thrive inside the host, is obligatory for the establishment of the infection and seems to be related to pathogenicity. For these fungi, one of the most important steps during the interaction with the host is the adhesion. Cell surface proteins called adhesins, responsible for the first contact with host cells, contribute to host colonization and invasion by mediating this process. These fungi also present the capacity to form biofilm and through which they may evade the host's immune system. During infection, Paracoccidioides spp. can interact with different host cell types and has the ability to modulate the host's adaptive and/or innate immune response. In addition, it participates and interferes in the coagulation system and phenomena like cytoskeletal rearrangement and apoptosis. In recent years, Paracoccidioides spp. have had their endemic areas expanding in correlation with the expansion of agriculture. In response, several studies were developed to understand the infection using in vitro and in vivo systems, including alternative non-mammal models. Moreover, new advances were made in treating these infections using both well-established and new antifungal agents. These included natural and/or derivate synthetic substances as well as vaccines, peptides, and anti-adhesins sera. Because of all the advances in the PCM study, this review has the objective to summarize all of the recent discoveries on Paracoccidioides-host interaction, with particular emphasis on fungi surface proteins (molecules that play a fundamental role in the adhesion and/or dissemination of the fungi to host-cells), as well as advances in the treatment of PCM with new and well-established antifungal agents and approaches.
Collapse
Affiliation(s)
- Haroldo C de Oliveira
- Faculdade de Ciências Farmacêuticas, UNESP - Universidade Estadual Paulista, Campus Araraquara, Departamento de Análises Clínicas, Laboratório de Micologia Clínica São Paulo, Brazil
| | - Patrícia A Assato
- Faculdade de Ciências Farmacêuticas, UNESP - Universidade Estadual Paulista, Campus Araraquara, Departamento de Análises Clínicas, Laboratório de Micologia Clínica São Paulo, Brazil
| | - Caroline M Marcos
- Faculdade de Ciências Farmacêuticas, UNESP - Universidade Estadual Paulista, Campus Araraquara, Departamento de Análises Clínicas, Laboratório de Micologia Clínica São Paulo, Brazil
| | - Liliana Scorzoni
- Faculdade de Ciências Farmacêuticas, UNESP - Universidade Estadual Paulista, Campus Araraquara, Departamento de Análises Clínicas, Laboratório de Micologia Clínica São Paulo, Brazil
| | - Ana C A de Paula E Silva
- Faculdade de Ciências Farmacêuticas, UNESP - Universidade Estadual Paulista, Campus Araraquara, Departamento de Análises Clínicas, Laboratório de Micologia Clínica São Paulo, Brazil
| | - Julhiany De Fátima Da Silva
- Faculdade de Ciências Farmacêuticas, UNESP - Universidade Estadual Paulista, Campus Araraquara, Departamento de Análises Clínicas, Laboratório de Micologia Clínica São Paulo, Brazil
| | - Junya de Lacorte Singulani
- Faculdade de Ciências Farmacêuticas, UNESP - Universidade Estadual Paulista, Campus Araraquara, Departamento de Análises Clínicas, Laboratório de Micologia Clínica São Paulo, Brazil
| | - Kaila M Alarcon
- Faculdade de Ciências Farmacêuticas, UNESP - Universidade Estadual Paulista, Campus Araraquara, Departamento de Análises Clínicas, Laboratório de Micologia Clínica São Paulo, Brazil
| | - Ana M Fusco-Almeida
- Faculdade de Ciências Farmacêuticas, UNESP - Universidade Estadual Paulista, Campus Araraquara, Departamento de Análises Clínicas, Laboratório de Micologia Clínica São Paulo, Brazil
| | - Maria J S Mendes-Giannini
- Faculdade de Ciências Farmacêuticas, UNESP - Universidade Estadual Paulista, Campus Araraquara, Departamento de Análises Clínicas, Laboratório de Micologia Clínica São Paulo, Brazil
| |
Collapse
|
15
|
De Arras L, Laws R, Leach SM, Pontis K, Freedman JH, Schwartz DA, Alper S. Comparative genomics RNAi screen identifies Eftud2 as a novel regulator of innate immunity. Genetics 2014; 197:485-96. [PMID: 24361939 PMCID: PMC4063909 DOI: 10.1534/genetics.113.160499] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Accepted: 12/15/2013] [Indexed: 01/08/2023] Open
Abstract
The extent of the innate immune response is regulated by many positively and negatively acting signaling proteins. This allows for proper activation of innate immunity to fight infection while ensuring that the response is limited to prevent unwanted complications. Thus mutations in innate immune regulators can lead to immune dysfunction or to inflammatory diseases such as arthritis or atherosclerosis. To identify novel innate immune regulators that could affect infectious or inflammatory disease, we have taken a comparative genomics RNAi screening approach in which we inhibit orthologous genes in the nematode Caenorhabditis elegans and murine macrophages, expecting that genes with evolutionarily conserved function also will regulate innate immunity in humans. Here we report the results of an RNAi screen of approximately half of the C. elegans genome, which led to the identification of many candidate genes that regulate innate immunity in C. elegans and mouse macrophages. One of these novel conserved regulators of innate immunity is the mRNA splicing regulator Eftud2, which we show controls the alternate splicing of the MyD88 innate immunity signaling adaptor to modulate the extent of the innate immune response.
