1
|
Bampidis V, Azimonti G, Bastos MDL, Christensen H, Durjava M, Dusemund B, Kouba M, López‐Alonso M, López Puente S, Marcon F, Mayo B, Pechová A, Petkova M, Ramos F, Villa RE, Woutersen R, Brantom P, Chesson A, Schlatter J, Westendorf J, Manini P, Pizzo F, Dusemund B. Safety and efficacy of a feed additive consisting of an essential oil obtained from the fruit of Carum carvi L. (caraway oil) for all animal species (FEFANA asbl). EFSA J 2024; 22:e8906. [PMID: 39086459 PMCID: PMC11289620 DOI: 10.2903/j.efsa.2024.8906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2024] Open
Abstract
Following a request from the European Commission, EFSA was asked to deliver a scientific opinion on the safety and efficacy of an essential oil obtained from the fruit of Carum carvi L. (caraway oil), when used as a sensory additive in feed and water for drinking for all animal species. The EFSA Panel on Additives and Products or Substances used in Animal Feed (FEEDAP) Panel concluded that the use of caraway oil is of no concern up to the following concentrations in complete feed: 9 mg/kg for chickens for fattening, 13 mg/kg for laying hens, 12 mg/kg for turkeys for fattening, 16 mg/kg for piglets, 19 mg/kg for pigs for fattening, 24 mg/kg for sows, 35 mg/kg for veal calves (milk replacer), 11 mg/kg for cattle for fattening, 10 mg/kg for dairy cows, sheep, goats, horses and rabbits, 25 mg/kg for salmonids and dogs. These conclusions were extrapolated to other physiologically related species. For cats, ornamental fish and other species, no conclusion can be drawn. The use of caraway oil in animal feed under the proposed conditions of use is safe for the consumer and the environment. The additive under assessment should be considered as an irritant to skin and eyes, and as a respiratory and skin sensitiser. When handling the essential oil, exposure of unprotected users to perillaldehyde may occur. Therefore, to reduce the risk, the exposure of the users should be minimised. Since C. carvi and its preparations were recognised to flavour food and its function in feed would be essentially the same as that in food, no further demonstration of efficacy was considered necessary.
Collapse
|
2
|
Bampidis V, Azimonti G, Bastos MDL, Christensen H, Durjava M, Kouba M, López‐Alonso M, López Puente S, Marcon F, Mayo B, Pechová A, Petkova M, Ramos F, Villa RE, Woutersen R, Brantom P, Chesson A, Schlatter J, Westendorf J, Dirven Y, Manini P, Pizzo F, Dusemund B. Safety and efficacy of feed additives consisting of essential oils from the fruit and stems of Foeniculum vulgare Mill. ssp. vulgare: Bitter fennel oil for use in all animal species and sweet fennel oil for use in dogs and cats (FEFANA asbl). EFSA J 2023; 21:e08348. [PMID: 37908453 PMCID: PMC10613937 DOI: 10.2903/j.efsa.2023.8348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2023] Open
Abstract
Following a request from the European Commission, EFSA was asked to deliver a scientific opinion on the safety and efficacy of essential oils from fruit and stems of Foeniculum vulgare Mill. (bitter fennel oil and sweet fennel oil), when used as sensory additives (flavourings). For long-living and reproductive animals, the Panel on Additives and Products or Substances used in Animal Feed (FEEDAP) considered of low concern the use of bitter fennel oil (with a content of estragole up to 6.1%) at the proposed use level in complete feed: 0.6 mg/kg for laying hens and rabbits, 1.0 mg/kg for sows and dairy cows, 1.5 mg/kg for sheep/goats, horses and cats, 1.9 mg/kg for dogs and 7.1 mg/kg for ornamental fish. For short-living animals (animals for fattening), the Panel had no safety concern when bitter fennel oil is used at the proposed use level in complete feed of 18.2 mg/kg for chickens for fattening, 24.3 mg/kg for turkeys for fattening and 25 mg/kg for piglets, pigs for fattening, veal calves, cattle for fattening, sheep/goats, horses, rabbits and salmon. These conclusions were extrapolated to other physiologically related species. The use of sweet fennel oil (with a content of estragole up to 5.0%) was considered of low concern at the proposed use level in complete feed of 2.3 mg/kg for dogs and 1.9 mg/kg cats. The use of bitter fennel oil in animal feed is expected to be of no concern for consumers and the environment. The additives under assessment should be considered as irritants to skin and eyes, and as dermal and respiratory sensitisers. Due to the high concentration of estragole (> 1%), fennel oils are classified as suspected of causing genetic defects and of causing cancer and should be handled accordingly. Since the fruit of F. vulgare Mill. ssp. vulgare and its preparations are recognised to flavour food, no further demonstration of efficacy was necessary.
