1
|
Bello ZM, de Azambuja Ribeiro RIM, Dos Santos HB, Thomé RG. Unveiling the therapeutic potential of medicinal plants in zebrafish caudal fin regeneration and wound healing: a systematic review. FISH PHYSIOLOGY AND BIOCHEMISTRY 2025; 51:80. [PMID: 40214856 DOI: 10.1007/s10695-025-01495-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Accepted: 03/30/2025] [Indexed: 04/19/2025]
Abstract
This systematic review aims to examine the existing literature on the therapeutic potential of medicinal plants to improve caudal fin regeneration and wound healing in zebrafish (Danio rerio), focusing on uncovering their pharmacological properties and potential use in enhancing tissue repair and regeneration. A thorough review of suitable and eligible full-text articles was performed on PubMed, Scopus, Web of Science, and Google Scholar from 1 st January 2014 to 31 st December 2024. These articles were searched using the Medical Subject Headings terms "zebrafish," "zebrafish larvae," "zebrafish embryo," "angiogenesis," "Medicinal plants," "Natural products," "Fin regeneration," "wound healing," and "inflammation." Here, 520 articles on medicinal plants and their potential in caudal fin regeneration and wound healing in zebrafish were identified across the databases searched, of which 26 were included in this study following screening. After thoroughly reviewing the articles, some were found to have used multiple medicinal plants. Thus, 38 medicinal plants were found to have promoted effects on zebrafish caudal fin regeneration and wound healing, and 21 revealed no effects on either caudal fin regeneration and wound healing. This systematic review explores the therapeutic potential of medicinal plants in caudal fin regeneration and wound healing in a zebrafish model. The results show a promising effect of various plant species in enhancing fin regeneration and wound healing. Further research is needed to understand the molecular mechanisms and to translate these findings into clinical applications for human wound healing and regenerative medicine.
Collapse
Affiliation(s)
- Zakariyya Muhammad Bello
- Laboratório de Processamento de Tecidos - LAPROTEC, Universidade Federal de São João Del-Rei, Campus Centro Oeste, Rua Sebastião Gonçalves Coelho, 400, Divinópolis, Minas Gerais, 35501 - 296, Brazil
| | - Rosy Iara Maciel de Azambuja Ribeiro
- Laboratório de Patologia Experimental - LAPATEX, Universidade Federal de São João Del-Rei, Campus Centro Oeste, Rua Sebastião Gonçalves Coelho, 400, Divinópolis, Minas Gerais, 35501 - 296, Brazil
| | - Hélio Batista Dos Santos
- Laboratório de Processamento de Tecidos - LAPROTEC, Universidade Federal de São João Del-Rei, Campus Centro Oeste, Rua Sebastião Gonçalves Coelho, 400, Divinópolis, Minas Gerais, 35501 - 296, Brazil
| | - Ralph Gruppi Thomé
- Laboratório de Processamento de Tecidos - LAPROTEC, Universidade Federal de São João Del-Rei, Campus Centro Oeste, Rua Sebastião Gonçalves Coelho, 400, Divinópolis, Minas Gerais, 35501 - 296, Brazil.
| |
Collapse
|
2
|
Liu Y, Yang C, Zhang J, Ihsan A, Ares I, Martínez M, Lopez-Torres B, Martínez-Larrañaga MR, Wang X, Anadón A, Martínez MA. Recent progress in adverse events of carboxylic acid non-steroidal anti-inflammatory drugs (CBA-NSAIDs) and their association with the metabolism: the consequences on mitochondrial dysfunction and oxidative stress, and prevention with natural plant extracts. Expert Opin Drug Metab Toxicol 2024:1-21. [PMID: 38980754 DOI: 10.1080/17425255.2024.2378885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 07/08/2024] [Indexed: 07/11/2024]
Abstract
INTRODUCTION Carboxylic acid non-steroidal anti-inflammatory drugs (CBA-NSAIDs) are extensively used worldwide due to their antipyretic, analgesic, and anti-inflammatory effects. CBA-NSAIDs have reasonable margin of safety at therapeutic doses, and in the current climate, do not possess addiction potential like opioid drugs. Studies have revealed that various adverse events of CBA-NSAIDs are related mitochondrial dysfunction and oxidative stress. AREAS COVERED This review article summarizes adverse events induced by CBA-NSAIDs, mechanisms of mitochondrial damage, oxidative stress, and metabolic interactions. Meanwhile, this review discusses the treatment and prevention of CBA-NSAIDs damage by natural plant extracts based on antioxidant effects. EXPERT OPINION CBA-NSAIDs can induce reactive oxygen species (ROS) production, mediate DNA, protein and lipid damage, lead to imbalance of cell antioxidant status, change of mitochondrial membrane potential, activate oxidative stress signal pathway, thus leading to oxidative stress and cell damage. Adverse events caused by CBA-NSAIDs often exhibit dose and time dependence. In order to avoid adverse events caused by CBA-NSAIDs, it is necessary to provide detailed patient consultation and eliminate influencing factors. Moreover, constructive research studies on the organ-specific toxicity and mechanism of natural plant extracts in preventing and treating metabolic abnormalities of CBA-NSAIDs, will provide important value for warning and guidance for use of CBA-NSAIDs.