Collapse
Affiliation(s)
- Lesly De Arras
- Integrated Department of Immunology, National Jewish Health and University of Colorado, Denver, Colorado 80206 Integrated Center for Genes, Environment and Health, National Jewish Health and University of Colorado, Denver, Colorado 80206
| | - Rebecca Laws
- Department of Environmental Health, Boston University School of Public Health, Boston, Massachusetts 02118
| | - Sonia M Leach
- Integrated Center for Genes, Environment and Health, National Jewish Health and University of Colorado, Denver, Colorado 80206
| | - Kyle Pontis
- Integrated Department of Immunology, National Jewish Health and University of Colorado, Denver, Colorado 80206 Integrated Center for Genes, Environment and Health, National Jewish Health and University of Colorado, Denver, Colorado 80206
| | - Jonathan H Freedman
- Laboratory of Toxicology and Pharmacology, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, North Carolina 27709
| | - David A Schwartz
- Integrated Center for Genes, Environment and Health, National Jewish Health and University of Colorado, Denver, Colorado 80206 Department of Medicine, University of Colorado, Aurora, Colorado 80045
| | - Scott Alper
- Integrated Department of Immunology, National Jewish Health and University of Colorado, Denver, Colorado 80206 Integrated Center for Genes, Environment and Health, National Jewish Health and University of Colorado, Denver, Colorado 80206
| |
Collapse
|
16
|
De Arras L, Alper S. Limiting of the innate immune response by SF3A-dependent control of MyD88 alternative mRNA splicing. PLoS Genet 2013; 9:e1003855. [PMID: 24204290 PMCID: PMC3812059 DOI: 10.1371/journal.pgen.1003855] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Accepted: 08/20/2013] [Indexed: 12/16/2022] Open
Abstract
Controlling infectious disease without inducing unwanted inflammatory disease requires proper regulation of the innate immune response. Thus, innate immunity needs to be activated when needed during an infection, but must be limited to prevent damage. To accomplish this, negative regulators of innate immunity limit the response. Here we investigate one such negative regulator encoded by an alternative splice form of MyD88. MyD88 mRNA exists in two alternative splice forms: MyD88L, a long form that encodes a protein that activates innate immunity by transducing Toll-like receptor (TLR) signals; and a short form that encodes a different protein, MyD88S, that inhibits the response. We find that MyD88S levels regulate the extent of inflammatory cytokine production in murine macrophages. MyD88S mRNA levels are regulated by the SF3A and SF3B mRNA splicing complexes, and these mRNA splicing complexes function with TLR signaling to regulate MyD88S production. Thus, the SF3A mRNA splicing complex controls production of a negative regulator of TLR signaling that limits the extent of innate immune activation.
Collapse
Affiliation(s)
- Lesly De Arras
- Integrated Department of Immunology and Integrated Center for Genes, Environment, and Health, National Jewish Health and University of Colorado School of Medicine, Denver, Colorado, United States of America
| | - Scott Alper
- Integrated Department of Immunology and Integrated Center for Genes, Environment, and Health, National Jewish Health and University of Colorado School of Medicine, Denver, Colorado, United States of America
- * E-mail:
| |
Collapse
|
17
|
Scorzoni L, de Lucas MP, Mesa-Arango AC, Fusco-Almeida AM, Lozano E, Cuenca-Estrella M, Mendes-Giannini MJ, Zaragoza O. Antifungal efficacy during Candida krusei infection in non-conventional models correlates with the yeast in vitro susceptibility profile. PLoS One 2013; 8:e60047. [PMID: 23555877 PMCID: PMC3610750 DOI: 10.1371/journal.pone.0060047] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Accepted: 02/20/2013] [Indexed: 12/28/2022] Open
Abstract
The incidence of opportunistic fungal infections has increased in recent decades due to the growing proportion of immunocompromised patients in our society. Candida krusei has been described as a causative agent of disseminated fungal infections in susceptible patients. Although its prevalence remains low among yeast infections (2-5%), its intrinsic resistance to fluconazole makes this yeast important from epidemiologic aspects. Non mammalian organisms are feasible models to study fungal virulence and drug efficacy. In this work we have used the lepidopteran Galleria mellonella and the nematode Caenorhabditis elegans as models to assess antifungal efficacy during infection by C. krusei. This yeast killed G. mellonella at 25, 30 and 37°C and reduced haemocytic density. Infected larvae melanized in a dose-dependent manner. Fluconazole did not protect against C. krusei infection, in contrast to amphotericin B, voriconazole or caspofungin. However, the doses of these antifungals required to obtain larvae protection were always higher during C. krusei infection than during C. albicans infection. Similar results were found in the model host C. elegans. Our work demonstrates that non mammalian models are useful tools to investigate in vivo antifungal efficacy and virulence of C. krusei.
Collapse
Affiliation(s)
- Liliana Scorzoni
- Mycology Reference Laboratory, National Centre for Microbiology, Instituto de Salud Carlos III, Madrid, Spain
- Laboratório de Micologia Clínica, Faculdade de Ciências Farmacêuticas, Universidade Estadual Paulista de São Paulo, Araraquara, Brazil
| | - Maria Pilar de Lucas
- Department of Cellular Biology, National Centre for Microbiology, Instituto de Salud Carlos III, Madrid, Spain
| | - Ana Cecilia Mesa-Arango
- Mycology Reference Laboratory, National Centre for Microbiology, Instituto de Salud Carlos III, Madrid, Spain
- Group of Investigative Dermatology, University of Antioquia, Medellín, Colombia
| | - Ana Marisa Fusco-Almeida
- Laboratório de Micologia Clínica, Faculdade de Ciências Farmacêuticas, Universidade Estadual Paulista de São Paulo, Araraquara, Brazil
| | - Encarnación Lozano
- Department of Cellular Biology, National Centre for Microbiology, Instituto de Salud Carlos III, Madrid, Spain
| | - Manuel Cuenca-Estrella
- Mycology Reference Laboratory, National Centre for Microbiology, Instituto de Salud Carlos III, Madrid, Spain
| | - Maria Jose Mendes-Giannini
- Laboratório de Micologia Clínica, Faculdade de Ciências Farmacêuticas, Universidade Estadual Paulista de São Paulo, Araraquara, Brazil
- * E-mail: (MJMG); (OZ)
| | - Oscar Zaragoza
- Mycology Reference Laboratory, National Centre for Microbiology, Instituto de Salud Carlos III, Madrid, Spain
- * E-mail: (MJMG); (OZ)
| |
Collapse
|
18
|
De Arras L, Seng A, Lackford B, Keikhaee MR, Bowerman B, Freedman JH, Schwartz DA, Alper S. An evolutionarily conserved innate immunity protein interaction network. J Biol Chem 2012; 288:1967-78. [PMID: 23209288 DOI: 10.1074/jbc.m112.407205] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The innate immune response plays a critical role in fighting infection; however, innate immunity also can affect the pathogenesis of a variety of diseases, including sepsis, asthma, cancer, and atherosclerosis. To identify novel regulators of innate immunity, we performed comparative genomics RNA interference screens in the nematode Caenorhabditis elegans and mouse macrophages. These screens have uncovered many candidate regulators of the response to lipopolysaccharide (LPS), several of which interact physically in multiple species to form an innate immunity protein interaction network. This protein interaction network contains several proteins in the canonical LPS-responsive TLR4 pathway as well as many novel interacting proteins. Using RNAi and overexpression studies, we show that almost every gene in this network can modulate the innate immune response in mouse cell lines. We validate the importance of this network in innate immunity regulation in vivo using available mutants in C. elegans and mice.
Collapse
Affiliation(s)
- Lesly De Arras
- Integrated Department of Immunology, National Jewish Health and University of Colorado, Denver, Colorado 80206, USA
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Mesa-Arango AC, Forastiero A, Bernal-Martínez L, Cuenca-Estrella M, Mellado E, Zaragoza O. The non-mammalian host Galleria mellonella can be used to study the virulence of the fungal pathogen Candida tropicalis and the efficacy of antifungal drugs during infection by this pathogenic yeast. Med Mycol 2012; 51:461-72. [PMID: 23170962 DOI: 10.3109/13693786.2012.737031] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Although Candida tropicalis is a frequent cause of invasive fungal diseases, its interaction with the host remains poorly studied. Galleria mellonella is a Lepidoptera model which offers a useful tool to study virulence of different microorganisms and drug efficacy. In this work we investigated the virulence of C. tropicalis in G. mellonella at different temperatures and the efficacy of antifungal drugs in this infection model. When larvae were infected with yeast inocula suspensions of different concentrations (4 × 10(6), 2 × 10(6), 10(6) and 5 × 10(5) cells/larva), we observed a dose-dependent effect on the killing of the insect (50% survival ranging from 1.4 ± 0.8 to 8.8 ± 1.2 days with the higher and lower inocula, respectively). Candida tropicalis killed G. mellonella larvae at both 30°C and 37°C, although at 37°C the virulence was more evident. Haemocytes phagocytosed C. tropicalis cells after 2 hours of infection, although the phagocytosis rate was lower when compared with other fungal pathogens, such as Cryptococcus neoformans. Moreover, the haemocyte density in the haemolymph decreased during infection and the yeast formed pseudohyphae in G. mellonella. The efficacy of amphotericin B, caspofungin, fluconazole and voriconazole was tested at different concentrations, and a protective effect was observed with all the drugs at concentrations equivalent to therapeutic dose. Fungal burden increased in infected larvae during time of infection and amphotericin B and fluconazole reduced the number of colony-forming units in the worms. Moreover, antifungal treatment was associated with the presence of cell aggregates around infected areas. We conclude that G. mellonella offers a simple and feasible model to study C. tropicalis virulence and drug efficacy.
Collapse
Affiliation(s)
- Ana Cecilia Mesa-Arango
- Mycology Reference Laboratory, National Centre for Microbiology, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | | | | | | | | | | |
Collapse
|