Collapse
|
3
|
Gooderham NJ, Cohen SM, Eisenbrand G, Fukushima S, Guengerich FP, Hecht SS, Rietjens IMCM, Rosol TJ, Davidsen JM, Harman CL, Kelly SE, Taylor SV. FEMA GRAS assessment of natural flavor complexes: Sage oil, Orris Root Extract and Tagetes Oil and related flavoring ingredients. Food Chem Toxicol 2023; 179:113940. [PMID: 37487858 DOI: 10.1016/j.fct.2023.113940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 07/09/2023] [Accepted: 07/09/2023] [Indexed: 07/26/2023]
Abstract
In recent years, the Expert Panel of the Flavor and Extract Manufacturers Association (FEMA) has conducted a program to re-evaluate the safety of natural flavor complexes (NFCs) used as flavor ingredients. This publication, twelfth in the series, details the re-evaluation of NFCs whose constituent profiles are characterized by alicyclic or linear ketones. In its re-evaluation, the Expert Panel applies a scientific constituent-based procedure for the safety evaluation of NFCs in commerce using a congeneric group approach. Estimated intakes of each congeneric group of the NFC are evaluated using the well-established and conservative Threshold of Toxicological Concern (TTC) approach. In addition, studies on the toxicity and genotoxicity of members of the congeneric groups and the NFCs under evaluation are reviewed. The scope of the safety evaluation of the NFCs contained herein does not include added use in dietary supplements or any products other than food. Thirteen (13) NFCs derived from the Boronia, Cinnamomum, Thuja, Ruta, Salvia, Tagetes, Hyssopus, Iris, Perilla and Artemisia genera are affirmed as generally recognized as safe (GRAS) under conditions of their intended use as flavor ingredients based on an evaluation of each NFC and the constituents and congeneric groups therein.
Collapse
Affiliation(s)
- Nigel J Gooderham
- Dept. of Metabolism, Digestion, Reproduction, Imperial College London, Sir Alexander Fleming Building, London, SW7 2AZ, United Kingdom
| | - Samuel M Cohen
- Havlik-Wall Professor of Oncology, Dept. of Pathology and Microbiology, University f Nebraska Medical Center, 983135 Nebraska Medical Center, Omaha, NE, 68198-3135, USA
| | - Gerhard Eisenbrand
- University of Kaiserslautern, Kühler Grund 48/1, 69126, Heidelberg, Germany
| | - Shoji Fukushima
- Japan Bioassay Research Center, 2445 Hirasawa, Hadano, Kanagawa, 257-0015, Japan
| | - F Peter Guengerich
- Tadashi Inagami Professor of Biochemistry, Dept. of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, 37232-0146, USA
| | - Stephen S Hecht
- Wallin Professor of Cancer Prevention, Masonic Cancer Center and Dept. of Laboratory Medicine and Pathology, Cancer and Cardiovascular Research Building, 2231 6th St., S.E., Minneapolis, MN, 55455, USA
| | - Ivonne M C M Rietjens
- Division of Toxicology, Wageningen University, Stippeneng 4, 6708 WE, Wageningen, the Netherlands
| | - Thomas J Rosol
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, 1 Ohio University, Athens, OH, 45701, USA
| | - Jeanne M Davidsen
- Flavor and Extract Manufacturers Association, 1101 17th Street, N.W., Suite 700, Washington, D.C., 20036, USA
| | - Christie L Harman
- Flavor and Extract Manufacturers Association, 1101 17th Street, N.W., Suite 700, Washington, D.C., 20036, USA
| | - Shannen E Kelly
- Flavor and Extract Manufacturers Association, 1101 17th Street, N.W., Suite 700, Washington, D.C., 20036, USA
| | - Sean V Taylor
- Scientific Secretary to the FEMA Expert Panel, 1101 17th Street, N.W., Suite 700, Washington, D.C., 20036, USA.
| |
Collapse
|
4
|
Bampidis V, Azimonti G, Bastos MDL, Christensen H, Durjava M, Kouba M, López‐Alonso M, López Puente S, Marcon F, Mayo B, Pechová A, Petkova M, Ramos F, Sanz Y, Villa RE, Woutersen R, Brantom P, Chesson A, Schlatter J, Westendorf J, Manini P, Dusemund B. Safety and efficacy of a feed additive consisting of an essential oil from the seeds of Myristica fragrans Houtt. (nutmeg oil) for all animal species (FEFANA asbl). EFSA J 2023; 21:e08066. [PMID: 37333988 PMCID: PMC10273060 DOI: 10.2903/j.efsa.2023.8066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2023] Open
Abstract
Following a request from the European Commission, EFSA was asked to deliver a scientific opinion on the safety and efficacy of an essential oil from the seeds of Myristica fragrans Houtt. (nutmeg oil), when used as a sensory additive in feed and water for drinking for all animal species. The additive contains myristicin (up to 12%), safrole (2.30%), elemicin (0.40%) and methyleugenol (0.33%). For long-living and reproductive animals, the Panel on Additives and Products or Substances used in Animal Feed (FEEDAP) considered of low concern the use of the additive in complete feed at 0.2 mg/kg for laying hens and rabbits, 0.3 mg/kg for sows and dairy cows, 0.5 mg/kg for sheep/goats, horses and cats, 0.6 mg/kg for dogs and 2.5 mg/kg for ornamental fish. For short-living animals, the Panel had no safety concern when the additive is used at the maximum proposed use level of 10 mg/kg for veal calves, cattle for fattening, sheep/goats, horses for meat production, and salmon and for the other species, at 3.3 mg/kg for turkeys for fattening, 2.8 mg/kg chickens for fattening, 5.0 mg/kg for piglets, 6.0 mg/kg for pigs for fattening and 4.4 mg/kg for rabbits for meat production. These conclusions were extrapolated to other physiologically related species. For any other species, the additive was considered of low concern at 0.2 mg/kg. The use of nutmeg oil in animal feed was expected to be of no concern for consumers and the environment. The additive should be considered as irritant to skin and eyes and as a skin and respiratory sensitiser. Based on the presence of safrole, nutmeg oil is classified as carcinogen (category 1B) and handled accordingly. Since nutmeg oil was recognised to flavour food and its function in feed would be the same, no further demonstration of efficacy was considered necessary.
Collapse
|
5
|
FEMA GRAS assessment of natural flavor complexes: Allspice, anise, fennel-derived and related flavoring ingredients. Food Chem Toxicol 2023; 174:113643. [PMID: 36739890 DOI: 10.1016/j.fct.2023.113643] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/26/2023] [Accepted: 01/28/2023] [Indexed: 02/05/2023]
Abstract
The FEMA Expert Panel program to re-evaluate the safety of natural flavor complexes (NFCs) used as flavoring ingredients in food has resulted in the publication of an updated constituent-based procedure as well as publications on the safety evaluation of many botanical-derived NFCs. This publication, ninth in the series and related to the ninth publication, describes the affirmation of the generally recognized as safe (GRAS) status for NFCs with propenylhydroxybenzene and allylalkoxybenzene constituents under their conditions of intended use as flavoring ingredients added to food. The Panel's procedure applies the threshold of toxicological concern (TTC) concept and evaluates relevant data on absorption, metabolism, genotoxic potential and toxicology for the NFCs themselves and their respective constituent congeneric groups. For NFCs containing allylalkoxybenzene constituent(s) with suspected genotoxic potential, the estimated intake of the individual constituent is compared to the TTC for compounds with structural alerts for genotoxicity and if exceeded, a margin of exposure is calculated using BMDL10 values derived from benchmark dose analyses using Bayesian model averaging, as presented in the tenth article of the series. Safety evaluations for NFCs derived from allspice, anise seed, star anise, sweet fennel seed and pimento leaves were conducted and their GRAS status was affirmed for use as flavoring ingredients. The scope of the safety evaluation contained herein does not include added use in dietary supplements or any products other than food.
Collapse
|
6
|
Al-Zereini WA, Al-Trawneh IN, Al-Qudah MA, TumAllah HM, Abudayeh ZH, Hijazin T. Antibacterial, antioxidant, and cytotoxic activities of Syzygium aromaticum (L.) Merr. & Perry essential oil with identification of its chemical constituents. Z NATURFORSCH C 2023; 78:105-112. [PMID: 35599246 DOI: 10.1515/znc-2022-0056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 04/30/2022] [Indexed: 11/15/2022]
Abstract
Aromatic plants embrace volatile compounds with efficiency in treating different diseases. In Jordan, Syzygium aromaticum flower buds (clove) are extensively used as folk medicine without awareness of its bio-safe dosage. Herein, clove buds were hydrodistilled using the Clevenger apparatus, and the resulting essential oil (CEO) was analyzed using Gas Chromatography-Mass Spectrometry (GC-MS). The antibacterial activity was evaluated against tested bacterial strains by agar diffusion test and micro-broth dilution assay. The antioxidant capacity was assessed using DPPH radical scavenging assay, while the cytotoxic potency was unraveled by determination of its anti-proliferative activity against MDA-MB-231 breast adenocarcinoma and normal Vero cell lines. CEO yield was 5.7 ± 1.3% (w/w); encompassed 24 volatile ingredients with eugenol as the principal compound (73.41%). The CEO inhibited the growth of both Gram-positive and Gram-negative bacterial test strains, causing the formation of 13.7 ± 1.5-17.3 ± 0.6 mm and 11.7 ± 1.5-20.7 ± 1.2 mm inhibition zones, respectively with MIC 1.25-5 μL/mL. Moreover, it showed antioxidant activity with IC50 0.0016 ± 0.0001 μL/mL (1.6 ± 0.1 μg/mL, 2.98 ± 0.4 µg Trolox®/µg CEO). Intriguingly, the CEO was cytotoxic against both cancerous and noncancerous cell lines at IC50 of 0.25 ± 0.02 μL/mL and 0.18 ± 0.01 μL/mL, respectively. Herein results unveil the potential application of CEO as a pharmaceutical remedy with considering its bio-safe dosage.
Collapse
Affiliation(s)
- Wael A Al-Zereini
- Department of Biological Sciences, Faculty of Science, Mutah University, Al-Karak 61710, Jordan
| | | | - Mahmoud A Al-Qudah
- Department of Chemistry, Faculty of Science, Yarmouk University, Irbid 21163, Jordan
| | - Heba M TumAllah
- Department of Biological Sciences, Faculty of Science, Mutah University, Al-Karak 61710, Jordan
| | - Zead H Abudayeh
- Department of applied pharmaceutical sciences, Faculty of Pharmacy, Al-Isra Private University, 11622 Amman, Jordan
| | - Tahani Hijazin
- Department of Biological Sciences, Faculty of Science, Mutah University, Al-Karak 61710, Jordan
| |
Collapse
|
7
|
Davidsen JM, Cohen SM, Eisenbrand G, Fukushima S, Gooderham NJ, Guengerich FP, Hecht SS, Rietjens IMCM, Rosol TJ, Harman CL, Ramanan D, Taylor SV. FEMA GRAS assessment of natural flavor complexes: Asafetida oil, garlic oil and onion oil. Food Chem Toxicol 2023; 173:113580. [PMID: 36610475 DOI: 10.1016/j.fct.2022.113580] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 12/09/2022] [Accepted: 12/19/2022] [Indexed: 01/06/2023]
Abstract
The Expert Panel of the Flavor and Extract Manufacturers Association (FEMA) applies its procedure for the safety evaluation of natural flavor complexes (NFCs) to re-evaluate the safety of Asafetida Oil (Ferula assa-foetida L.) FEMA 2108, Garlic Oil (Allium sativum L.) FEMA 2503 and Onion Oil (Allium cepa L.) FEMA 2817 for use as flavoring in food. This safety evaluation is part of a series of evaluations of NFCs for use as flavoring ingredients conducted by the Expert Panel that applies a scientific procedure published in 2005 and updated in 2018. Using a group approach that relies on a complete chemical characterization of the NFC intended for commerce, the constituents of each NFC are organized into well-defined congeneric groups and the estimated intake of each constituent congeneric group is evaluated using the conservative threshold of toxicological concern (TTC) concept. Data on the metabolism, genotoxic potential and toxicology for each constituent congeneric group are reviewed as well as studies on each NFC. Based on the safety evaluation, Asafetida Oil (Ferula assa-foetida L.), Garlic Oil (Allium sativum L.) and Onion Oil (Allium cepa L.) were affirmed as generally recognized as safe (GRASa) under their conditions of intended use as flavor ingredients.
Collapse
Affiliation(s)
- Jeanne M Davidsen
- Flavor and Extract Manufacturers Association, 1101 17th Street, N.W., Suite 700, Washington, DC, 20036, USA
| | - Samuel M Cohen
- Havlik Wall Professor of Oncology, Dept. of Pathology and Microbiology, University of Nebraska Medical Center, 983135 Nebraska Medical Center, Omaha, NE, 68198-3135, USA
| | - Gerhard Eisenbrand
- University of Kaiserslautern, Germany (Retired), Kühler Grund 48/1, 69126, Heidelberg, Germany
| | - Shoji Fukushima
- Japan Bioassay Research Center, 2445 Hirasawa, Hadano, Kanagawa, 257-0015, Japan
| | - Nigel J Gooderham
- Dept. of Metabolism, Digestion, Reproduction, Imperial College London, Sir Alexander Fleming Building, London, SW7 2AZ, United Kingdom
| | - F Peter Guengerich
- Dept. of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, 37232-0146, USA
| | - Stephen S Hecht
- Masonic Cancer Center and Dept. of Laboratory Medicine and Pathology, Cancer and Cardiovascular Research Building, 2231 6th St., S.E, Minneapolis, MN, 55455, USA
| | - Ivonne M C M Rietjens
- Division of Toxicology, Wageningen University, Stippeneng 4, 6708, WE Wageningen, the Netherlands
| | - Thomas J Rosol
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, 1 Ohio University, Athens, OH, 45701, USA
| | - Christie L Harman
- Flavor and Extract Manufacturers Association, 1101 17th Street, N.W., Suite 700, Washington, DC, 20036, USA
| | - Danarubini Ramanan
- Flavor and Extract Manufacturers Association, 1101 17th Street, N.W., Suite 700, Washington, DC, 20036, USA
| | - Sean V Taylor
- Flavor and Extract Manufacturers Association, 1101 17th Street, N.W., Suite 700, Washington, DC, 20036, USA.
| |
Collapse
|
8
|
Davidsen JM, Cohen SM, Eisenbrand G, Fukushima S, Gooderham NJ, Guengerich FP, Hecht SS, Rietjens IMCM, Rosol TJ, Harman CL, Taylor SV. FEMA GRAS assessment of derivatives of basil, nutmeg, parsley, tarragon and related allylalkoxybenzene-containing natural flavor complexes. Food Chem Toxicol 2023; 175:113646. [PMID: 36804339 DOI: 10.1016/j.fct.2023.113646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/26/2023] [Accepted: 01/30/2023] [Indexed: 02/18/2023]
Abstract
In 2015, the Expert Panel of the Flavor and Extract Manufacturers Association (FEMA) initiated a program for the re-evaluation of the safety of over 250 natural flavor complexes (NFCs) used as flavoring ingredients in food. In this publication, tenth in the series, NFCs containing a high percentage of at least one naturally occurring allylalkoxybenzene constituent with a suspected concern for genotoxicity and/or carcinogenicity are evaluated. In a related paper, ninth in the series, NFCs containing anethole and/or eugenol and relatively low percentages of these allylalkoxybenzenes are evaluated. The Panel applies the threshold of toxicological concern (TTC) concept and evaluates relevant toxicology data on the NFCs and their respective constituent congeneric groups. For NFCs containing allylalkoxybenzene constituent(s), the estimated intake of the constituent is compared to the TTC for compounds with structural alerts for genotoxicity and when exceeded, a margin of exposure (MOE) is calculated. BMDL10 values are derived from benchmark dose analyses using Bayesian model averaging for safrole, estragole and methyl eugenol using EPA's BMDS software version 3.2. BMDL10 values for myristicin, elemicin and parsley apiole were estimated by read-across using relative potency factors. Margins of safety for each constituent congeneric group and MOEs for each allylalkoxybenzene constituent for each NFC were determined that indicate no safety concern. The scope of the safety evaluation contained herein does not include added use in dietary supplements or any products other than food. Ten NFCs, derived from basil, estragon (tarragon), mace, nutmeg, parsley and Canadian snakeroot were determined or affirmed as generally recognized as safe (GRAS) under their conditions of intended use as flavor ingredients based on an evaluation of each NFC and the constituents and congeneric groups therein.
Collapse
Affiliation(s)
- Jeanne M Davidsen
- Flavor and Extract Manufacturers Association, 1101 17th Street, N.W., Suite 700, Washington, D.C, 20036, USA
| | - Samuel M Cohen
- Havlik-Wall Professor of Oncology, Dept. of Pathology and Microbiology, University of Nebraska Medical Center, 983135 Nebraska Medical Center, Omaha, NE, 68198-3135, USA
| | - Gerhard Eisenbrand
- University of Kaiserslautern, Germany (Retired), Kühler Grund 48/1, 69126, Heidelberg, Germany
| | - Shoji Fukushima
- Japan Bioassay Research Center, 2445 Hirasawa, Hadano, Kanagawa, 257-0015, Japan
| | - Nigel J Gooderham
- Dept. of Metabolism, Digestion, Reproduction, Imperial College London, Sir Alexander Fleming Building, London, SW7 2AZ, United Kingdom
| | - F Peter Guengerich
- Dept. of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, 37232-0146, USA
| | - Stephen S Hecht
- Masonic Cancer Center and Dept. of Laboratory Medicine and Pathology, Cancer and Cardiovascular Research Building, 2231 6th St, S.E, Minneapolis, MN, 55455, USA
| | - Ivonne M C M Rietjens
- Division of Toxicology, Wageningen University, Stippeneng 6708 WE, Wageningen, the Netherlands
| | - Thomas J Rosol
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, 1 Ohio University, Athens, OH, 45701, USA
| | - Christie L Harman
- Flavor and Extract Manufacturers Association, 1101 17th Street, N.W., Suite 700, Washington, D.C, 20036, USA
| | - Sean V Taylor
- Scientific Secretary to the FEMA Expert Panel, 1101 17th Street, N.W., Suite 700, Washington, D.C, 20036, USA.
| |
Collapse
|
9
|
Cohen SM, Eisenbrand G, Fukushima S, Gooderham NJ, Guengerich FP, Hecht SS, Rietjens IMCM, Rosol TJ, Davidsen JM, Harman CL, Lu V, Taylor SV. FEMA GRAS assessment of natural flavor complexes: Origanum oil, thyme oil and related phenol derivative-containing flavoring ingredients. Food Chem Toxicol 2021; 155:112378. [PMID: 34217738 DOI: 10.1016/j.fct.2021.112378] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 06/25/2021] [Accepted: 06/27/2021] [Indexed: 10/21/2022]
Abstract
In 2015, the Expert Panel of the Flavor and Extract Manufacturers Association (FEMA) initiated a re-evaluation of the safety of over 250 natural flavor complexes (NFCs) used as flavor ingredients, mostly consisting of a variety of essential oils and botanical extracts. This publication, seventh in the series, re-evaluates NFCs with constituent profiles dominated by phenolic derivatives including carvacrol, thymol and related compounds using a constituent-based procedure first published in 2005 and updated in 2018. The procedure is based on the chemical characterization of each NFC as intended for commerce and the estimated intake of the constituent congeneric groups. The procedure applies the threshold of toxicological concern (TTC) concept and evaluates relevant data on absorption, metabolism, genotoxic potential and toxicology of the constituent congeneric groups and the NFC under evaluation. Herein, the FEMA Expert Panel affirmed the generally recognized as safe (GRAS) status of seven phenolic derivative-based NFCs, Origanum Oil (Extractive) (FEMA 2828), Savory Summer Oil (FEMA 3013), Savory Summer Oleoresin (FEMA 3014), Savory Winter Oil (FEMA 3016), Savory Winter Oleoresin (FEMA 3017), Thyme Oil (FEMA 3064) and Thyme White Oil (FEMA 3065) under their conditions of intended use as flavor ingredients.
Collapse
Affiliation(s)
- Samuel M Cohen
- Dept. of Pathology and Microbiology, University of Nebraska Medical Center, 983135 Nebraska Medical Center, Omaha, NE, 68198-3135, USA
| | - Gerhard Eisenbrand
- University of Kaiserslautern, Germany (Retired), Kühler Grund 48/1, 69126, Heidelberg, Germany
| | - Shoji Fukushima
- Japan Bioassay Research Center, 2445 Hirasawa, Hadano, Kanagawa, 257-0015, Japan
| | - Nigel J Gooderham
- Dept. of Metabolism, Digestion, Reproduction, Imperial College London, Sir Alexander Fleming Building, London, SW7 2AZ, United Kingdom
| | - F Peter Guengerich
- Dept. of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, 37232-0146, USA
| | - Stephen S Hecht
- Masonic Cancer Center and Dept. of Laboratory Medicine and Pathology, Cancer and Cardiovascular Research Building, 2231 6th St. S.E., Minneapolis, MN, 55455, USA
| | - Ivonne M C M Rietjens
- Division of Toxicology, Wageningen University, Stippeneng 4, 6708, WE, Wageningen, the Netherlands
| | - Thomas J Rosol
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, 1 Ohio University, Athens, OH, 45701, USA
| | - Jeanne M Davidsen
- Flavor and Extract Manufacturers Association, 1101 17th Street NW, Suite 700, Washington, DC, 20036, USA
| | - Christie L Harman
- Flavor and Extract Manufacturers Association, 1101 17th Street NW, Suite 700, Washington, DC, 20036, USA
| | - Vivian Lu
- Flavor and Extract Manufacturers Association, 1101 17th Street NW, Suite 700, Washington, DC, 20036, USA
| | - Sean V Taylor
- Scientific Secretary to the FEMA Expert Panel, 1101 17th Street, N.W., Suite 700, Washington, D.C., 20036, USA.
| |
Collapse
|
10
|
Gooderham NJ, Cohen SM, Eisenbrand G, Fukushima S, Guengerich FP, Hecht SS, Rietjens IMCM, Rosol TJ, Davidsen JM, Harman CL, Murray IJ, Taylor SV. FEMA GRAS assessment of natural flavor complexes: Clove, cinnamon leaf and West Indian bay leaf-derived flavoring ingredients. Food Chem Toxicol 2020; 145:111585. [PMID: 32702506 DOI: 10.1016/j.fct.2020.111585] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 06/30/2020] [Accepted: 07/04/2020] [Indexed: 01/06/2023]
Abstract
In 2015, the Expert Panel of the Flavor and Extract Manufacturers Association initiated the safety re-evaluation of over 250 natural flavor complexes (NFCs) used as flavor ingredients. This publication, 4th in a series focusing on the safety evaluation of NFCs, presents an evaluation of NFCs rich in hydroxyallylbenzene and hydroxypropenylbenzene constituents using a procedure initially published in 2005 and updated in 2018 that evaluates the safety of naturally occurring mixtures for their intended use as flavoring ingredients. The procedure requires the characterization of the chemical composition for each NFC and subsequent organization of the constituents into defined congeneric groups. The safety of each NFC is evaluated using the conservative threshold of toxicological concern (TTC) approach together with studies on absorption, metabolism and toxicology of the NFC and its constituent congeneric groups. By the application of this procedure, seven NFCs, derived from clove, cinnamon leaf and West Indian bay leaf were affirmed as "generally recognized as safe (GRAS)" under their conditions of intended use as flavor ingredients. An eighth NFC, an oleoresin of West Indian bay leaf, was affirmed based on its estimated intake, which is below the TTC of 0.15 μg/person per day for compounds with structural alerts for genotoxicity.
Collapse
Affiliation(s)
- Nigel J Gooderham
- Dept. of Metabolism, Digestion, Reproduction, Imperial College London, Sir Alexander Fleming Building, London, SW7 2AZ, United Kingdom
| | - Samuel M Cohen
- Havlik-Wall Professor of Oncology, Dept. of Pathology and Microbiology, University of Nebraska Medical Center, 983135 Nebraska Medical Center, Omaha, NE, 68198-3135, USA
| | - Gerhard Eisenbrand
- Senior Research Professor of Food Chemistry & Toxicology, University of Kaiserslautern, Germany (Retired), Kühler Grund 48/1, 69126, Heidelberg, Germany
| | - Shoji Fukushima
- Japan Bioassay Research Center, 2445 Hirasawa, Hadano, Kanagawa, 257-0015, Japan
| | - F Peter Guengerich
- Tadashi Inagami Professor of Biochemistry, Dept. of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, 37232-0146 USA
| | - Stephen S Hecht
- Wallin Professor of Cancer Prevention, Masonic Cancer Center and Dept. of Laboratory Medicine and Pathology, University of Minnesota, MMC 806, 420 Delaware St., S.E., Minneapolis, MN, 55455, USA
| | - Ivonne M C M Rietjens
- Professor of Toxicology, Division of Toxicology, Wageningen University, Stippeneng 4, 6708 WE, Wageningen, the Netherlands
| | - Thomas J Rosol
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, 1 Ohio University, Athens, OH, 45701, USA
| | - Jeanne M Davidsen
- Flavor and Extract Manufacturers Association, 1101 17th Street NW, Suite 700, Washington, DC 20036, USA
| | - Christie L Harman
- Flavor and Extract Manufacturers Association, 1101 17th Street NW, Suite 700, Washington, DC 20036, USA
| | - Ian J Murray
- Flavor and Extract Manufacturers Association, 1101 17th Street NW, Suite 700, Washington, DC 20036, USA
| | - Sean V Taylor
- Flavor and Extract Manufacturers Association, 1101 17th Street NW, Suite 700, Washington, DC 20036, USA.
| |
Collapse
|
11
|
Cohen SM, Eisenbrand G, Fukushima S, Gooderham NJ, Guengerich FP, Hecht SS, Rietjens IMCM, Bastaki M, Davidsen JM, Harman CL, McGowen MM, Taylor SV. FEMA GRAS assessment of natural flavor complexes: Mint, buchu, dill and caraway derived flavoring ingredients. Food Chem Toxicol 2019; 135:110870. [PMID: 31604112 DOI: 10.1016/j.fct.2019.110870] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 09/18/2019] [Accepted: 10/02/2019] [Indexed: 02/08/2023]
Abstract
In 2015, the Expert Panel of the Flavor and Extract Manufacturers Association (FEMA) initiated a re-evaluation of the safety of over 250 natural flavor complexes (NFCs) used as flavor ingredients. NFC flavor materials include a variety of essential oils and botanical extracts. The re-evaluation of NFCs is conducted based on a constituent-based procedure outlined in 2005 and updated in 2018 that evaluates the safety of NFCs for their intended use as flavor ingredients. This procedure is applied in the re-evaluation of the generally recognized as safe (GRAS) status of NFCs with constituent profiles that are dominated by alicyclic ketones such as menthone and carvone, secondary alcohols such as menthol and carveol, and related compounds. The FEMA Expert Panel affirmed the GRAS status of Peppermint Oil (FEMA 2848), Spearmint Oil (FEMA 3032), Spearmint Extract (FEMA 3031), Cornmint Oil (FEMA 4219), Erospicata Oil (FEMA 4777), Curly Mint Oil (FEMA 4778), Pennyroyal Oil (FEMA 2839), Buchu Leaves Oil (FEMA 2169), Caraway Oil (FEMA 2238) and Dill Oil (FEMA 2383) and determined FEMA GRAS status for Buchu Leaves Extract (FEMA 4923), Peppermint Oil, Terpeneless (FEMA 4924) and Spearmint Oil, Terpeneless (FEMA 4925).
Collapse
Affiliation(s)
- Samuel M Cohen
- Havlik-Wall Professor of Oncology, Dept. of Pathology and Microbiology, University of Nebraska Medical Center, 983135 Nebraska Medical Center, Omaha, NE, 68198-3135, USA
| | - Gerhard Eisenbrand
- Food Chemistry & Toxicology, University of Kaiserslautern, Kaiserslautern, Germany
| | - Shoji Fukushima
- Japan Bioassay Research Center, 2445 Hirasawa, Hadano, Kanagawa, 257-0015, Japan
| | - Nigel J Gooderham
- Dept. of Metabolism, Digestion, and Reproduction, Imperial College London, Sir Alexander Fleming Building, London, SW7 2AZ, United Kingdom
| | - F Peter Guengerich
- Dept. of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, 37232-0146, USA
| | - Stephen S Hecht
- Masonic Cancer Center and Dept. of Laboratory Medicine and Pathology, University of Minnesota, MMC 806, 420 Delaware St., S.E., Minneapolis, MN, 55455, USA
| | - Ivonne M C M Rietjens
- Division of Toxicology, Wageningen University, Tuinlaan 5, 6703 HE, Wageningen, the Netherlands
| | - Maria Bastaki
- Flavor and Extract Manufacturers Association, 1101 17th Street NW, Suite 700, Washington, DC, 20036, USA
| | - Jeanne M Davidsen
- Flavor and Extract Manufacturers Association, 1101 17th Street NW, Suite 700, Washington, DC, 20036, USA
| | - Christie L Harman
- Flavor and Extract Manufacturers Association, 1101 17th Street NW, Suite 700, Washington, DC, 20036, USA
| | - Margaret M McGowen
- Flavor and Extract Manufacturers Association, 1101 17th Street NW, Suite 700, Washington, DC, 20036, USA
| | - Sean V Taylor
- Flavor and Extract Manufacturers Association, 1101 17th Street NW, Suite 700, Washington, DC, 20036, USA.
| |
Collapse
|
12
|
Sharma A, Flores-Vallejo RDC, Cardoso-Taketa A, Villarreal ML. Antibacterial activities of medicinal plants used in Mexican traditional medicine. JOURNAL OF ETHNOPHARMACOLOGY 2017; 208:264-329. [PMID: 27155134 DOI: 10.1016/j.jep.2016.04.045] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2015] [Revised: 04/24/2016] [Accepted: 04/25/2016] [Indexed: 05/17/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE We provide an extensive summary of the in vitro antibacterial properties of medicinal plants popularly used in Mexico to treat infections, and we discuss the ethnomedical information that has been published for these species. MATERIALS AND METHODS We carried out a bibliographic investigation by analyzing local and international peer-reviewed papers selected by consulting internationally accepted scientific databases from 1995 to 2014. We provide specific information about the evaluated plant parts, the type of extracts, the tested bacterial strains, and the inhibitory concentrations for each one of the species. We recorded the ethnomedical information for the active species, as well as their popular names and local distribution. Information about the plant compounds that has been identified is included in the manuscript. This review also incorporates an extensive summary of the available toxicological reports on the recorded species, as well as the worldwide registries of plant patents used for treating bacterial infections. In addition, we provide a list with the top plant species with antibacterial activities in this review RESULTS: We documented the in vitro antibacterial activities of 343 plant species pertaining to 92 botanical families against 72 bacterial species, focusing particularly on Staphylococcus aureus, Mycobacterium tuberculosis, Escherichia coli and Pseudomonas aeruginosa. The plant families Asteraceae, Fabaceae, Lamiaceae and Euphorbiaceae included the largest number of active species. Information related to popular uses reveals that the majority of the plants, in addition to treating infections, are used to treat other conditions. The distribution of Mexican plants extended from those that were reported to grow in just one state to those that grow in all 32 Mexican states. From 75 plant species, 225 compounds were identified. Out of the total plant species, only 140 (40.57%) had at least one report about their toxic effects. From 1994 to July 2014 a total of 11,836 worldwide antibacterial patents prepared from different sources were recorded; only 36 antibacterial patents from plants were registered over the same time period. We offered some insights on the most important findings regarding the antibacterial effects, current state of the art, and research perspectives of top plant species with antibacterial activities in vitro. CONCLUSIONS Studies of the antibacterial in vitro activity of medicinal plants popularly used in Mexico to treat infections indicate that both the selection of plant material and the investigation methodologies vary. Standardized experimental procedures as well as in vivo pharmacokinetic studies to document the effectiveness of plant extracts and compounds are necessary. This review presents extensive information about the medicinal plants possessing antibacterial activity that has been scientifically studied and are popularly used in Mexico. We anticipate that this review will be of use for future studies because it constitutes a valuable information tool for selecting the most significant plants and their potential antibacterial properties.
Collapse
Affiliation(s)
- Ashutosh Sharma
- Escuela de Ingeniería en Alimentos, Biotecnología y Agronomía (ESIABA), Tecnológico de Monterrey, Campus Querétaro, México
| | - Rosario Del Carmen Flores-Vallejo
- Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos, Avenida Universidad 1001, Col. Chamilpa, Cuernavaca Morelos 62209, México
| | - Alexandre Cardoso-Taketa
- Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos, Avenida Universidad 1001, Col. Chamilpa, Cuernavaca Morelos 62209, México
| | - María Luisa Villarreal
- Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos, Avenida Universidad 1001, Col. Chamilpa, Cuernavaca Morelos 62209, México
| |
Collapse
|
13
|
Llana-Ruiz-Cabello M, Pichardo S, