1
|
Wang F, Wang K, Fang B, Geng S, Li Y, Qian H, Lin Y, Yu Z. Hollow mesoporous Prussian blue nanozymes alleviate doxorubicin-induced cardiotoxicity by restraining oxidative stress associated with Nrf2 signaling. J Colloid Interface Sci 2025; 686:1074-1088. [PMID: 39933346 DOI: 10.1016/j.jcis.2025.02.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 01/23/2025] [Accepted: 02/05/2025] [Indexed: 02/13/2025]
Abstract
Doxorubicin-induced cardiomyopathy (DIC) is a toxic side effect that cannot be ignored during chemotherapy for malignant tumors. In this work, we synthesized a novel nano-chemotherapeutic drug based on Prussian blue nanozyme to alleviate DIC. Hollow mesoporous Prussian blue (HmPB) nanoparticles were used as a carrier to load doxorubicin (DOX) through electrostatic adsorption and obtain a novel chemotherapy drug, HmPB(DOX). In vivo and in vitro chemotherapy efficacy and acute toxicity evaluation experiments were conducted. The results suggest that HmPB(DOX) exhibits pH-responsive characteristics and minimizes the release of DOX from within HmPB(DOX) in cardiomyocytes. However, in the acidic tumor microenvironment, the release of DOX from HmPB(DOX) is notably enhanced. More importantly, HmPB(DOX) possesses excellent antioxidant enzyme activity, effectively clearing DOX-induced reactive oxygen species (ROS) and alleviating oxidative stress in cardiomyocytes. Doxorubicin is pivotal in the chemotherapy of malignant tumors. This study presents novel insights for mitigating the toxic and side effects of DOX, offering new strategies to enhance tolerance to chemotherapy.
Collapse
Affiliation(s)
- Fang Wang
- The First Clinical Medical College, Wenzhou Medical University, Wenzhou, Zhejiang Province 325000, PR China
| | - Ke Wang
- Laboratory of Nanomedicine, Medical Science Research Center, School of Medicine, Shaoxing University, Shaoxing City, Zhejiang Province 312000, PR China; School of Life and Environmental Sciences, Shaoxing University, Shaoxing City, Zhejiang Province 312000, PR China
| | - BaoRu Fang
- Laboratory of Nanomedicine, Medical Science Research Center, School of Medicine, Shaoxing University, Shaoxing City, Zhejiang Province 312000, PR China; School of Life and Environmental Sciences, Shaoxing University, Shaoxing City, Zhejiang Province 312000, PR China
| | - SiQi Geng
- Laboratory of Nanomedicine, Medical Science Research Center, School of Medicine, Shaoxing University, Shaoxing City, Zhejiang Province 312000, PR China; School of Life and Environmental Sciences, Shaoxing University, Shaoxing City, Zhejiang Province 312000, PR China
| | - Ying Li
- Laboratory of Nanomedicine, Medical Science Research Center, School of Medicine, Shaoxing University, Shaoxing City, Zhejiang Province 312000, PR China
| | - HuiFeng Qian
- Department of Clinical Laboratory, Shaoxing Second Hospital, Shaoxing City, Zhejiang Province 312000, PR China
| | - YiNuo Lin
- The First Clinical Medical College, Wenzhou Medical University, Wenzhou, Zhejiang Province 325000, PR China.
| | - ZhangSen Yu
- Laboratory of Nanomedicine, Medical Science Research Center, School of Medicine, Shaoxing University, Shaoxing City, Zhejiang Province 312000, PR China.
| |
Collapse
|
2
|
Zhao A, Lei W, Tian J, Wu X, Li M, Zhang Y, Wu X, Xu X, Tang J, Yang Y, Jin Z. Mangiferin Attenuates Myocardial Ischemia Reperfusion Injury by Regulating the GAS6/Axl Signaling Pathway. Phytother Res 2025; 39:1388-1402. [PMID: 39780746 DOI: 10.1002/ptr.8423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 11/18/2024] [Accepted: 12/04/2024] [Indexed: 01/11/2025]
Abstract
Ischemia reperfusion-induced myocardial injury is a prominent pathological feature in patients with coronary artery disease, contributing to significant mortality and morbidity rates. Mangiferin (MGF), the main active ingredient extracted from Anemarrhena asphodeloides Bge, has anti-inflammatory, anti-oxidation, anti-diabetes, and anti-tumor effects. The present study confirmed that the GAS6/Axl pathway was identified as a promising novel target for the treatment of myocardial ischemia reperfusion (IR) injury. However, whether MGF exerts anti-myocardial ischemia reperfusion injury through GAS6/Axl is still unclear. In this study, BALB/c male mice and HL-1 cardiomyocytes were used to construct a model of IR and hypoxia-reoxygenation (HR) (or H2O2) injury in vivo and in vitro, respectively. MGF significantly improved cardiac function indicators, myocardial structure, myocardial enzymes, and mitochondrial function, together with reduced oxidative stress and apoptosis in IR-injured mice. In vitro, MGF significantly increased cell viability, inhibited the release of LDH, reduced oxidative stress and apoptosis, and improved mitochondrial function in both HR and H2O2-injured HL-1 cells. In particular, the GAS6/Axl signaling pathway plays an important role in this process. Additionally, we also demonstrated that GAS6 gene knockout reversed the protective effect of MGF against HR and H2O2-injured cardiomyocytes. The present study confirmed that MGF has protective effects against myocardial IR injury by activating the GAS6/Axl pathway, providing a theoretical basis for MGF as a potential cardioprotective drug in the clinical setting of myocardial IR injury.
Collapse
Affiliation(s)
- Aizhen Zhao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China
| | - Wangrui Lei
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China
| | - Jiayin Tian
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China
| | - Xiaopeng Wu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Northwest University First Hospital, Northwest University, Xi'an, China
| | - Mengyu Li
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China
| | - Yan Zhang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China
| | - Xue Wu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China
| | - Xuezeng Xu
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Jiayou Tang
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Yang Yang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Northwest University First Hospital, Northwest University, Xi'an, China
| | - Zhenxiao Jin
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| |
Collapse
|
3
|
Aqil A, Yasmeen I, Parveen I, Nadaf A, Jiba U, Adil M, Hasan N, Kesharwani P, Ahmad FJ. WITHDRAWN: In-Depth Analysis of Mangiferin and Its Formulations for Alleviating Neurodegenerative Diseases: A Comprehensive Review. Eur J Pharmacol 2025:177354. [PMID: 39938857 DOI: 10.1016/j.ejphar.2025.177354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 01/20/2025] [Accepted: 02/05/2025] [Indexed: 02/14/2025]
Abstract
This article has been withdrawn at the request of the author(s) and/or editor. The Publisher apologizes for any inconvenience this may cause. The full Elsevier Policy on Article Withdrawal can be found at https://www.elsevier.com/about/policies/article-withdrawal
Collapse
Affiliation(s)
- Anjlina Aqil
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Iqra Yasmeen
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Imsha Parveen
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Arif Nadaf
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Umme Jiba
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Mohammad Adil
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Nazeer Hasan
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India.
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India.
| | - Farhan J Ahmad
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India.
| |
Collapse
|
4
|
Meng C, Wang Y, Zheng T, Rong Z, Lv Z, Wu C, Zhou X, Mao W. A novel approach to the prevention and management of chemotherapy-induced cardiotoxicity: PANoptosis. Chem Biol Interact 2025; 407:111379. [PMID: 39788474 DOI: 10.1016/j.cbi.2025.111379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 12/31/2024] [Accepted: 01/07/2025] [Indexed: 01/12/2025]
Abstract
As a fundamental component of antitumor therapy, chemotherapy-induced cardiotoxicity (CIC) has emerged as a leading cause of long-term mortality in patients with malignant tumors. Unfortunately, there are currently no effective therapeutic preventive or treatment strategies, and the underlying pathophysiological mechanisms of CIC remain inadequately understood. A growing number of studies have shown that different mechanisms of cell death, such as apoptosis, pyroptosis, and necroptosis, are essential for facilitating the cardiotoxic effects of chemotherapy. The PANoptosis mode represents a highly synchronized and dynamically balanced programmed cell death (PCD) process that integrates the principal molecular characteristics of necroptosis, apoptosis, and pyroptosis. Recent research has revealed a significant correlation between PANoptosis and the apoptosis of tumor cells. Chemotherapy drugs can activate PANoptosis, which is involved in the development of cardiovascular diseases. These findings suggest that PANoptosis marks the point where the effectiveness of chemotherapy against tumors overlaps with the onset and development of cardiovascular diseases. Furthermore, previous studies have demonstrated that CIC can simultaneously induce pyrodeath, apoptosis, and necrotic apoptosis. Therefore, PANoptosis may represent a potential mechanism and target for the prevention of CIC. This study explored the interactions among the three main mechanisms of PCD, pyroptosis, apoptosis, and necroptosis in CICs and analyzed the relevant literature on PANoptosis and CICs. The purpose of this work is to serve as a reference for future investigations on the role of PANoptosis in the development and mitigation of cardiotoxicity associated with chemotherapy.
Collapse
Affiliation(s)
- Chenchen Meng
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, 310053, Hangzhou, China
| | - Yali Wang
- Department of Cardiology, Zhejiang Hospital (Affiliated Zhejiang Hospital, Zhejiang University School of Medicine), Hangzhou, Zhejiang, 310007, China
| | - Tiantian Zheng
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, 310053, Hangzhou, China
| | - Zheng Rong
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, 310053, Hangzhou, China
| | - Zhengtian Lv
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, 310053, Hangzhou, China
| | - Chenxia Wu
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, 310053, Hangzhou, China; Department of Cardiology, Zhejiang Hospital (Affiliated Zhejiang Hospital, Zhejiang University School of Medicine), Hangzhou, Zhejiang, 310007, China
| | - Xinbin Zhou
- Department of Cardiology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), 310006, Hangzhou, Zhejiang, China.
| | - Wei Mao
- Department of Cardiology, Zhejiang Hospital (Affiliated Zhejiang Hospital, Zhejiang University School of Medicine), Hangzhou, Zhejiang, 310007, China; Zhejiang Key Laboratory of Integrative Chinese and Western Medicine for Diagnosis and Treatment of Circulatory Diseases, Zhejiang Hospital (Affiliated Zhejiang Hospital, Zhejiang University School of Medicine), Hangzhou, Zhejiang, 310007, China; Zhejiang Engineering Research Center for Precise Diagnosis and Innovative Traditional Chinese Medicine for Cardiovascular Diseases, Zhejiang Hospital (Affiliated Zhejiang Hospital, Zhejiang University School of Medicine), Hangzhou, Zhejiang, 310007, China.
| |
Collapse
|
5
|
Szponar J, Ciechanski E, Ciechanska M, Dudka J, Mandziuk S. Evolution of Theories on Doxorubicin-Induced Late Cardiotoxicity-Role of Topoisomerase. Int J Mol Sci 2024; 25:13567. [PMID: 39769331 PMCID: PMC11678604 DOI: 10.3390/ijms252413567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 12/09/2024] [Accepted: 12/10/2024] [Indexed: 01/11/2025] Open
Abstract
Doxorubicin (DOX) has been widely used as a cytotoxic chemotherapeutic. However, DOX has a number of side effects, such as myelotoxicity or gonadotoxicity, the most dangerous of which is cardiotoxicity. Cardiotoxicity can manifest as cardiac arrhythmias, myocarditis, and pericarditis; life-threatening late cardiotoxicity can result in heart failure months or years after the completion of chemotherapy. The development of late cardiomyopathy is not yet fully understood. The most important question is how DOX reprograms the cardiomyocyte, after which DOX is excreted from the body, initially without symptoms. However, clinically overt cardiomyopathy develops over the following months and years. Since the 1980s, DOX-induced disorders in cardiomyocytes have been thought to be related to oxidative stress and dependent on the Fe/reactive oxygen species (ROS) mechanism. That line of evidence was supported by dexrazoxane (DEX) protection, the only Food and Drug Administration (FDA)-approved drug for preventing DOX-induced cardiomyopathy, which complexes iron. Thus, the hypothesis related to Fe/ROS provides a plausible explanation for the induction of the development of late cardiomyopathy via DOX. However, in subsequent studies, DEX was used to identify another important mechanism in DOX-induced cardiomyopathy that is related to topoisomerase 2β (Top2β). Does the Top2β hypothesis explain the mechanisms of the development of DOX-dependent late heart failure? Several of these mechanisms have been identified to date, proving the involvement of Top2β in the regulation of the redox balance, including oxidative stress. Thus, the development of late cardiomyopathy can be explained based on mechanisms related to Top2β. In this review, we highlight free radical theory, iron imbalance, calcium overload, and finally, a theory based on Top2β.
Collapse
Affiliation(s)
- Jaroslaw Szponar
- Toxicology Clinic, Faculty of Medicine, Medical University of Lublin, Krasnicka 100, 20-718 Lublin, Poland;
- Clinical Department of Toxicology and Cardiology, Regional Specialist Hospital, Krasnicka 100, 20-718 Lublin, Poland
| | - Erwin Ciechanski
- Department of Cardiology, Regional Specialist Hospital, Krasnicka 100, 20-718 Lublin, Poland
| | - Magda Ciechanska
- Department of Pulmonary Diseases and Children Rheumatology, Medical University of Lublin, Antoniego Gebali 6, 20-093 Lublin, Poland
| | - Jaroslaw Dudka
- Department of Toxicology, Medical University of Lublin, Jaczewskiego 8b, 20-090 Lublin, Poland;
| | - Sławomir Mandziuk
- Department of Pneumology, Oncology and Allergology, Medical University of Lublin, Jaczewskiego 8, 20-090 Lublin, Poland;
| |
Collapse
|
6
|
Popa A, Usatiuc LO, Scurtu IC, Murariu R, Cofaru A, Pop R, Tabaran FA, Gherman LM, Valean D, Bolundut AC, Orzan RI, Muresan XM, Morohoschi AG, Andrei S, Lazea C, Agoston-Coldea L. Assessing the Anti-Inflammatory and Antioxidant Activity of Mangiferin in Murine Model for Myocarditis: Perspectives and Challenges. Int J Mol Sci 2024; 25:9970. [PMID: 39337458 PMCID: PMC11432486 DOI: 10.3390/ijms25189970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/12/2024] [Accepted: 09/14/2024] [Indexed: 09/30/2024] Open
Abstract
Myocarditis is a major cause of heart failure and death, particularly in young individuals. Current treatments are mainly symptomatic, but emerging therapies focus on targeting inflammation and fibrosis pathways. Natural bioactive compounds like flavonoids and phenolic acids show promising anti-inflammatory and antioxidant properties. Corticosteroids are frequently employed in the treatment of autoimmune myocarditis and appear to lower mortality rates compared to conventional therapies for heart failure. This study aims to explore the effects of Mangiferin on pro-inflammatory cytokine levels, nitro-oxidative stress markers, histopathological alterations, and cardiac function in experimental myosin-induced autoimmune myocarditis. The effects were compared to Prednisone, used as a reference anti-inflammatory compound, and Trolox, used as a reference antioxidant. The study involved 30 male Wistar-Bratislava rats, which were randomly divided into five groups: a negative control group (C-), a positive control group with induced myocarditis using a porcine myosin solution (C+), three groups with induced myocarditis receiving Mangiferin (M), Prednisone (P), or Trolox (T) as treatment. Cardiac function was evaluated using echocardiography. Biochemical measurements of nitro-oxidative stress and inflammatory markers were conducted. Finally, histopathological changes were assessed. At echocardiography, the evaluation of the untreated myocarditis group showed a trend toward decreased left ventricular ejection fraction (LVEF) but was not statistically significant, while all treated groups showed some improvement in LVEF and left ventricular fraction shortening (LVFS). Significant changes were seen in the Mangiferin group, with lower end-diastolic left ventricular posterior wall (LVPWd) by day 21 compared to the Trolox group (p < 0.001). In the first week of the experiment, levels of interleukins (IL)-1β, IL-6, and tumour necrosis factor (TNF)-α were significantly higher in the myosin group compared to the negative control group (p < 0.001, p < 0.001, p < 0.01), indicating the progression of inflammation in this group. Treatment with Mangiferin, Prednisone, and Trolox caused a significant reduction in IL-1β compared to the positive control group (p < 0.001). Notably, Mangiferin resulted in a superior reduction in IL-1β compared to Prednisone (p < 0.05) and Trolox (p < 0.05). Furthermore, Mangiferin treatment led to a statistically significant increase in total oxidative capacity (TAC) (p < 0.001) and a significant reduction in nitric oxide (NOx) levels (p < 0.001) compared to the negative control group. Furthermore, when compared to the Prednisone-treated group, Mangiferin significantly reduced NOx levels (p < 0.001) and increased TAC levels (p < 0.001). Mangiferin treatment significantly lowered creatine kinase (CK) and aspartate aminotransferase (AST) levels on day 7 (p < 0.001 and p < 0.01, respectively) and reduced CK levels on day 21 (p < 0.01) compared to the untreated group. In the nontreated group, the histological findings at the end of the experiment were consistent with myocarditis. In the group treated with Mangiferin, only one case exhibited mild inflammatory infiltrates, represented by mononucleated leukocytes admixed with few neutrophils, with the severity graded as mild. Statistically significant correlations between the grades (0 vs. 1-2) and the study groups have been highlighted (p < 0.005). This study demonstrated Mangiferin's cardioprotective effects in autoimmune myocarditis, showing reduced oxidative stress and inflammation. Mangiferin appears promising as a treatment for acute myocarditis, but further research is needed to compare its efficacy with other treatments like Trolox and Prednisone.
Collapse
Affiliation(s)
- Alexandra Popa
- Department of Internal Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400347 Cluj-Napoca, Romania
- Department of Pediatrics, Iuliu Hatieganu University of Medicine and Pharmacy, 400347 Cluj-Napoca, Romania
| | - Lia-Oxana Usatiuc
- Department of Pediatrics, Iuliu Hatieganu University of Medicine and Pharmacy, 400347 Cluj-Napoca, Romania
- Department of Pathophysiology, Iuliu Hatieganu University of Medicine and Pharmacy, 400347 Cluj-Napoca, Romania
| | - Iuliu Calin Scurtu
- Department of Small Animal Internal Medicine, Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania
| | - Raluca Murariu
- Department of Small Animal Internal Medicine, Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania
| | - Alexandra Cofaru
- Department of Small Animal Internal Medicine, Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania
| | - Romelia Pop
- Department of Anatomic Pathology, Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania
| | - Flaviu Alexandru Tabaran
- Department of Anatomic Pathology, Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania
| | - Luciana Madalina Gherman
- Experimental Center, Iuliu Hatieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Dan Valean
- Regional Institute of Gastroenterology and Hepatology “O. Fodor”, 400162 Cluj-Napoca, Romania
| | | | - Rares Ilie Orzan
- Department of Internal Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400347 Cluj-Napoca, Romania
| | - Ximena Maria Muresan
- Department of Translational Medicine, Institute of Medical Research and Life Sciences—MEDFUTURE, Iuliu Hatieganu University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania
| | - Andreea Georgiana Morohoschi
- Department of Biochemistry, Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania
| | - Sanda Andrei
- Department of Biochemistry, Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania
| | - Cecilia Lazea
- Department of Pediatrics, Iuliu Hatieganu University of Medicine and Pharmacy, 400347 Cluj-Napoca, Romania
| | - Lucia Agoston-Coldea
- Department of Internal Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400347 Cluj-Napoca, Romania
| |
Collapse
|
7
|
Liu C, Wang Y, Zeng Y, Kang Z, Zhao H, Qi K, Wu H, Zhao L, Wang Y. Use of Deep-Learning Assisted Assessment of Cardiac Parameters in Zebrafish to Discover Cyanidin Chloride as a Novel Keap1 Inhibitor Against Doxorubicin-Induced Cardiotoxicity. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2301136. [PMID: 37679058 PMCID: PMC10602559 DOI: 10.1002/advs.202301136] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 07/07/2023] [Indexed: 09/09/2023]
Abstract
Doxorubicin-induced cardiomyopathy (DIC) brings tough clinical challenges as well as continued demand in developing agents for adjuvant cardioprotective therapies. Here, a zebrafish phenotypic screening with deep-learning assisted multiplex cardiac functional analysis using motion videos of larval hearts is established. Through training the model on a dataset of 2125 labeled ventricular images, ZVSegNet and HRNet exhibit superior performance over previous methods. As a result of high-content phenotypic screening, cyanidin chloride (CyCl) is identified as a potent suppressor of DIC. CyCl effectively rescues cardiac cell death and improves heart function in both in vitro and in vivo models of Doxorubicin (Dox) exposure. CyCl shows strong inhibitory effects on lipid peroxidation and mitochondrial damage and prevents ferroptosis and apoptosis-related cell death. Molecular docking and thermal shift assay further suggest a direct binding between CyCl and Keap1, which may compete for the Keap1-Nrf2 interaction, promote nuclear accumulation of Nrf2, and subsequentially transactivate Gpx4 and other antioxidant factors. Site-specific mutation of R415A in Keap1 significantly attenuates the protective effects of CyCl against Dox-induced cardiotoxicity. Taken together, the capability of deep-learning-assisted phenotypic screening in identifying promising lead compounds against DIC is exhibited, and new perspectives into drug discovery in the era of artificial intelligence are provided.
Collapse
Affiliation(s)
- Changtong Liu
- College of Pharmaceutical SciencesZhejiang University866 Yuhangtang Road, Xihu DistrictHangzhou310058China
| | - Yingchao Wang
- College of Pharmaceutical SciencesZhejiang University866 Yuhangtang Road, Xihu DistrictHangzhou310058China
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University291 Fucheng Road, Qiantang DistrictHangzhou310020China
| | - Yixin Zeng
- State Key Lab of CAD&CGZhejiang University866 Yuhangtang Road, Xihu DistrictHangzhou310058China
| | - Zirong Kang
- State Key Lab of CAD&CGZhejiang University866 Yuhangtang Road, Xihu DistrictHangzhou310058China
| | - Hong Zhao
- College of Pharmaceutical SciencesZhejiang University866 Yuhangtang Road, Xihu DistrictHangzhou310058China
| | - Kun Qi
- College of Pharmaceutical SciencesZhejiang University866 Yuhangtang Road, Xihu DistrictHangzhou310058China
| | - Hongzhi Wu
- State Key Lab of CAD&CGZhejiang University866 Yuhangtang Road, Xihu DistrictHangzhou310058China
| | - Lu Zhao
- College of Pharmaceutical SciencesZhejiang University866 Yuhangtang Road, Xihu DistrictHangzhou310058China
| | - Yi Wang
- College of Pharmaceutical SciencesZhejiang University866 Yuhangtang Road, Xihu DistrictHangzhou310058China
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University291 Fucheng Road, Qiantang DistrictHangzhou310020China
- National Key Laboratory of Chinese Medicine ModernizationInnovation Center of Yangtze River DeltaZhejiang University314100JiaxingChina
| |
Collapse
|
8
|
Elkatary RG, El Beltagy HM, Abdo VB, El Fatah DSA, El-Karef A, Ashour RH. Poly (ADP-ribose) polymerase pathway inhibitor (Olaparib) upregulates SERCA2a expression and attenuates doxorubicin-induced cardiomyopathy in mice. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023; 103:104261. [PMID: 37689219 DOI: 10.1016/j.etap.2023.104261] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 08/19/2023] [Accepted: 09/06/2023] [Indexed: 09/11/2023]
Abstract
The cardiotoxicity induced by doxorubicin is dose-dependent. The present study tested the potential cardioprotective effect of Poly ADP Ribose Polymerase (PARP) pathway inhibitor "olaparib" in a mouse model of doxorubicin-induced cardiomyopathy (DOX-CM). Seventy-two male BALB/c mice were randomized into six equal groups; control, DOX-CM, dexrazoxane-treated, and three olaparib-treated groups (5, 10, and 50 mg/kg/day). Cardiomyopathy was assessed by heart weight/Tibial length (HW/TL) ratio, cardiac fibrosis, oxidative stress, and electron microscope. Myocardial expression of SERCA2a mRNA and cleaved PARP-1 protein were also assessed. Similar to dexrazoxane, olaparib (10 mg/kg/day) significantly ameliorated oxidative stress, and preserved cardiac structure. It also suppressed myocardial PARP-1 protein expression and boosted SERCA2a mRNA expression. Olaparib (5 or 50 mg/kg/day) failed to show comparable effects. The current study detected the cardioprotective effect of olaparib at a dosage of 10 mg/kg/day. Also, the present study discovered a new cardioprotective mechanism of dexrazoxane by targeting PARP-1 in the heart.
Collapse
Affiliation(s)
- Rania Gamal Elkatary
- Clinical Pharmacology Department, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt
| | | | - Vivian Boshra Abdo
- Clinical Pharmacology Department, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Dina Sabry Abd El Fatah
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Cairo University, Egypt
| | - Amr El-Karef
- Pathology Department, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt; Horus University-Egypt, New Damietta, Egypt
| | - Rehab Hamdy Ashour
- Clinical Pharmacology Department, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt.
| |
Collapse
|
9
|
Nemoto H, Umemura M, Suzuki F, Nagasako A, Nagao K, Hidaka Y, Nakakaji R, Uchida K, Suzuki S, Masuda M, Ishikawa Y. Store-operated calcium entry via ORAI1 regulates doxorubicin-induced apoptosis and prevents cardiotoxicity in cardiac fibroblasts. PLoS One 2022; 17:e0278613. [PMID: 36472998 PMCID: PMC9725120 DOI: 10.1371/journal.pone.0278613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 11/18/2022] [Indexed: 12/12/2022] Open
Abstract
Despite exhibiting cardiotoxicity, doxorubicin (DOX) is widely used for cancer treatments. Cardiac fibroblasts (CFs) are important in the pathogenesis of heart failure. This necessitates the study of the effect of DOX on CFs. The impairment of calcium (Ca2+) homeostasis is a common mechanism of heart failure. Store-operated Ca2+ entry (SOCE) is a receptor-regulated Ca2⁺ entry pathway that maintains calcium balance by sensing reduced calcium stores in the endoplasmic reticulum. ORAI1, a calcium channel protein and the most important component of SOCE, is highly expressed in human cardiac fibroblasts (HCFs). It is upregulated in CFs from failing ventricles. However, whether ORAI1 in HCFs is increased and/or plays a role in DOX-induced cardiotoxicity remains unknown. In this study, we aimed to elucidate the relationship between ORAI1/SOCE and DOX-induced heart failure. Induction of apoptosis by DOX was characterized in HCFs. Apoptosis and cell cycle analyses were performed by fluorescence-activated cell sorting (FACS). Reactive oxygen species (ROS) production was measured using fluorescence. YM-58483 was used as an ORAI1/SOCE inhibitor. ORAI1-knockdown cells were established by RNA interference. In vivo experiments were performed by intraperitoneally injecting YM-58483 and DOX into mice. We first demonstrated that DOX significantly increased the protein expression level of p53 in HCFs by western blotting. FACS analysis revealed that DOX increased early apoptosis and induced cell cycle arrest in the G2 phase in fibroblasts. DOX also increased ROS production. DOX significantly increased the expression level of ORAI1 in CFs. Both YM-58483 and ORAI1 gene knockdown attenuated DOX-induced apoptosis. Similarly, YM-58483 attenuated cell cycle arrest in the G2 phase, and ORAI1 knockdown attenuated DOX-induced ROS production in HCFs. In the animal experiment, YM-58483 attenuated DOX-induced apoptosis. In HCFs, ORAI1/SOCE regulates p53 expression and plays an important role in DOX-induced cardiotoxicity. ORAI1 may serve as a new target for preventing DOX-induced heart failure.
Collapse
Affiliation(s)
- Hiroko Nemoto
- Cardiovascular Research Institute, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, Japan
- Department of Surgery, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, Japan
| | - Masanari Umemura
- Cardiovascular Research Institute, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, Japan
- * E-mail: (MU); (YI)
| | - Fumina Suzuki
- Cardiovascular Research Institute, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, Japan
| | - Akane Nagasako
- Cardiovascular Research Institute, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, Japan
| | - Kagemichi Nagao
- Cardiovascular Research Institute, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, Japan
| | - Yuko Hidaka
- Cardiovascular Research Institute, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, Japan
| | - Rina Nakakaji
- Cardiovascular Research Institute, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, Japan
| | - Keiji Uchida
- Department of Surgery, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, Japan
| | - Shinichi Suzuki
- Department of Surgery, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, Japan
| | - Munetaka Masuda
- Department of Surgery, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, Japan
| | - Yoshihiro Ishikawa
- Cardiovascular Research Institute, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, Japan
- * E-mail: (MU); (YI)
| |
Collapse
|
10
|
Calcium Overload or Underload? The Effects of Doxorubicin on the Calcium Dynamics in Guinea Pig Hearts. Biomedicines 2022; 10:biomedicines10092197. [PMID: 36140298 PMCID: PMC9496179 DOI: 10.3390/biomedicines10092197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 08/29/2022] [Accepted: 08/31/2022] [Indexed: 11/17/2022] Open
Abstract
The severe doxorubicin (DOXO) side effect of cardiomyopathy limits it clinical application as an effective anticancer drug. Although Ca2+ overload was postulated as one of the mechanisms for this toxicity, its role was, however, disputable in terms of the contractile dysfunction. In this work, the dynamics of the intracellular Ca2+ signal were optically mapped in a Langendorff guinea pig heart. We found that DOXO treatment: (1) Delayed the activation of the Ca2+ signal. With the reference time set at the peak of the action potential (AP), the time lag between the peak of the Ca2+ signal and AP (Ca-AP-Lag) was significantly prolonged. (2) Slowed down the intracellular Ca2+ releasing and sequestering process. Both the maximum rising (MRV) and falling (MFV) velocity of the Ca2+ signal were decreased. (3) Shortened the duration of the Ca2+ signal in one cycle of Ca2+ oscillation. The duration of the Ca2+ signal at 50% amplitude (CaD50) was significantly shortened. These results suggested a reduced level of intracellular Ca2+ after DOXO treatment. Furthermore, we found that the effect of tachypacing was similar to that of DOXO, and, interestingly, DOXO exerted contradictory effects on the tachypaced hearts: it shortened the Ca-AP-Lag, accelerated the MRV and MFV, and prolonged the CaD50. We, therefore, concluded that DOXO had a different effect on intracellular Ca2+. It caused Ca2+ underload in hearts with sinus rhythm; this might relate to the contractile dysfunction in DOXO cardiomyopathy. It led to Ca2+ overload in the tachypaced hearts, which might contribute to the Ca2+-overload-related toxicity.
Collapse
|
11
|
Syahputra RA, Harahap U, Dalimunthe A, Nasution MP, Satria D. The Role of Flavonoids as a Cardioprotective Strategy against Doxorubicin-Induced Cardiotoxicity: A Review. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27041320. [PMID: 35209107 PMCID: PMC8878416 DOI: 10.3390/molecules27041320] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 01/26/2022] [Accepted: 02/02/2022] [Indexed: 12/14/2022]
Abstract
Doxorubicin is a widely used and promising anticancer drug; however, a severe dose-dependent cardiotoxicity hampers its therapeutic value. Doxorubicin may cause acute and chronic issues, depending on the duration of toxicity. In clinical practice, the accumulative toxic dose is up to 400 mg/m2 and increasing the dose will increase the probability of cardiac toxicity. Several molecular mechanisms underlying the pathogenesis of doxorubicin cardiotoxicity have been proposed, including oxidative stress, topoisomerase beta II inhibition, mitochondrial dysfunction, Ca2+ homeostasis dysregulation, intracellular iron accumulation, ensuing cell death (apoptosis and necrosis), autophagy, and myofibrillar disarray and loss. Natural products including flavonoids have been widely studied both in cell, animal, and human models which proves that flavonoids alleviate cardiac toxicity caused by doxorubicin. This review comprehensively summarizes cardioprotective activity flavonoids including quercetin, luteolin, rutin, apigenin, naringenin, and hesperidin against doxorubicin, both in in vitro and in vivo models.
Collapse
Affiliation(s)
- Rony Abdi Syahputra
- Department of Pharmacology, Faculty of Pharmacy, Universitas Sumatera Utara, Medan 20155, Indonesia;
- Correspondence: (R.A.S.); (U.H.)
| | - Urip Harahap
- Department of Pharmacology, Faculty of Pharmacy, Universitas Sumatera Utara, Medan 20155, Indonesia;
- Correspondence: (R.A.S.); (U.H.)
| | - Aminah Dalimunthe
- Department of Pharmacology, Faculty of Pharmacy, Universitas Sumatera Utara, Medan 20155, Indonesia;
| | - M. Pandapotan Nasution
- Department of Pharmaceutical Biology, Faculty of Pharmacy, Universitas Sumatera Utara, Medan 20155, Indonesia; (M.P.N.); (D.S.)
| | - Denny Satria
- Department of Pharmaceutical Biology, Faculty of Pharmacy, Universitas Sumatera Utara, Medan 20155, Indonesia; (M.P.N.); (D.S.)
| |
Collapse
|
12
|
The effects of doxorubicin on cardiac calcium homeostasis and contractile function. J Cardiol 2022; 80:125-132. [DOI: 10.1016/j.jjcc.2022.01.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 12/20/2021] [Accepted: 12/29/2021] [Indexed: 12/11/2022]
|
13
|
Huang C, Qiu S, Fan X, Jiao G, Zhou X, Sun M, Weng N, Gao S, Tao X, Zhang F, Chen W. Evaluation of the effect of Shengxian Decoction on doxorubicin-induced chronic heart failure model rats and a multicomponent comparative pharmacokinetic study after oral administration in normal and model rats. Biomed Pharmacother 2021; 144:112354. [PMID: 34794233 DOI: 10.1016/j.biopha.2021.112354] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 10/13/2021] [Accepted: 10/19/2021] [Indexed: 12/28/2022] Open
Abstract
Shengxian Decotion (SXT), a well-known Traditional Chinese Medicine (TCM) formula composed of Astragali Radix, Bupleuri Radix, Cimicifugae Rhizoma, Anemarrhenae Rhizoma and Platycodonis Radix, is clinically considered as an effective formula against cardiovascular diseases. However, the exact effective substance of SXT in treating chronic heart failure (CHF) still remains unclear. In the current study, we investigated the benefit of SXT in doxorubicin (DOX)-induced CHF rats and established a UHPLC-MS/MS method to simultaneously determine 18 key compounds in a subsequent comparative pharmacokinetic study in normal and CHF rats. Histopathological studies, transmission electron microscopy, and echocardiography were applied to assess the therapeutic effect of SXT on DOX-induced CHF rats, which indicated that SXT significantly ameliorated DOX-induced CHF, similar to enalapril. In addition, we successfully established a UHPLC-MS/MS method to determine the pharmacokinetics of the components in rat plasma, which was validated with good linearity, inter-day and intra-day precisions and accuracies, matrix effects, extraction recovery, and stability values. Our results showed that only astragaloside IV showed increased plasma exposure in the CHF rats, while saikosaponin A, quercetin, timosaponin B-II, ferulic acid, isoferulic acid and formononetin decreased compared to their pharmacokinetic characteristics in the normal and CHF rats. This study demonstrates that SXT enjoys obvious therapeutic effect on DOX-induced CHF rats, and the altered metabolism of some compounds in SXT is affected by the pathological state of CHF rats. Our findings provide a better understanding of the in vivo exposure to complex compounds of SXT, supporting effective substance screening and further investigation of the therapeutic mechanism.
Collapse
Affiliation(s)
- Cuiyun Huang
- Department of Pharmacy, Changzheng Hospital, Naval Medical University (Second Military Medical University), Shanghai 200003, China.
| | - Shi Qiu
- Research and Development Center of Chinese Medicine Resources and Biotechnology, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Xiangcheng Fan
- Department of Pharmacy, Changzheng Hospital, Naval Medical University (Second Military Medical University), Shanghai 200003, China.
| | - Guangyang Jiao
- Research and Development Center of Chinese Medicine Resources and Biotechnology, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Xun Zhou
- Department of Pharmacy, Changzheng Hospital, Naval Medical University (Second Military Medical University), Shanghai 200003, China.
| | - Mei Sun
- Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Nan Weng
- School of Traditional Chinese Material, Shenyang Pharmaceutical University, Shenyang 110015, China.
| | - Shouhong Gao
- Department of Pharmacy, Changzheng Hospital, Naval Medical University (Second Military Medical University), Shanghai 200003, China.
| | - Xia Tao
- Department of Pharmacy, Changzheng Hospital, Naval Medical University (Second Military Medical University), Shanghai 200003, China.
| | - Feng Zhang
- Department of Pharmacy, Changzheng Hospital, Naval Medical University (Second Military Medical University), Shanghai 200003, China.
| | - Wansheng Chen
- Department of Pharmacy, Changzheng Hospital, Naval Medical University (Second Military Medical University), Shanghai 200003, China; Research and Development Center of Chinese Medicine Resources and Biotechnology, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| |
Collapse
|
14
|
Awad HH, El-Derany MO, Mantawy EM, Michel HE, El-Naa MM, Salah El-Din RA, El-Brairy AI, El-Demerdash E. Comparative study on beneficial effects of vitamins B and D in attenuating doxorubicin induced cardiotoxicity in rats: Emphasis on calcium homeostasis. Biomed Pharmacother 2021; 140:111679. [PMID: 34029952 DOI: 10.1016/j.biopha.2021.111679] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 04/25/2021] [Accepted: 04/27/2021] [Indexed: 12/13/2022] Open
Abstract
The use of doxorubicin (DOX) to treat various tumors is limited by its cardiotoxicity. This study aimed to investigate and compare the cardioprotective effects of nicotinamide (NAM) and alfacalcidol (1α(OH)D3), against DOX-induced cardiotoxicity. Sprague Dawley male rats received DOX (5 mg/kg, i.p.) once/week for four consecutive weeks. Treated groups received either NAM (600 mg/kg, p.o.) for 28 consecutive days or 1α(OH)D3 (0.5 ug/kg, i.p.) once/week for four consecutive weeks. DOX elicited marked cardiac tissue injury manifested by elevated serum cardiotoxicity indices, conduction and histopathological abnormalities. Both NAM and 1α(OH)D3 successfully reversed all these changes. From the mechanistic point of view, DOX provoked intense cytosolic and mitochondrial calcium (Ca2+) overload hence switching on calpain1 (CPN1) and mitochondrial-mediated apoptotic cascades as confirmed by upregulating Bax and caspase-3 while downregulating Bcl-2 expression. DOX also disrupted cardiac bioenergetics as evidenced by adenosine triphosphate (ATP) depletion and a declined ATP/ADP ratio. Moreover, DOX upregulated the Ca2+ sensor; calmodulin kinase II gamma (CaMKII-δ) which further contributed to cardiac damage. Interestingly, co-treatment with either NAM or 1α(OH)D3 reversed all DOX associated abnormalities by preserving Ca2+ homeostasis, replenishing ATP stores and obstructing apoptotic events. Additionally, DOX prompted nuclear factor kappa B (NF-κB) dependent inflammatory responses and subsequently upregulated interleukin-6 (IL-6) expression. Co-treatment with NAM or 1α(OH)D3 effectively obstructed these inflammatory signals. Remarkably, NAM showed superior beneficial cardioprotective properties over 1α(OH)D3. Both NAM and 1α(OH)D3 efficiently attenuated DOX-cardiomyopathy mainly via preserving Ca2+ homeostasis and diminishing apoptotic and inflammatory pathways. NAM definitely exhibited effective cardioprotective capabilities over 1α(OH)D3.
Collapse
Affiliation(s)
- Heba H Awad
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, October University for Modern Sciences & Arts (MSA University), Cairo, Egypt
| | - Marwa O El-Derany
- Department of Biochemistry, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Eman M Mantawy
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Haidy E Michel
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Mona M El-Naa
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, University of Sadat City, Sadat City, Egypt
| | | | - Amany I El-Brairy
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, October University for Modern Sciences & Arts (MSA University), Cairo, Egypt
| | - Ebtehal El-Demerdash
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt.
| |
Collapse
|
15
|
Milentyeva I, Le V, Kozlova O, Velichkovich N, Fedorova A, Loseva A, Yustratov V. Secondary metabolites in in vitro cultures of Siberian medicinal plants: Content, antioxidant properties, and antimicrobial characteristics. FOODS AND RAW MATERIALS 2021. [DOI: 10.21603/2308-4057-2021-1-153-163] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Introduction. Wild-crafting leads to the local extinction of many medicinal plants that are rich in phenolic substances. In vitro cultivation of cells and organs of higher plants can be the optimal solution to this problem. The research objective was to study the biosynthetic activity of in vitro extracts of wild Siberian plants.
Study objects and methods. The study featured callus, cell suspension, and hairy root extracts of such Siberian medicinal plants as Eleutherococcus senticosus, Codonopsis pilosula, Platanthera bifolia, and Saposhnikovia divaricata. They were obtained by in vitro cultivation using modified nutrient media of Murashige and Skoog and Gamborg. The content of secondary metabolites was studied using the methods of thin-layer and high-performance liquid chromatography. A set of in vitro experiments tested the antioxidant and antimicrobial activity of the extracts.
Results and discussion. All the samples demonstrated a high content of secondary metabolites of phenolic nature. Flavonoglycosides, apigenin, and rutin were found to be the predominant biologically active substances in the callus extracts. Flavonoglycosides dominated in the suspension extracts. The root extracts contained more caffeic acid, rutin, ecdysteroids, quercetin, apigenin, cardiofolin, and coleofolide than the callus and suspension cultures. The list of prevailing secondary metabolites in the root extracts included rutin, apigenin, coleofolide, and quercetin. All the extracts showed antimicrobial and antioxidant activity.
Conclusion. All the extracts demonstrated good antioxidant and antimicrobial properties. Therefore, they can be used for the production of pharmaceuticals and biologically active food supplements as they can be helpful against infectious diseases, as well as oncological, cardiovascular, and neurodegenerative diseases linked to oxidative stress.
Collapse
|
16
|
Mei S, Ma H, Chen X. Anticancer and anti-inflammatory properties of mangiferin: A review of its molecular mechanisms. Food Chem Toxicol 2021; 149:111997. [DOI: 10.1016/j.fct.2021.111997] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 01/04/2021] [Accepted: 01/11/2021] [Indexed: 02/07/2023]
|
17
|
Liu C, Ma X, Zhuang J, Liu L, Sun C. Cardiotoxicity of doxorubicin-based cancer treatment: What is the protective cognition that phytochemicals provide us? Pharmacol Res 2020; 160:105062. [DOI: 10.1016/j.phrs.2020.105062] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 06/29/2020] [Accepted: 06/30/2020] [Indexed: 12/11/2022]
|
18
|
Naraki K, Rezaee R, Mashayekhi-Sardoo H, Hayes AW, Karimi G. Mangiferin offers protection against deleterious effects of pharmaceuticals, heavy metals, and environmental chemicals. Phytother Res 2020; 35:810-822. [PMID: 32961631 DOI: 10.1002/ptr.6864] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 07/27/2020] [Accepted: 08/16/2020] [Indexed: 02/06/2023]
Abstract
Mangiferin (MGF) is a polyphenolic C-glucosyl-xanthone extracted from the mango tree (Mangifera indica). MGF has shown diverse effects such as antioxidant, antiapoptotic, radical scavenging, and chelating properties. MGF also has been shown to modulate inflammatory pathways. In this review, we examined and evaluated the literature dealing with the protective effects of MGF against various chemical toxicities. Our literature review indicated that the MGF-induced protective effects against the toxic effects of pharmaceuticals, heavy metals and environmental chemicals were mainly mediated via suppression of lipid peroxidation, oxidative stress (along with enhancement of the antioxidant enzyme), inflammatory factors (TNF-α, IL-6, IL-10, and IL-12), and activation of PI3K/Akt and the MAPK survival signaling pathway.
Collapse
Affiliation(s)
- Karim Naraki
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ramin Rezaee
- Clinical Research Unit, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Habibeh Mashayekhi-Sardoo
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - A Wallace Hayes
- College of Public Health, University of South Florida, Tampa, Florida, USA
| | - Gholamreza Karimi
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.,Pharmaceutical Research Center, Institute of Pharmaceutical Technology, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
19
|
|
20
|
Ma W, Wei S, Zhang B, Li W. Molecular Mechanisms of Cardiomyocyte Death in Drug-Induced Cardiotoxicity. Front Cell Dev Biol 2020; 8:434. [PMID: 32582710 PMCID: PMC7283551 DOI: 10.3389/fcell.2020.00434] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Accepted: 05/08/2020] [Indexed: 01/08/2023] Open
Abstract
Homeostatic regulation of cardiomyocytes plays a crucial role in maintaining the normal physiological activity of cardiac tissue. Severe cardiotoxicity results in cardiac diseases including but not limited to arrhythmia, myocardial infarction and myocardial hypertrophy. Drug-induced cardiotoxicity limits or forbids further use of the implicated drugs. Such drugs that are currently available in the clinic include anti-tumor drugs (doxorubicin, cisplatin, trastuzumab, etc.), antidiabetic drugs (rosiglitazone and pioglitazone), and an antiviral drug (zidovudine). This review focused on cardiomyocyte death forms and related mechanisms underlying clinical drug-induced cardiotoxicity, including apoptosis, autophagy, necrosis, necroptosis, pryoptosis, and ferroptosis. The key proteins involved in cardiomyocyte death signaling were discussed and evaluated, aiming to provide a theoretical basis and target for the prevention and treatment of drug-induced cardiotoxicity in the clinical practice.
Collapse
Affiliation(s)
- Wanjun Ma
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China.,Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Shanshan Wei
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China.,Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Bikui Zhang
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China.,Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Wenqun Li
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China.,Institute of Clinical Pharmacy, Central South University, Changsha, China
| |
Collapse
|
21
|
Mittal S, Iqubal MK, Iqbal B, Gupta MM, Ali J, Baboota S. A pervasive scientific overview on mangiferin in the prevention and treatment of various diseases with preclinical and clinical updates. JOURNAL OF COMPLEMENTARY & INTEGRATIVE MEDICINE 2020; 18:9-21. [PMID: 32427121 DOI: 10.1515/jcim-2019-0250] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 12/22/2019] [Indexed: 01/24/2023]
Abstract
Natural products are increasing used in preventing and treating various diseases. Mangiferin belongs to the xanthone family, and has potential antiangiogenic, anticancer, immunomodulatory and anti-inflammatory activity along with the antioxidant activity. It is also used in the treatment of cardiac problem, diabetes and neurodegenerative disease. Finding of various researchers proves that mangiferin has a broad spectrum therapeutic application. Motive of this review is to describe the various studies performed on mangiferin for its different pharmacological activities. It also discusses various challenges associated with mangiferin such as stability and bioavailability. Strategies and approaches to improve bioavailability of mangiferin have also been discussed. Both research and review articles were used to write the manuscript. They were collected from various search engines like Pub Med, Science Direct and Google Scholar, using keywords like mangiferin, polyphenol, bioavailability enhancement, solubility enhancement, and antioxidant. Mangiferin being a potent antioxidant is effective in the treatment of various diseases. With novel drug delivery approaches we can overcome poor solubility and bioavailability problem which eventually can result to better utilisation of mangiferin in treating a variety of diseases and make mangiferin a revolutionary drug.
Collapse
Affiliation(s)
- Saurabh Mittal
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Mohammad Kashif Iqubal
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Babar Iqbal
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Madan Mohan Gupta
- School of Pharmacy, Faculty of Medical Science, The University of the West Indies, St. Augustine, Trinidad & Tobago, West Indies
| | - Javed Ali
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Sanjula Baboota
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| |
Collapse
|
22
|
Haybar H, Shahrabi S, Rezaeeyan H, Jodat H, Saki N. Strategies to inhibit arsenic trioxide-induced cardiotoxicity in acute promyelocytic leukemia. J Cell Physiol 2019; 234:14500-14506. [PMID: 30770558 DOI: 10.1002/jcp.28292] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Revised: 12/19/2018] [Accepted: 12/20/2018] [Indexed: 02/06/2023]
Abstract
OBJECTIVE Arsenic trioxide (ATO) is a drug commonly used for the treatment of acute promyelocytic leukemia (APL). Although ATO has been shown to cause significant improvement in patients, it is associated with serious side effects, which sometimes lead to the patient's death. In this review paper, we examine the reports of ATO-induced cardiotoxicity in APL patients and evaluate the strategies to reduce the incidence of such toxicity. METHODS The key search terms were "arsenic trioxide," "acute promyelocytic leukemia," "cardiotoxicity," "molecular pathway," and "biomarker." RESULTS Studies have indicated the involvement of several molecular pathways in ATO-induced cardiotoxicity. These pathways increase the production of reactive oxygen species by interfering with intracellular calcium homeostasis as well as impairing the transfer of calcium into endoplasmic reticulum and mitochondria. On the other hand, increasing or decreasing expressions of some microRNAs (miRs) have been shown to play a role in cardiotoxicity. CONCLUSION Finally, it can be stated that given the essential role of molecular pathways in cardiotoxicity and considering the fact these pathways impair the regulation of miRs expression, identification of molecular pathways involved in ATO-induced cardiotoxicity aimed at targeting miRs could be a new therapeutic strategy to prevent cardiotoxicity.
Collapse
Affiliation(s)
- Habib Haybar
- Atherosclerosis Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Saeid Shahrabi
- Department of Biochemistry and Hematology, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Hadi Rezaeeyan
- Thalassemia and Hemoglobinopathy Research Center, Research Institute of Health, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Hosein Jodat
- Thalassemia and Hemoglobinopathy Research Center, Research Institute of Health, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Najmaldin Saki
- Thalassemia and Hemoglobinopathy Research Center, Research Institute of Health, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
23
|
Wenningmann N, Knapp M, Ande A, Vaidya TR, Ait-Oudhia S. Insights into Doxorubicin-induced Cardiotoxicity: Molecular Mechanisms, Preventive Strategies, and Early Monitoring. Mol Pharmacol 2019; 96:219-232. [PMID: 31164387 DOI: 10.1124/mol.119.115725] [Citation(s) in RCA: 226] [Impact Index Per Article: 37.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 06/03/2019] [Indexed: 11/22/2022] Open
Abstract
Doxorubicin (DOX) is one of the most effective anticancer drugs to treat various forms of cancers; however, its therapeutic utility is severely limited by its associated cardiotoxicity. Despite the enormous amount of research conducted in this area, the exact molecular mechanisms underlying DOX toxic effects on the heart are still an area that warrants further investigations. In this study, we reviewed literature to gather the best-known molecular pathways related to DOX-induced cardiotoxicity (DIC). They include mechanisms dependent on mitochondrial dysfunction such as DOX influence on the mitochondrial electron transport chain, redox cycling, oxidative stress, calcium dysregulation, and apoptosis pathways. Furthermore, we discuss the existing strategies to prevent and/or alleviate DIC along with various techniques available for therapeutic drug monitoring (TDM) in cancer patients treated with DOX. Finally, we propose a stepwise flowchart for TDM of DOX and present our perspective at curtailing this deleterious side effect of DOX.
Collapse
Affiliation(s)
- Nadine Wenningmann
- Center for Pharmacometrics and Systems Pharmacology, Department of Pharmaceutics, College of Pharmacy, University of Florida, Orlando, Florida
| | - Merle Knapp
- Center for Pharmacometrics and Systems Pharmacology, Department of Pharmaceutics, College of Pharmacy, University of Florida, Orlando, Florida
| | - Anusha Ande
- Center for Pharmacometrics and Systems Pharmacology, Department of Pharmaceutics, College of Pharmacy, University of Florida, Orlando, Florida
| | - Tanaya R Vaidya
- Center for Pharmacometrics and Systems Pharmacology, Department of Pharmaceutics, College of Pharmacy, University of Florida, Orlando, Florida
| | - Sihem Ait-Oudhia
- Center for Pharmacometrics and Systems Pharmacology, Department of Pharmaceutics, College of Pharmacy, University of Florida, Orlando, Florida
| |
Collapse
|
24
|
Mangiferin Attenuates Myocardial Ischemia-Reperfusion Injury via MAPK/Nrf-2/HO-1/NF- κB In Vitro and In Vivo. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:7285434. [PMID: 31249649 PMCID: PMC6535818 DOI: 10.1155/2019/7285434] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 01/20/2019] [Accepted: 03/14/2019] [Indexed: 01/10/2023]
Abstract
The aim of this study was to investigate the cardioprotective effect of mangiferin (MAF) in vitro and in vivo. Oxidative stress and inflammatory injury were detected in coronary artery ligation in rats and also in hypoxia-reoxygenation- (H/R-) induced H9c2 cells. MAF inhibited myocardial oxidative stress and proinflammatory cytokines in rats with coronary artery occlusion. The ST segment of MAF treatment groups also resumed. Triphenyltetrazolium chloride (TTC) staining and pathological analysis showed that MAF could significantly reduce myocardial injury. In vitro data showed that MAF could improve hypoxia/reoxygenation- (H/R-) induced H9c2 cell activity. In addition, MAF could significantly reduce oxidative stress and inflammatory pathway protein expression in H/R-induced H9c2 cells. This study has clarified the protective effects of MAF on myocardial injury and also confirmed that oxidative stress and inflammation were involved in the myocardial ischemia-reperfusion injury (I/R) model.
Collapse
|
25
|
Rauf A, Imranb M, Patel S. Mangiferin: A phytochemical with panacea potential. Biomed Pharmacother 2017; 96:1562-1564. [DOI: 10.1016/j.biopha.2017.07.031] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2017] [Revised: 06/29/2017] [Accepted: 07/06/2017] [Indexed: 01/17/2023] Open
|
26
|
Dostalova S, Vasickova K, Hynek D, Krizkova S, Richtera L, Vaculovicova M, Eckschlager T, Stiborova M, Heger Z, Adam V. Apoferritin as an ubiquitous nanocarrier with excellent shelf life. Int J Nanomedicine 2017; 12:2265-2278. [PMID: 28392686 PMCID: PMC5373844 DOI: 10.2147/ijn.s130267] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Due to many adverse effects of conventional chemotherapy, novel methods of targeting drugs to cancer cells are being investigated. Nanosize carriers are a suitable platform for this specific delivery. Herein, we evaluated the long-term stability of the naturally found protein nanocarrier apoferritin (Apo) with encapsulated doxorubicin (Dox). The encapsulation was performed using Apo’s ability to disassemble reversibly into its subunits at low pH (2.7) and reassemble in neutral pH (7.2), physically entrapping drug molecules in its cavity (creating ApoDox). In this study, ApoDox was prepared in water and phosphate-buffered saline and stored for 12 weeks in various conditions (−20°C, 4°C, 20°C, and 37°C in dark, and 4°C and 20°C under ambient light). During storage, a very low amount of prematurely released drug molecules were detected (maximum of 7.5% for ApoDox prepared in PBS and 4.4% for ApoDox prepared in water). Fourier-transform infrared spectra revealed no significant differences in any of the samples after storage. Most of the ApoDox prepared in phosphate-buffered saline and ApoDox prepared in water and stored at −20°C formed very large aggregates (up to 487% of original size). Only ApoDox prepared in water and stored at 4°C showed no significant increase in size or shape. Although this storage caused slower internalization to LNCaP prostate cancer cells, ApoDox (2.5 μM of Dox) still retained its ability to inhibit completely the growth of 1.5×104 LNCaP cells after 72 hours. ApoDox stored at 20°C and 37°C in water was not able to deliver Dox inside the nucleus, and thus did not inhibit the growth of the LNCaP cells. Overall, our study demonstrates that ApoDox has very good stability over the course of 12 weeks when stored properly (at 4°C), and is thus suitable for use as a nanocarrier in the specific delivery of anticancer drugs to patients.
Collapse
Affiliation(s)
- Simona Dostalova
- Department of Chemistry and Biochemistry, Mendel University in Brno; Central European Institute of Technology, Brno University of Technology, Brno
| | | | - David Hynek
- Department of Chemistry and Biochemistry, Mendel University in Brno; Central European Institute of Technology, Brno University of Technology, Brno
| | - Sona Krizkova
- Department of Chemistry and Biochemistry, Mendel University in Brno; Central European Institute of Technology, Brno University of Technology, Brno
| | - Lukas Richtera
- Department of Chemistry and Biochemistry, Mendel University in Brno; Central European Institute of Technology, Brno University of Technology, Brno
| | - Marketa Vaculovicova
- Department of Chemistry and Biochemistry, Mendel University in Brno; Central European Institute of Technology, Brno University of Technology, Brno
| | - Tomas Eckschlager
- Department of Pediatric Hematology and Oncology, Second Faculty of Medicine, University Hospital Motol, Charles University
| | - Marie Stiborova
- Department of Biochemistry, Faculty of Science, Charles University, Prague, Czech Republic
| | - Zbynek Heger
- Department of Chemistry and Biochemistry, Mendel University in Brno; Central European Institute of Technology, Brno University of Technology, Brno
| | - Vojtech Adam
- Department of Chemistry and Biochemistry, Mendel University in Brno; Central European Institute of Technology, Brno University of Technology, Brno
| |
Collapse
|
27
|
Suchal K, Malik S, Khan SI, Malhotra RK, Goyal SN, Bhatia J, Kumari S, Ojha S, Arya DS. Protective effect of mangiferin on myocardial ischemia-reperfusion injury in streptozotocin-induced diabetic rats: role of AGE-RAGE/MAPK pathways. Sci Rep 2017; 7:42027. [PMID: 28181586 PMCID: PMC5299420 DOI: 10.1038/srep42027] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 01/06/2017] [Indexed: 01/03/2023] Open
Abstract
Hyperglycemia induced advanced glycation end products-receptor for advanced glycation end products (AGE-RAGE) activation is thought to involve in the development of cardiovascular disease in diabetics. Activation of AGE-RAGE axis results in the oxidative stress and inflammation. Mangiferin is found in the bark of mango tree and is known to treat diseases owing to its various biological activities. Thus, this study was designed to evaluate the effect of mangiferin in ischemia-reperfusion (IR) induced myocardial injury in diabetic rats. A single injection of STZ (70 mg/kg; i.p.) was injected to male albino Wistar rats to induce diabetes. After confirmation of diabetes, rats were administered vehicle (2 ml/kg; i.p.) and mangiferin (40 mg/kg; i.p.) for 28 days. On 28th day, left anterior descending coronary artery was ligated for 45 min and then reperfused for 60 min. Mangiferin treatment significantly improved cardiac function, restored antioxidant status, reduced inflammation, apoptosis and maintained myocardial architecture. Furthermore, mangiferin significantly inhibited the activation of AGE-RAGE axis, c-Jun N-terminal kinase (JNK) and p38 and increased the expression of extracellular regulated kinase 1/2 (ERK1/2) in the myocardium. Thus, mangiferin attenuated IR injury in diabetic rats by modulation of AGE-RAGE/MAPK pathways which further prevented oxidative stress, inflammation and apoptosis in the myocardium.
Collapse
Affiliation(s)
- Kapil Suchal
- Department of Pharmacology, Cardiovascular Research Laboratory, All India Institute of Medical Sciences, New Delhi-110029, India
| | - Salma Malik
- Department of Pharmacology, Cardiovascular Research Laboratory, All India Institute of Medical Sciences, New Delhi-110029, India
| | - Sana Irfan Khan
- Department of Pharmacology, Cardiovascular Research Laboratory, All India Institute of Medical Sciences, New Delhi-110029, India
| | - Rajiv Kumar Malhotra
- Department of Pharmacology, Cardiovascular Research Laboratory, All India Institute of Medical Sciences, New Delhi-110029, India
| | - Sameer N Goyal
- Department of Pharmacology, R.C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Maharashtra-425405, India
| | - Jagriti Bhatia
- Department of Pharmacology, Cardiovascular Research Laboratory, All India Institute of Medical Sciences, New Delhi-110029, India
| | - Santosh Kumari
- Indian Agricultural Research Institute, New Delhi 110012, India
| | - Shreesh Ojha
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, Abu Dhabi 17666, United Arab Emirates
| | - Dharamvir Singh Arya
- Department of Pharmacology, Cardiovascular Research Laboratory, All India Institute of Medical Sciences, New Delhi-110029, India
| |
Collapse
|
28
|
Cardioprotective Potentials of Plant-Derived Small Molecules against Doxorubicin Associated Cardiotoxicity. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:5724973. [PMID: 27313831 PMCID: PMC4893565 DOI: 10.1155/2016/5724973] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 04/02/2016] [Accepted: 04/20/2016] [Indexed: 12/17/2022]
Abstract
Doxorubicin (DOX) is a potent and widely used anthracycline antibiotic for the treatment of several malignancies. Unfortunately, the clinical utility of DOX is often restricted due to the elicitation of organ toxicity. Particularly, the increased risk for the development of dilated cardiomyopathy by DOX among the cancer survivors warrants major attention from the physicians as well as researchers to develop adjuvant agents to neutralize the noxious effects of DOX on the healthy myocardium. Despite these pitfalls, the use of traditional cytotoxic drugs continues to be the mainstay treatment for several types of cancer. Recently, phytochemicals have gained attention for their anticancer, chemopreventive, and cardioprotective activities. The ideal cardioprotective agents should not compromise the clinical efficacy of DOX and should be devoid of cumulative or irreversible toxicity on the naïve tissues. Furthermore, adjuvants possessing synergistic anticancer activity and quelling of chemoresistance would significantly enhance the clinical utility in combating DOX-induced cardiotoxicity. The present review renders an overview of cardioprotective effects of plant-derived small molecules and their purported mechanisms against DOX-induced cardiotoxicity. Phytochemicals serve as the reservoirs of pharmacophore which can be utilized as templates for developing safe and potential novel cardioprotective agents in combating DOX-induced cardiotoxicity.
Collapse
|