Collapse
Affiliation(s)
- Yanan Liu
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Chao Yang
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Jieying Zhang
- MAO Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Awais Ihsan
- Department of Biosciences, COMSATS University Islamabad, Sahiwal Campus, Islamabad, Pakistan
| | - Irma Ares
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid (UCM), and Research Institute Hospital 12 de Octubre (i+12), Madrid, Spain
| | - Marta Martínez
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid (UCM), and Research Institute Hospital 12 de Octubre (i+12), Madrid, Spain
| | - Bernardo Lopez-Torres
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid (UCM), and Research Institute Hospital 12 de Octubre (i+12), Madrid, Spain
| | - María-Rosa Martínez-Larrañaga
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid (UCM), and Research Institute Hospital 12 de Octubre (i+12), Madrid, Spain
| | - Xu Wang
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Arturo Anadón
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid (UCM), and Research Institute Hospital 12 de Octubre (i+12), Madrid, Spain
| | - María-Aránzazu Martínez
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid (UCM), and Research Institute Hospital 12 de Octubre (i+12), Madrid, Spain
| |
Collapse
|
3
|
Lopes FB, Sarandy MM, Novaes RD, Valacchi G, Gonçalves RV. OxInflammatory Responses in the Wound Healing Process: A Systematic Review. Antioxidants (Basel) 2024; 13:823. [PMID: 39061892 PMCID: PMC11274091 DOI: 10.3390/antiox13070823] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/11/2024] [Accepted: 06/27/2024] [Indexed: 07/28/2024] Open
Abstract
Significant sums are spent every year to find effective treatments to control inflammation and speed up the repair of damaged skin. This study investigated the main mechanisms involved in the skin wound cure. Consequently, it offered guidance to develop new therapies to control OxInflammation and infection and decrease functional loss and cost issues. This systematic review was conducted using the PRISMA guidelines, with a structured search in the MEDLINE (PubMed), Scopus, and Web of Science databases, analyzing 23 original studies. Bias analysis and study quality were assessed using the SYRCLE tool (Prospero number is CRD262 936). Our results highlight the activation of membrane receptors (IFN-δ, TNF-α, toll-like) in phagocytes, especially macrophages, during early wound healing. The STAT1, IP3, and NF-kβ pathways are positively regulated, while Ca2+ mobilization correlates with ROS production and NLRP3 inflammasome activation. This pathway activation leads to the proteolytic cleavage of caspase-1, releasing IL-1β and IL-18, which are responsible for immune modulation and vasodilation. Mediators such as IL-1, iNOS, TNF-α, and TGF-β are released, influencing pro- and anti-inflammatory cascades, increasing ROS levels, and inducing the oxidation of lipids, proteins, and DNA. During healing, the respiratory burst depletes antioxidant defenses (SOD, CAT, GST), creating a pro-oxidative environment. The IFN-δ pathway, ROS production, and inflammatory markers establish a positive feedback loop, recruiting more polymorphonuclear cells and reinforcing the positive interaction between oxidative stress and inflammation. This process is crucial because, in the immune system, the vicious positive cycle between ROS, the oxidative environment, and, above all, the activation of the NLRP3 inflammasome inappropriately triggers hypoxia, increases ROS levels, activates pro-inflammatory cytokines and inhibits the antioxidant action and resolution of anti-inflammatory cytokines, contributing to the evolution of chronic inflammation and tissue damage.
Collapse
Affiliation(s)
- Fernanda Barbosa Lopes
- Department of General Biology, Federal University of Viçosa, Viçosa 36570-900, Minas Gerais, Brazil
| | - Mariáurea Matias Sarandy
- Department of General Biology, Federal University of Viçosa, Viçosa 36570-900, Minas Gerais, Brazil
- Plants for Human Health Institute, Animal Science Department, North Carolina State University, North Carolina Research Campus, Kannapolis, NC 28081, USA
| | - Rômulo Dias Novaes
- Department of Structural Biology, Federal University of Alfenas, Alfenas 37130-001, Minas Gerais, Brazil
- Department of Animal Biology, Federal University of Viçosa, Viçosa 36570-900, Minas Gerais, Brazil
| | - Giuseppe Valacchi
- Plants for Human Health Institute, Animal Science Department, North Carolina State University, North Carolina Research Campus, Kannapolis, NC 28081, USA
- Department of Environmental and Prevention Sciences, University of Ferrara, 44121 Ferrara, Italy
- Department of Food and Nutrition, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Reggiani Vilela Gonçalves
- Department of General Biology, Federal University of Viçosa, Viçosa 36570-900, Minas Gerais, Brazil
- Plants for Human Health Institute, Animal Science Department, North Carolina State University, North Carolina Research Campus, Kannapolis, NC 28081, USA
- Department of Animal Biology, Federal University of Viçosa, Viçosa 36570-900, Minas Gerais, Brazil
| |
Collapse
|
4
|
Iriawati I, Vitasasti S, Rahmadian FNA, Barlian A. Isolation and characterization of plant-derived exosome-like nanoparticles from Carica papaya L. fruit and their potential as anti-inflammatory agent. PLoS One 2024; 19:e0304335. [PMID: 38959219 PMCID: PMC11221653 DOI: 10.1371/journal.pone.0304335] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 05/10/2024] [Indexed: 07/05/2024] Open
Abstract
Inflammation is an immune system response that identifies and eliminates foreign material. However, excessive and persistent inflammation could disrupt the healing process. Plant-derived exosome-like nanoparticles (PDENs) are a promising candidate for therapeutic application because they are safe, biodegradable and biocompatible. In this study, papaya PDENs were isolated by a PEG6000-based method and characterized by dynamic light scattering (DLS), transmission Electron Microscopy (TEM), bicinchoninic acid (BCA) assay method, GC-MS analysis, total phenolic content (TPC) analysis, and 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay. For the in vitro test, we conducted internalization analysis, toxicity assessment, determination of nitrite concentration, and assessed the expression of inflammatory cytokine genes using qRT-PCR in RAW 264.7 cells. For the in vivo test, inflammation was induced by caudal fin amputation followed by analysis of macrophage and neutrophil migration in zebrafish (Danio rerio) larvae. The result showed that papaya PDENs can be well isolated using the optimized differential centrifugation method with the addition of 30 ppm pectolyase, 15% PEG, and 0.2 M NaCl, which exhibited cup-shaped and spherical morphological structure with an average diameter of 168.8±9.62 nm. The papaya PDENs storage is stable in aquabidest and 25 mM trehalose solution at -20˚C until the fourth week. TPC estimation of all papaya PDENs ages did not show a significant change, while the DPPH test exhibited a significant change in the second week. The major compounds contained in Papaya PDENs is 2,3-dihydro-3,5-dihydroxy-6-methyl-4H-pyran-4-one (DDMP). Papaya PDENs can be internalized and is non-cytotoxic to RAW 264.7 cells. Moreover, LPS-induced RAW 264.7 cells treated with papaya PDENs showed a decrease in NO production and downregulation mRNA expression of pro-inflammatory cytokine genes (IL-1B and IL-6) and an upregulation in mRNA expression of anti-inflammatory cytokine gene (IL-10). In addition, in vivo tests conducted on zebrafish treated with PDENs papaya showed inhibition of macrophage and neutrophil cell migration. These findings suggest that PDENs papaya possesses anti-inflammatory properties.
Collapse
Affiliation(s)
- Iriawati Iriawati
- School of Life Sciences and Technology, Institut Teknologi Bandung, Bandung, Indonesia
| | - Safira Vitasasti
- School of Life Sciences and Technology, Institut Teknologi Bandung, Bandung, Indonesia
| | | | - Anggraini Barlian
- School of Life Sciences and Technology, Institut Teknologi Bandung, Bandung, Indonesia
| |
Collapse
|
5
|
Lin TY, Wu YT, Chang HJ, Huang CC, Cheng KC, Hsu HY, Hsieh CW. Anti-Inflammatory and Anti-Oxidative Effects of Polysaccharides Extracted from Unripe Carica papaya L. Fruit. Antioxidants (Basel) 2023; 12:1506. [PMID: 37627501 PMCID: PMC10451988 DOI: 10.3390/antiox12081506] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 07/21/2023] [Accepted: 07/25/2023] [Indexed: 08/27/2023] Open
Abstract
This study evaluated the antioxidative and anti-inflammatory activities of polysaccharides extracted from unripe Carica papaya L. (papaya) fruit. Three papaya polysaccharide (PP) fractions, namely PP-1, PP-2, and PP-3, with molecular weights of 2252, 2448, and 3741 kDa, containing abundant xylose, galacturonic acid, and mannose constituents, respectively, were obtained using diethylaminoethyl-Sepharose™ anion exchange chromatography. The antioxidant capacity of the PPs, hydroxyl radical scavenging assay, ferrous ion-chelating assay, and reducing power assay revealed that the PP-3 fraction had the highest antioxidant activity, with an EC50 (the concentration for 50% of the maximal effect) of 0.96 mg/mL, EC50 of 0.10 mg/mL, and Abs700 nm of 1.581 for the hydroxyl radical scavenging assay, ferrous ion-chelating assay, and reducing power assay, respectively. In addition, PP-3 significantly decreased reactive oxygen species production by 45.3%, NF-κB activation by 32.0%, and tumor necrosis factor-alpha and interleukin-6 generation by 33.5% and 34.4%, respectively, in H2O2-induced human epidermal keratinocytes. PP-3 exerts potent antioxidative and anti-inflammatory effects; thus, it is a potential biofunctional ingredient in the cosmetic industry.
Collapse
Affiliation(s)
- Ting-Yun Lin
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung City 402202, Taiwan; (T.-Y.L.); (Y.-T.W.); (C.-C.H.)
| | - Yun-Ting Wu
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung City 402202, Taiwan; (T.-Y.L.); (Y.-T.W.); (C.-C.H.)
| | - Hui-Ju Chang
- Department of Taiwan Seed Improvement and Propagation Station, Council of Agriculture, Executive Yuan, Taichung City 426017, Taiwan;
| | - Chun-Chen Huang
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung City 402202, Taiwan; (T.-Y.L.); (Y.-T.W.); (C.-C.H.)
| | - Kuan-Chen Cheng
- Institute of Biotechnology, National Taiwan University, Taipei 10617, Taiwan;
- Graduate Institute of Food Science Technology, National Taiwan University, Taipei 10617, Taiwan
- Department of Optometry, Asia University, Taichung City 413305, Taiwan
- Department of Medical Research, China Medical University Hospital, Taichung City 404333, Taiwan
| | - Hsien-Yi Hsu
- Shenzhen Research Institute, City University of Hong Kong, Shenzhen 518057, China;
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong 999077, China
| | - Chang-Wei Hsieh
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung City 402202, Taiwan; (T.-Y.L.); (Y.-T.W.); (C.-C.H.)
- Department of Medical Research, China Medical University Hospital, Taichung City 404333, Taiwan
| |
Collapse
|
6
|
Alsakhawy MA, Abdelmonsif DA, Haroun M, Sabra SA. Naringin-loaded Arabic gum/pectin hydrogel as a potential wound healing material. Int J Biol Macromol 2022; 222:701-714. [PMID: 36170930 DOI: 10.1016/j.ijbiomac.2022.09.200] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 09/13/2022] [Accepted: 09/22/2022] [Indexed: 11/26/2022]
Abstract
Wound healing is a complicated cellular process with overlapping phases. Naringin (NAR); a flavanone glycoside, possesses numerous pharmacological effects such as anti-inflammatory, antioxidant and anti-apoptotic effects. In the current study, Arabic gum (AG)/pectin hydrogel was utilized to encapsulate NAR. Drug-loaded AG/pectin hydrogel exhibited excellent EE% of about 99.88 ± 0.096 and high DL% of about 16.64 ± 0.013. The formulated drug-loaded hydrogel was characterized using Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), scanning electron microscopy (SEM) and Zetasizer analyzer, besides determination of equilibrium degree of swelling (EDS%). Afterwards, wound healing potential of NAR-loaded AG/pectin hydrogel was evaluated in an in vivo animal model. Results manifested that NAR-loaded AG/pectin hydrogel was able to accelerate wound healing in terms of enhanced angiogenesis, re-epithelialization and collagen deposition. Furthermore, it significantly (P < 0.001) down-regulated the mRNA expression of inflammatory mediators (TNF-α) and apoptosis (BAX). In addition, NAR-loaded AG/pectin hydrogel was found to possess potent antioxidant activity as it enhanced the levels of SOD and GSH, besides decreasing the levels of MPO, MDA and nitrite. These data suggest that NAR-loaded AG/pectin hydrogel could be utilized in wound healing applications.
Collapse
Affiliation(s)
- Marwa A Alsakhawy
- Department of Biotechnology, Institute of Graduate studies and Research, Alexandria University, Alexandria 21526, Egypt
| | - Doaa A Abdelmonsif
- Department of Medical Biochemistry, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Medhat Haroun
- Department of Biotechnology, Institute of Graduate studies and Research, Alexandria University, Alexandria 21526, Egypt
| | - Sally A Sabra
- Department of Biotechnology, Institute of Graduate studies and Research, Alexandria University, Alexandria 21526, Egypt.
| |
Collapse
|
7
|
García-Villegas A, Rojas-García A, Villegas-Aguilar MDC, Fernández-Moreno P, Fernández-Ochoa Á, Cádiz-Gurrea MDLL, Arráez-Román D, Segura-Carretero A. Cosmeceutical Potential of Major Tropical and Subtropical Fruit By-Products for a Sustainable Revalorization. Antioxidants (Basel) 2022; 11:203. [PMID: 35204085 PMCID: PMC8868306 DOI: 10.3390/antiox11020203] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/11/2022] [Accepted: 01/18/2022] [Indexed: 12/10/2022] Open
Abstract
The increasing production of tropical fruits followed by their processing results in tons of waste, such as skins or seeds. However, these by-products have been reported to be rich in bioactive compounds (BACs) with excellent properties of interest in the cosmeceutical industry: antioxidant, anti-aging, anti-inflammatory, antimicrobial and photoprotective properties. This review summarizes the tropical fruits most produced worldwide, their bioactive composition and the most important and studied therapeutic properties that their by-products can contribute to skin health, as well as the different approaches for obtaining these compounds using techniques by conventional (Soxhlet, liquid-liquid extraction or maceration) and non-conventional extractions (supercritical fluid extraction (SFE), ultrasound-assisted extraction (UAE), microwave-assisted extraction (MAE), pressurized liquid extraction (PLE) and two-phase aqueous system), followed by their identification by HPLC-MS or GC-MS analysis. Moreover, this work encompasses several studies that may prove the effects of seeds and skins from tropical fruits against oxidative stress, hyperpigmentation, acne, aging or UV radiation. Therefore, the investigation of functional components present in tropical fruit by-products under a circular bioeconomy model could be of great interest for the cosmeceutical industry and a very promising option for obtaining new cosmeceutical formulations.
Collapse
Affiliation(s)
- Abigail García-Villegas
- Department of Analytical Chemistry, University of Granada, 18071 Granada, Spain; (A.G.-V.); (A.R.-G.); (M.d.C.V.-A.); (P.F.-M.); (D.A.-R.); (A.S.-C.)
| | - Alejandro Rojas-García
- Department of Analytical Chemistry, University of Granada, 18071 Granada, Spain; (A.G.-V.); (A.R.-G.); (M.d.C.V.-A.); (P.F.-M.); (D.A.-R.); (A.S.-C.)
| | - María del Carmen Villegas-Aguilar
- Department of Analytical Chemistry, University of Granada, 18071 Granada, Spain; (A.G.-V.); (A.R.-G.); (M.d.C.V.-A.); (P.F.-M.); (D.A.-R.); (A.S.-C.)
| | - Patricia Fernández-Moreno
- Department of Analytical Chemistry, University of Granada, 18071 Granada, Spain; (A.G.-V.); (A.R.-G.); (M.d.C.V.-A.); (P.F.-M.); (D.A.-R.); (A.S.-C.)
| | - Álvaro Fernández-Ochoa
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, 13125 Berlin, Germany;
- Berlin Institute of Health Metabolomics Platform, 13125 Berlin, Germany
| | - María de la Luz Cádiz-Gurrea
- Department of Analytical Chemistry, University of Granada, 18071 Granada, Spain; (A.G.-V.); (A.R.-G.); (M.d.C.V.-A.); (P.F.-M.); (D.A.-R.); (A.S.-C.)
| | - David Arráez-Román
- Department of Analytical Chemistry, University of Granada, 18071 Granada, Spain; (A.G.-V.); (A.R.-G.); (M.d.C.V.-A.); (P.F.-M.); (D.A.-R.); (A.S.-C.)
| | - Antonio Segura-Carretero
- Department of Analytical Chemistry, University of Granada, 18071 Granada, Spain; (A.G.-V.); (A.R.-G.); (M.d.C.V.-A.); (P.F.-M.); (D.A.-R.); (A.S.-C.)
| |
Collapse
|
8
|
Staji M, Sadeghzadeh N, Zamanlui S, Azarani M, Golchin A, Soleimani M, Ardeshirylajimi A, Khojasteh A, Hosseinzadeh S. Evaluation of dermal growth of keratinocytes derived from foreskin in co-culture condition with mesenchymal stem cells on polyurethane/gelatin/amnion scaffold. INT J POLYM MATER PO 2021. [DOI: 10.1080/00914037.2021.2018316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Masumeh Staji
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Soheila Zamanlui
- Stem Cell and Cell Therapy Research Center, Tissue Engineering and Regenerative Medicine Institute, Tehran, Central Branch, Islamic Azad University, Tehran, Iran
| | - Mojgan Azarani
- Medical Nanotechnology and Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Golchin
- Department of Clinical Biochemistry, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Masoud Soleimani
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Clinical Biochemistry, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Abdolreza Ardeshirylajimi
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Arash Khojasteh
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Simzar Hosseinzadeh
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Clinical Biochemistry, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
9
|
Jarisarapurin W, Kunchana K, Chularojmontri L, Wattanapitayakul SK. Unripe Carica papaya Protects Methylglyoxal-Invoked Endothelial Cell Inflammation and Apoptosis via the Suppression of Oxidative Stress and Akt/MAPK/NF-κB Signals. Antioxidants (Basel) 2021; 10:antiox10081158. [PMID: 34439407 PMCID: PMC8388906 DOI: 10.3390/antiox10081158] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/16/2021] [Accepted: 07/19/2021] [Indexed: 12/24/2022] Open
Abstract
Methylglyoxal (MGO), a highly reactive dicarbonyl compound, causes endothelial oxidative stress and vascular complications in diabetes. Excessive MGO-induced ROS production triggers eNOS uncoupling, inflammatory responses, and cell death signaling cascades. Our previous study reported that unripe Carica papaya (UCP) had antioxidant activities that prevented H2O2-induced endothelial cell death. Therefore, this study investigated the preventive effect of UCP on MGO-induced endothelial cell damage, inflammation, and apoptosis. The human endothelial cell line (EA.hy926) was pretreated with UCP for 24 h, followed by MGO-induced dicarbonyl stress. Treated cells were evaluated for intracellular ROS/O2•− formation, cell viability, apoptosis, NO releases, and cell signaling through eNOS, iNOS, COX-2, NF-κB, Akt, MAPK (JNK and p38), and AMPK/SIRT1 autophagy pathways. UCP reduced oxidative stress and diminished phosphorylation of Akt, stress-activated MAPK, leading to the decreases in NF-kB-activated iNOS and COX-2 expression. However, UCP had no impact on the autophagy pathway (AMPK and SIRT1). Although UCP pretreatment decreased eNOS phosphorylation, the amount of NO production was not altered. The signaling of eNOS and NO production were decreased after MGO incubation, but these effects were unaffected by UCP pretreatment. In summary, UCP protected endothelial cells against carbonyl stress by the mechanisms related to ROS/O2•− scavenging activities, suppression of inflammatory signaling, and inhibition of JNK/p38/apoptosis pathway. Thus, UCP shows considerable promise for developing novel functional food and nutraceutical products to reduce risks of endothelial inflammation and vascular complications in diabetes.
Collapse
Affiliation(s)
- Wattanased Jarisarapurin
- Department of Pharmacology, Faculty of Medicine, Srinakharinwirot University, Bangkok 10110, Thailand; (W.J.); (K.K.)
| | - Khwandow Kunchana
- Department of Pharmacology, Faculty of Medicine, Srinakharinwirot University, Bangkok 10110, Thailand; (W.J.); (K.K.)
| | - Linda Chularojmontri
- Department of Preclinical Sciences, Faculty of Medicine, Thammasat University, Pathum Thani 12121, Thailand;
| | - Suvara K. Wattanapitayakul
- Department of Pharmacology, Faculty of Medicine, Srinakharinwirot University, Bangkok 10110, Thailand; (W.J.); (K.K.)
- Correspondence: ; Tel.: +66-2649-5385
| |
Collapse
|
10
|
Beneficial Role of Carica papaya Extracts and Phytochemicals on Oxidative Stress and Related Diseases: A Mini Review. BIOLOGY 2021; 10:biology10040287. [PMID: 33916114 PMCID: PMC8066973 DOI: 10.3390/biology10040287] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 03/23/2021] [Accepted: 03/30/2021] [Indexed: 02/07/2023]
Abstract
Simple Summary This review highlights the medicinal benefits of a natural remedy, the Carica papaya extracts and its phytochemicals. In this review, the potential of Carica papaya against various conditions, including cancer, inflammation, aging, healing of the skin, and lifelong diseases has been summarized and discussed. In short, more research and development should focus on this natural remedy that can potentially act as a prophylaxis against chronic diseases. Abstract Oxidative stress is a result of disruption in the balance between antioxidants and pro-oxidants in which subsequently impacting on redox signaling, causing cell and tissue damages. It leads to a range of medical conditions including inflammation, skin aging, impaired wound healing, chronic diseases and cancers but these conditions can be managed properly with the aid of antioxidants. This review features various studies to provide an overview on how Carica papaya help counteract oxidative stress via various mechanisms of action closely related to its antioxidant properties and eventually improving the management of various oxidative stress-related health conditions. Carica papaya is a topical plant species discovered to contain high amounts of natural antioxidants that can usually be found in their leaves, fruits and seeds. It contains various chemical compounds demonstrate significant antioxidant properties including caffeic acid, myricetin, rutin, quercetin, α-tocopherol, papain, benzyl isothiocyanate (BiTC), and kaempferol. Therefore, it can counteract pro-oxidants via a number of signaling pathways that either promote the expression of antioxidant enzymes or reduce ROS production. These signaling pathways activate the antioxidant defense mechanisms that protect the body against both intrinsic and extrinsic oxidative stress. To conclude, Carica papaya can be incorporated into medications or supplements to help manage the health conditions driven by oxidative stress and further studies are needed to investigate the potential of its chemical components to manage various chronic diseases.
Collapse
|
11
|
Sulaiman M, Alyileili SR, Raghavankutty M, Kurup GM. Sulfated polysaccharide ascophyllan from Padina tetrastromatica enhances healing of burn wounds by ameliorating inflammatory responses and oxidative damage. Mol Biol Rep 2020; 47:8701-8710. [PMID: 33130964 DOI: 10.1007/s11033-020-05914-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 10/10/2020] [Indexed: 12/12/2022]
Abstract
Sulfated polysaccharide ascophyllan from marine brown algae has been identified to have burn wound healing properties. Thus, we examined the effects of ascophyllan fraction (AF3) on the inflammatory response and oxidative damage in burn wounds. Full-thickness burn wounds in rats were then treated twice per day with topical AF3 ointment (5%), while control groups were treated with 10% povidone-iodine (positive control) and petroleum jelly-based ointment (negative control). The activity of cyclooxygenase-2 and myeloperoxidase and levels of C-reactive protein, nitric oxide, and proinflammatory cytokines (tumor necrosis factor-α, interleukin-6, and interleukin-1β) were observed to have significantly decreased in peripheral blood mononuclear cells, serum, and wound tissue of the group treated with AF3 ointment on day 8 after wounding. The expression of inducible nitric oxide synthase, endothelial nitric oxide synthase, and vascular endothelial growth factor at the mRNA level was determined to be upregulated in the wound tissue of the AF3 ointment-treated group. After treatment with AF3 ointment, the antioxidant enzyme activity and level of reduced glutathione were upregulated, whereas the content of thiobarbituric acid reactive substances decreased. Treatment of burn wounds using 5% AF3 ointment decreases oxidative damage associated with inflammation deceptively via inhibition of inflammatory enzymes, regulation of proinflammatory cytokines, upregulation of angiogenesis, and activity of antioxidant enzymes.
Collapse
Affiliation(s)
- Mohsin Sulaiman
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box 17666, Al Ain, United Arab Emirates.
- Department of Biochemistry, University of Kerala, P.O. Box 695581, Thiruvananthapuram, Kerala, India.
| | - Salem Rashed Alyileili
- Department of Integrative Agriculture, College of Food and Agriculture, United Arab Emirates University, P.O. Box 15551, Al Ain, United Arab Emirates
| | - Mahadevan Raghavankutty
- Department of Biochemistry and Nutrition, Central Institute of Fisheries Technology, Matsyapuri, P.O. Box 682029, Cochin, Kerala, India
- Department of Biochemistry, University of Kerala, P.O. Box 695581, Thiruvananthapuram, Kerala, India
| | - G Muraleedhara Kurup
- Department of Biochemistry, University of Kerala, P.O. Box 695581, Thiruvananthapuram, Kerala, India
| |
Collapse
|
12
|
Ajmal G, Bonde GV, Thokala S, Mittal P, Khan G, Singh J, Pandey VK, Mishra B. Ciprofloxacin HCl and quercetin functionalized electrospun nanofiber membrane: fabrication and its evaluation in full thickness wound healing. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2019; 47:228-240. [DOI: 10.1080/21691401.2018.1548475] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Gufran Ajmal
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (BHU), Varanasi, India
| | - Gunjan Vasant Bonde
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (BHU), Varanasi, India
| | - Sathish Thokala
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (BHU), Varanasi, India
| | - Pooja Mittal
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (BHU), Varanasi, India
| | - Gayasuddin Khan
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (BHU), Varanasi, India
| | - Juhi Singh
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (BHU), Varanasi, India
- Interdisciplinary Graduate School, Nanyang Technological University, Singapore, Singapore
| | - Vivek Kumar Pandey
- Department of Chemical Engineering & Technology, Indian Institute of Technology (BHU), Varanasi, India
| | - Brahmeshwar Mishra
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (BHU), Varanasi, India
| |
Collapse
|
13
|
Kale OE, Oyesola TO, Raji FS. Celecoxib, a cyclooxygenase-2 inhibitor, offers chemoprevention against reproductive and neurobehavioural abnormalities induced by atrazine in male Wistar rats. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2018; 58:84-97. [PMID: 29306822 DOI: 10.1016/j.etap.2017.12.026] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 12/26/2017] [Accepted: 12/28/2017] [Indexed: 06/07/2023]
Abstract
The cyclooxygenase-2/prostanoid pathway (COX-2) serves as a potential therapeutic target in various pathological conditions. Thus, the modulatory effect of celecoxib (CXB), a COX-2 inhibitor, in atrazine-induced toxicity was investigated. Five groups (n = 6 rats per group) of adult male Wistar rats received corn oil (2 ml/kg), atrazine (ATZ, 300 mg/kg) and CXB (5.7 mg/kg) respectively and their combinations via the oral route. Results obtained showed reduced (p < 0.05) sperm motility (25.8%) and counts (27.6%), testosterone (29.9%), luteinizing (33%) and follicle stimulating hormones (78.7%) plus elevated total cholesterol (112.3%), triglyceride (115.7%), malondialdehyde levels respectively in ATZ-treated rats. Similarly, ATZ administration causes reduced locomotion (33.6%), spontaneous motor activity (46.6%) and catalepsy effects (157.3%) respectively. However, CXB divided doses moderately reverse reproductive abnormalities, modulate neurobehavioural deficits and slightly preserved COX-2 elevation following ATZ intoxication. Furthermore, histopathology of testis shows improvement in treated rats. Overall, our data suggest chemopreventive actions via pharmacological inhibition of COX-2 activity during ATZ toxicity.
Collapse
Affiliation(s)
- O E Kale
- Department of Pharmacology, Benjamin S. Carson (Snr.) School of Medicine, Babcock University, Ilishan-Remo, Ogun State, PMB, 21244 Ikeja, Nigeria.
| | - T O Oyesola
- Department of Physiology, Benjamin S. Carson (Snr.) School of Medicine, Babcock University, Ilishan-Remo, Ogun State, PMB, 21244 Ikeja, Nigeria
| | - F S Raji
- Department of Physiology, Benjamin S. Carson (Snr.) School of Medicine, Babcock University, Ilishan-Remo, Ogun State, PMB, 21244 Ikeja, Nigeria
| |
Collapse
|
14
|
Banerjee A, Shukla S, Pandey AD, Goswami S, Bandyopadhyay B, Ramachandran V, Das S, Malhotra A, Agarwal A, Adhikari S, Rahman M, Chatterjee S, Bhattacharya N, Basu N, Pandey P, Sood V, Vrati S. RNA-Seq analysis of peripheral blood mononuclear cells reveals unique transcriptional signatures associated with disease progression in dengue patients. Transl Res 2017; 186:62-78.e9. [PMID: 28683259 DOI: 10.1016/j.trsl.2017.06.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 06/06/2017] [Accepted: 06/08/2017] [Indexed: 12/21/2022]
Abstract
Patients infected with Dengue virus usually present a mild, self-limiting febrile dengue infection (DI) that occasionally leads to a potentially lethal complication, called the severe dengue (DS). The ability to identify the prognostic markers of DS could allow an improved disease intervention and management. To identify the transcriptional signatures associated with the dengue disease progression, we carried out the high-throughput sequencing of the RNA isolated from the peripheral blood mononuclear cells (PBMCs) of the dengue patients of varying severity and compared with that in the patients with other febrile illnesses (OFIs) or the healthy controls. The transcriptional signatures that discriminated the DS patients from OFI and DI patients were broadly related to the pathways involving glycine, serine, and threonine metabolisms, extracellular matrix organization, ubiquitination, and cytokines and inflammatory response. Several upregulated genes in the inflammatory process (MPO, DEFA4, ELANE, AUZ1, CTSG, OLFM4, SLC16A14, and CRISP3) that were associated with the dengue disease progression are known to facilitate leukocyte-mediated migration, and neutrophil activation and degranulation process. High activity of MPO and ELANE in the plasma samples of the follow-up and recovered dengue patients, as well as and the presence of a larger amount of cell-free dsDNA in the DS patients, suggested an association of neutrophil-mediated immunity with dengue disease progression. Careful monitoring of some of these gene transcripts, and control of the activity of proteins encoded by them, may have a great translational significance for the prognosis and management of the dengue patients.
Collapse
Affiliation(s)
- Arup Banerjee
- Vaccine and Infectious Disease Research Center (VIDRC), Translational Health Science and Technology Institute (THSTI), Faridabad, Haryana, India.
| | - Shweta Shukla
- University College of Medical Sciences (UCMS) & Guru Teg Bahadur (GTB) Hospital, Delhi, Delhi, India
| | - Abhay Deep Pandey
- Vaccine and Infectious Disease Research Center (VIDRC), Translational Health Science and Technology Institute (THSTI), Faridabad, Haryana, India
| | - Saptamita Goswami
- Virology Unit, Department of Microbiology, Calcutta School of Tropical Medicine (STM), Kolkata, West Bengal, India
| | - Bhaswati Bandyopadhyay
- Virology Unit, Department of Microbiology, Calcutta School of Tropical Medicine (STM), Kolkata, West Bengal, India
| | | | - Shukla Das
- University College of Medical Sciences (UCMS) & Guru Teg Bahadur (GTB) Hospital, Delhi, Delhi, India
| | - Arjun Malhotra
- Vaccine and Infectious Disease Research Center (VIDRC), Translational Health Science and Technology Institute (THSTI), Faridabad, Haryana, India
| | - Amitesh Agarwal
- University College of Medical Sciences (UCMS) & Guru Teg Bahadur (GTB) Hospital, Delhi, Delhi, India
| | - Srima Adhikari
- Virology Unit, Department of Microbiology, Calcutta School of Tropical Medicine (STM), Kolkata, West Bengal, India
| | - Mehebubar Rahman
- Virology Unit, Department of Microbiology, Calcutta School of Tropical Medicine (STM), Kolkata, West Bengal, India
| | | | - Nemai Bhattacharya
- Virology Unit, Department of Microbiology, Calcutta School of Tropical Medicine (STM), Kolkata, West Bengal, India
| | - Nandita Basu
- Virology Unit, Department of Microbiology, Calcutta School of Tropical Medicine (STM), Kolkata, West Bengal, India
| | - Priyanka Pandey
- National Institute of Biomedical Genomics (NIBMG), Kalyani, West Bengal, India
| | - Vikas Sood
- Vaccine and Infectious Disease Research Center (VIDRC), Translational Health Science and Technology Institute (THSTI), Faridabad, Haryana, India
| | - Sudhanshu Vrati
- Vaccine and Infectious Disease Research Center (VIDRC), Translational Health Science and Technology Institute (THSTI), Faridabad, Haryana, India; Regional Center for Biotechnology (RCB), Faridabad, Haryana, India.
| |
Collapse
|
15
|
Giovannini P, Howes MJR. Medicinal plants used to treat snakebite in Central America: Review and assessment of scientific evidence. JOURNAL OF ETHNOPHARMACOLOGY 2017; 199:240-256. [PMID: 28179114 DOI: 10.1016/j.jep.2017.02.011] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 02/02/2017] [Accepted: 02/03/2017] [Indexed: 06/06/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Every year between 1.2 and 5.5 million people worldwide are victims of snakebites, with about 400,000 left permanently injured. In Central America an estimated 5500 snakebite cases are reported by health centres, but this is likely to be an underestimate due to unreported cases in rural regions. The aim of this study is to review the medicinal plants used traditionally to treat snakebites in seven Central American countries: Belize, Costa Rica, El Salvador, Guatemala, Honduras, Nicaragua and Panama. MATERIALS AND METHODS A literature search was performed on published primary data on medicinal plants of Central America and those specifically pertaining to use against snakebites. Plant use reports for traditional snakebite remedies identified in primary sources were extracted and entered in a database, with data analysed in terms of the most frequent numbers of use reports. The scientific evidence that might support the local uses of the most frequently reported species was also examined. RESULTS A total of 260 independent plant use reports were recorded in the 34 sources included in this review, encompassing 208 species used to treat snakebite in Central America. Only nine species were reported in at least three studies: Cissampelos pareira L., Piper amalago L., Aristolochia trilobata L., Sansevieria hyacinthoides (L.) Druce, Strychnos panamensis Seem., Dorstenia contrajerva L., Scoparia dulcis L., Hamelia patens Jacq., and Simaba cedron Planch. Genera with the highest number of species used to treat snakebite were Piper, Aristolochia, Hamelia, Ipomoea, Passiflora and Peperomia. The extent of the scientific evidence available to understand any pharmacological basis for their use against snakebites varied between different plant species. CONCLUSION At least 208 plant species are traditionally used to treat snakebite in Central America but there is a lack of clinical research to evaluate their efficacy and safety. Available pharmacological data suggest different plant species may target different symptoms of snakebites, such as pain or anxiety, although more studies are needed to further evaluate the scientific basis for their use.
Collapse
Affiliation(s)
- Peter Giovannini
- Natural Capital and Plant Health Department, Royal Botanic Gardens Kew, Wakehurst Place, Ardingly, West Sussex RH17 6TN, UK.
| | - Melanie-Jayne R Howes
- Natural Capital and Plant Health Department, Jodrell Laboratory, Royal Botanic Gardens Kew, Richmond, Surrey TW9 3AB, UK; Institute of Pharmaceutical Science, Faculty of Life Sciences & Medicine, Franklin-Wilkins Building, King's College London, 150 Stamford Street, London SE1 9NH, UK
| |
Collapse
|
16
|
Zhao JH, Zhang HY, Zhang XF, Dong X, Liu QB, Liu YL, Huang YD, Zhang QP, Luo G, Ma ZJ, Yi XN. The protective effect and underlying mechanism of Hainan papaya water extract against neuronal apoptosis induced by Aβ40. ASIAN PAC J TROP MED 2016; 9:707-12. [PMID: 27393103 DOI: 10.1016/j.apjtm.2016.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 05/16/2016] [Accepted: 05/23/2016] [Indexed: 11/25/2022] Open
Abstract
OBJECTIVE To investigate whether Hainan papayas has protective effects in an Aβ40-induced primary neuron injury model and elucidate the underlying molecular mechanism. METHODS Cultured primary neurons from the dorsal root ganglia (DRG) of Sprague-Dawley (SD) rats were treated with 20 μM Aβ40 peptide, 100 μg/L Hainan papaya water extract, peptide plus extract, or culture medium for 24 h. Cell viability was measured by MTT assay, and neuronal apoptosis was evaluated by DAPI staining. ERK signaling pathway-associated molecule activation and changes in Bax expression were analyzed by Western blotting and immunofluorescence. RESULTS A cell viability rate of (44.11 ± 6.59)% in the Aβ40 group was rescued to (79.13 ± 6.64)% by adding different concentrations of the extract. DAPI showed pyknotic nuclei in 39.5% of Aβ40-treated cells; the fraction dropped to 17.4% in the 100 μg/L extract group. ERK phosphorylation was observed in the Aβ40 group but was ameliorated by pretreatment with 100 μg/L extract. Hainan papaya water extract also prevented Aβ40-induced phosphorylation of MEK, RSK1 and CREB associated with ERK signaling and downregulated Bax expression in the neurons. CONCLUSION The results suggest that Hainan papaya water extract has protective effects on neurons; the mechanism may be related to suppression of ERK signaling activation.
Collapse
Affiliation(s)
- Jiu-Hong Zhao
- Department of Anatomy, Hainan Medical College, Haikou 571199, China
| | - Hai-Ying Zhang
- Department of Anatomy, Hainan Medical College, Haikou 571199, China
| | - Xian-Fang Zhang
- Department of Anatomy, Hainan Medical College, Haikou 571199, China
| | - Xu Dong
- Neuroscience Research Institute, Hainan Medical College, Haikou 571199, China
| | - Qi-Bing Liu
- School of Pharmacy, Hainan Medical College, Haikou 571101, China
| | - Yue-Li Liu
- School of Pharmacy, Hainan Medical College, Haikou 571101, China
| | - Yi-Di Huang
- Department of Anatomy, Hainan Medical College, Haikou 571199, China
| | - Quan-Peng Zhang
- Department of Anatomy, Hainan Medical College, Haikou 571199, China
| | - Gang Luo
- Department of Anatomy, Hainan Medical College, Haikou 571199, China
| | - Zhi-Jian Ma
- Department of Anatomy, Hainan Medical College, Haikou 571199, China; Neuroscience Research Institute, Hainan Medical College, Haikou 571199, China
| | - Xi-Nan Yi
- Department of Anatomy, Hainan Medical College, Haikou 571199, China; Neuroscience Research Institute, Hainan Medical College, Haikou 571199, China.
| |
Collapse
|
17
|
Nafiu AB, Rahman MT. Selenium added unripe carica papaya pulp extracts enhance wound repair through TGF-β1 and VEGF-a signalling pathway. Altern Ther Health Med 2015; 15:369. [PMID: 26471293 PMCID: PMC4608175 DOI: 10.1186/s12906-015-0900-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2015] [Accepted: 10/07/2015] [Indexed: 11/10/2022]
Abstract
BACKGROUND Increased wound healing efficiency by Se(2+) added Carica papaya L. (Caricaceae) fruit extract was linked to increased antioxidant and anti-inflammatory responses during healing. We investigated the impact of Se(2+) or Zn(2+) added papaya water (WE) and phosphate-buffered saline (PE) extracts on cells recruitment and bio-molecular alterations on days 4 and 10 post wounding in an in vivo excision wound. METHODS Excision wounds were created on the dorsum of Sprague Dawley rats and treated topically twice/day with 20 μL of PE and WE (5 mg extract/mL), 0.5 μgSe(2+) added PE and WE (PES and WES), or 100 μMZn(2+) added PE and WE (PEZ and WEZ). Deionised water (negative) and Solcoseryl (positive) were applied on the control groups. Histochemical and biochemical assays were used to evaluate cellular and bio-molecular changes in the wound. RESULTS PES (PE + 0.5 μg Se(2+)) only increased significantly (p < 0.05) wound total protein content (95.14 ± 1.15 mg/g tissue vs positive control; 80.42 ± 0.86 mg/g tissue) on day 10 post wounding. PES increased significantly (p < 0.05) the number of fibroblasts/high power field (HPF) (75.60 ± 9.66) but decreased significantly (p < 0.05) the number of polymorphonuclear leukocytes/HPF (59.20 ± 12.64) in the wound compared to positive control (50.60 ± 12.58 fibroblasts/HPF, 101.00 ± 27.99 polymorphonuclear leukocytes/HPF) on day 4. Similar results were recorded for WES. PES demonstrated increased neovascularization, TGF-β1 and VEGFA expressions at day 4 and increased collagen at day 10. CONCLUSION Papaya extract improved wound repair by increasing fibroblasts recruitment and reducing polymorphonuclear leukocytes infiltration through early transient expressions of TGF-β1 and VEGFA at the wound area. The processes were amplified with Se(2+) addition.
Collapse
|