1
|
Costa NDSD, Lima LS, Galiciolli MEA, Ribeiro DHF, Ribeiro MM, Garica GDPJ, Marçal IS, Silva JFD, Pereira ME, Oliveira CS, Guiloski IC. Drug-induced osteoporosis and mechanisms of bone tissue regeneration through trace elements. J Trace Elem Med Biol 2024; 84:127446. [PMID: 38615498 DOI: 10.1016/j.jtemb.2024.127446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 03/30/2024] [Accepted: 04/03/2024] [Indexed: 04/16/2024]
Abstract
Osteoporosis is associated with an imbalance in bone formation, with certain drugs used in disease treatment being implicated in its development. Supplementation with trace elements may contribute to bone regeneration, offering an alternative approach by enhancing bone mineral density (BMD) and thereby thwarting the onset of osteoporosis. This review aims to assess the mechanisms through which trace elements such as copper (Cu), iron (Fe), selenium (Se), manganese (Mn), and zinc (Zn) are linked to increased bone mass, thus mitigating the effects of pharmaceuticals. Our findings underscore that the use of drugs such as aromatase inhibitors (AIs), proton pump inhibitors (PPIs), antiretrovirals, glucocorticoids, opioids, or anticonvulsants can result in decreased BMD, a primary contributor to osteoporosis. Research indicates that essential elements like Cu, Fe, Se, Mn, and Zn, through various mechanisms, can bolster BMD and forestall the onset of the disease, owing to their protective effects. Consequently, our study recommends a minimum daily intake of these essential minerals for patients undergoing treatment with the aforementioned drugs, as the diverse mechanisms governing the effects of trace elements Cu, Fe, Mn, Se, and Zn facilitate bone remodeling.
Collapse
Affiliation(s)
- Nayara de Souza da Costa
- Instituto de Pesquisas Pelé Pequeno Príncipe, Curitiba 80035-000, Brazil; Faculdades Pequeno Príncipe, Curitiba 80230-020, Brazil
| | - Luíza Siqueira Lima
- Instituto de Pesquisas Pelé Pequeno Príncipe, Curitiba 80035-000, Brazil; Faculdades Pequeno Príncipe, Curitiba 80230-020, Brazil
| | - Maria Eduarda Andrade Galiciolli
- Instituto de Pesquisas Pelé Pequeno Príncipe, Curitiba 80035-000, Brazil; Faculdades Pequeno Príncipe, Curitiba 80230-020, Brazil
| | - Deborah Helen Fabiano Ribeiro
- Instituto de Pesquisas Pelé Pequeno Príncipe, Curitiba 80035-000, Brazil; Faculdades Pequeno Príncipe, Curitiba 80230-020, Brazil
| | - Milena Mariano Ribeiro
- Instituto de Pesquisas Pelé Pequeno Príncipe, Curitiba 80035-000, Brazil; Faculdades Pequeno Príncipe, Curitiba 80230-020, Brazil
| | - Gisele de Paula Júlia Garica
- Instituto de Pesquisas Pelé Pequeno Príncipe, Curitiba 80035-000, Brazil; Faculdades Pequeno Príncipe, Curitiba 80230-020, Brazil
| | - Isabela Saragioto Marçal
- Instituto de Pesquisas Pelé Pequeno Príncipe, Curitiba 80035-000, Brazil; Faculdades Pequeno Príncipe, Curitiba 80230-020, Brazil
| | - Juliana Ferreira da Silva
- Instituto de Pesquisas Pelé Pequeno Príncipe, Curitiba 80035-000, Brazil; Faculdades Pequeno Príncipe, Curitiba 80230-020, Brazil
| | - Meire Ellen Pereira
- Instituto de Pesquisas Pelé Pequeno Príncipe, Curitiba 80035-000, Brazil; Faculdades Pequeno Príncipe, Curitiba 80230-020, Brazil
| | - Cláudia Sirlene Oliveira
- Instituto de Pesquisas Pelé Pequeno Príncipe, Curitiba 80035-000, Brazil; Faculdades Pequeno Príncipe, Curitiba 80230-020, Brazil
| | - Izonete Cristina Guiloski
- Instituto de Pesquisas Pelé Pequeno Príncipe, Curitiba 80035-000, Brazil; Faculdades Pequeno Príncipe, Curitiba 80230-020, Brazil.
| |
Collapse
|
2
|
Antioxidative and Anti-Inflammatory Activities of Chrysin and Naringenin in a Drug-Induced Bone Loss Model in Rats. Int J Mol Sci 2022; 23:ijms23052872. [PMID: 35270014 PMCID: PMC8911302 DOI: 10.3390/ijms23052872] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/03/2022] [Accepted: 03/04/2022] [Indexed: 11/19/2022] Open
Abstract
Oxidative stress (OS) mediators, together with the inflammatory processes, are considered as threatening factors for bone health. The aim of this study was to investigate effects of flavonoids naringenin and chrysin on OS, inflammation, and bone degradation in retinoic acid (13cRA)-induced secondary osteoporosis (OP) in rats. We analysed changes in body and uterine weight, biochemical bone parameters (bone mineral density (BMD), bone mineral content (BMC), markers of bone turnover), bone geometry parameters, bone histology, OS parameters, biochemical and haematological parameters, and levels of inflammatory cytokines. Osteoporotic rats had reduced bone Ca and P levels, BMD, BMC, and expression of markers of bone turnover, and increased values of serum enzymes alkaline phosphatase (ALP) and lactate dehydrogenase (LDH). Malondialdehyde (MDA) production in liver, kidney, and ovary was increased, while the glutathione (GSH) content and activities of antioxidant enzymes were reduced and accompanied with the enhanced release of inflammatory mediators TNF-α, IL-1β, IL-6, and RANTES chemokine (regulated on activation normal T cell expressed and secreted) in serum. Treatment with chrysin or naringenin improved bone quality, reduced bone resorption, and bone mineral deposition, although with a lower efficacy compared with alendronate. However, flavonoids exhibited more pronounced antioxidative, anti-inflammatory and phytoestrogenic activities, indicating their great potential in attenuating bone loss and prevention of OP.
Collapse
|
3
|
Abstract
PURPOSE OF REVIEW This review provides suggestions for the evaluation of patients with osteoporosis in order to assure that the diagnosis is correct, to identify potentially correctable conditions contributing to skeletal fragility and fracture risk, and to assist in individualizing management decisions. RECENT FINDINGS Some patients who appear to have osteoporosis have another skeletal disease, such as osteomalacia, that requires further evaluation and treatment that is different than for osteoporosis. Many patients with osteoporosis have contributing factors (e.g., vitamin D deficiency, high fall risk) that should be addressed before and after starting treatment to assure that treatment is effective and safe. Evaluation includes a focused medical history, skeletal-related physical examination, assessment of falls risk, appropriate laboratory tests, and rarely transiliac double-tetracycline labeled bone biopsy. Evaluation of patients with osteoporosis before starting treatment is essential for optimizing clinical outcomes.
Collapse
Affiliation(s)
- E Michael Lewiecki
- New Mexico Clinical Research & Osteoporosis Center, 300 Oak St. NE, Albuquerque, NM, 87106, USA.
| |
Collapse
|
4
|
Ala M, Jafari RM, Dehpour AR. Diabetes Mellitus and Osteoporosis Correlation: Challenges and Hopes. Curr Diabetes Rev 2020; 16:984-1001. [PMID: 32208120 DOI: 10.2174/1573399816666200324152517] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 02/02/2020] [Accepted: 02/24/2020] [Indexed: 01/14/2023]
Abstract
Diabetes and osteoporosis are two common diseases with different complications. Despite different therapeutic strategies, managing these diseases and reducing their burden have not been satisfactory, especially when they appear one after the other. In this review, we aimed to clarify the similarity, common etiology and possible common adjunctive therapies of these two major diseases and designate the known molecular pattern observed in them. Based on different experimental findings, we want to illuminate that interestingly similar pathways lead to diabetes and osteoporosis. Meanwhile, there are a few drugs involved in the treatment of both diseases, which most of the time act in the same line but sometimes with opposing results. Considering the correlation between diabetes and osteoporosis, more efficient management of both diseases, in conditions of concomitant incidence or cause and effect condition, is required.
Collapse
Affiliation(s)
- Moein Ala
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, 13145-784, Tehran, Iran
| | - Razieh Mohammad Jafari
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Ahmad Reza Dehpour
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, 13145-784, Tehran, Iran
| |
Collapse
|
5
|
Saad FA. Novel insights into the complex architecture of osteoporosis molecular genetics. Ann N Y Acad Sci 2019; 1462:37-52. [PMID: 31556133 DOI: 10.1111/nyas.14231] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 07/22/2019] [Accepted: 08/14/2019] [Indexed: 12/19/2022]
Abstract
Osteoporosis is a prevalent osteodegenerative disease and silent killer linked to a decrease in bone mass and decline of bone microarchitecture, due to impaired bone matrix mineralization, raising the risk of fracture. Nevertheless, the process of bone matrix mineralization is still an unsolved mystery. Osteoporosis is a polygenic disorder associated with genetic and environmental risk factors; however, the majority of genes associated with osteoporosis remain largely unknown. Several signaling pathways regulate bone mass; therefore, dysregulation of a single signaling pathway leads to metabolic bone disease owing to high or low bone mass. Parathyroid hormone, core-binding factor α-1 (Cbfa1), Wnt/β-catenin, the receptor activator of the nuclear factor kappa-B (NF-κB) ligand (RANKL), myostatin, and osteogenic exercise signaling pathways play pivotal roles in the regulation of bone mass. The myostatin signaling pathway increases bone resorption by activating the RANKL signaling pathway, whereas osteogenic exercise inhibits myostatin and sclerostin while inducing irisin that consequentially activates the Cbfa1 and Wnt/β-catenin bone formation pathways. The aims of this review are to summarize what is known about osteoporosis-related signaling pathways; define the role of these pathways in osteoporosis drug discovery; focus light on the link between bone, muscle, pancreas, and adipose integrative physiology and osteoporosis; and underline the emerging role of osteogenic exercise in the prevention of, and care for, osteoporosis, obesity, and diabetes.
Collapse
Affiliation(s)
- Fawzy Ali Saad
- Department of Orthopaedic Surgery, Harvard Medical School, Boston Children's Hospital, Boston, Massachusetts
| |
Collapse
|
6
|
Caramori G, Ruggeri P, Arpinelli F, Salvi L, Girbino G. Long-term use of inhaled glucocorticoids in patients with stable chronic obstructive pulmonary disease and risk of bone fractures: a narrative review of the literature. Int J Chron Obstruct Pulmon Dis 2019; 14:1085-1097. [PMID: 31190791 PMCID: PMC6536120 DOI: 10.2147/copd.s190215] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 04/01/2019] [Indexed: 12/13/2022] Open
Abstract
Patients with chronic obstructive pulmonary disease (COPD) demonstrate a greater osteoporosis prevalence than the general population. This osteoporosis risk may be enhanced by treatment with inhaled corticosteroids (ICSs), which are recommended for COPD management when combined with long-acting bronchodilators, but may also be associated with reduced bone mineral density (BMD). We conducted a narrative literature review reporting results of randomized controlled trials (RCTs) of an ICS versus placebo over a treatment period of at least 12 months, with the aim of providing further insight into the link between bone fractures and ICS therapy. As of 16 October 2017, we identified 17 RCTs for inclusion. The ICSs studied were budesonide (six studies), fluticasone propionate (five studies), mometasone furoate (three studies), beclomethasone dipropionate, triamcinolone acetonide, and fluticasone furoate (one each). We found no difference in the number of bone fractures among patients receiving ICSs versus placebo across the six identified RCTs reporting fracture data. BMD data were available for subsets of patients in few studies, and baseline BMD data were rare; where these data were given, they were reported for treatment groups without stratification for factors known to affect BMD. Risk factors for reduced BMD and fractures, such as smoking and physical activity, were also often not reported. Furthermore, a standardized definition of the term "fracture" was not employed across these studies. The exact relationship between long-term ICS use and bone fracture incidence in patients with stable COPD remains unclear in light of our review. We have, however, identified several limiting factors in existing studies that may form the basis of future RCTs designed specifically to explore this relationship.
Collapse
Affiliation(s)
- Gaetano Caramori
- Unità Operativa Complessa di Pneumologia, Dipartimento di Scienze Biomediche, Odontoiatriche e delle Immagini Morfologiche e Funzionali (BIOMORF), Università degli Studi di Messina, Messina, Italy
| | - Paolo Ruggeri
- Unità Operativa Complessa di Pneumologia, Dipartimento di Scienze Biomediche, Odontoiatriche e delle Immagini Morfologiche e Funzionali (BIOMORF), Università degli Studi di Messina, Messina, Italy
| | | | | | - Giuseppe Girbino
- Unità Operativa Complessa di Pneumologia, Dipartimento di Scienze Biomediche, Odontoiatriche e delle Immagini Morfologiche e Funzionali (BIOMORF), Università degli Studi di Messina, Messina, Italy
| |
Collapse
|
7
|
Systemic administration of low-dose naltrexone increases bone mass due to blockade of opioid growth factor receptor signaling in mice osteoblasts. Life Sci 2019; 224:232-240. [DOI: 10.1016/j.lfs.2019.03.069] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 03/14/2019] [Accepted: 03/27/2019] [Indexed: 01/31/2023]
|
8
|
Nguyen KD, Bagheri B, Bagheri H. Drug-induced bone loss: a major safety concern in Europe. Expert Opin Drug Saf 2018; 17:1005-1014. [DOI: 10.1080/14740338.2018.1524868] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Khac-Dung Nguyen
- Laboratoire de Pharmacologie Médicale et Clinique, Equipe de Pharmacoépidémiologie de l’UMR INSERM 1027, Faculté de Médecine de l’Université Paul-Sabatier et Centre Midi-Pyrénées de PharmacoVigilance, de Pharmacoépidémiologie et d’Information sur le Médicament de l’UMR INSERM 1027, Centre Hospitalier Universitaire, Toulouse, France
- The National Centre of Drug Information and Adverse Drug Reaction Monitoring, Hanoi University of Pharmacy, Hanoi, Vietnam
| | - Bahador Bagheri
- Cancer Research Center and Department of Pharmacology, Semnan University of Medical Sciences, Semnan, Iran
| | - Haleh Bagheri
- Laboratoire de Pharmacologie Médicale et Clinique, Equipe de Pharmacoépidémiologie de l’UMR INSERM 1027, Faculté de Médecine de l’Université Paul-Sabatier et Centre Midi-Pyrénées de PharmacoVigilance, de Pharmacoépidémiologie et d’Information sur le Médicament de l’UMR INSERM 1027, Centre Hospitalier Universitaire, Toulouse, France
| |
Collapse
|
9
|
Sugiyama T, Kono Y, Sekiguchi K, Kim YT, Oda H. An evidence-based perspective on warfarin and the growing skeleton. Osteoporos Int 2016; 27:2883-2884. [PMID: 27091741 DOI: 10.1007/s00198-016-3588-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Accepted: 03/30/2016] [Indexed: 12/11/2022]
Affiliation(s)
- T Sugiyama
- Department of Orthopaedic Surgery, Saitama Medical University, 38 Morohongo, Moroyama, Saitama, 350-0495, Japan.
| | - Y Kono
- Department of Orthopaedic Surgery, Saitama Medical University, 38 Morohongo, Moroyama, Saitama, 350-0495, Japan
| | - K Sekiguchi
- Department of Orthopaedic Surgery, Saitama Medical University, 38 Morohongo, Moroyama, Saitama, 350-0495, Japan
| | - Y T Kim
- Department of Orthopaedic Surgery, Saitama Medical University, 38 Morohongo, Moroyama, Saitama, 350-0495, Japan
| | - H Oda
- Department of Orthopaedic Surgery, Saitama Medical University, 38 Morohongo, Moroyama, Saitama, 350-0495, Japan
| |
Collapse
|
10
|
Lewiecki EM, Binkley N. What we don't know about osteoporosis. J Endocrinol Invest 2016; 39:491-3. [PMID: 26902997 DOI: 10.1007/s40618-016-0442-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 02/03/2016] [Indexed: 11/25/2022]
Affiliation(s)
- E M Lewiecki
- New Mexico Clinical Research & Osteoporosis Center, 300 Oak Street NE, Albuquerque, NM, 87106, USA.
| | - N Binkley
- University of Wisconsin Osteoporosis Clinical Center and Research Program, Madison, WI, USA
| |
Collapse
|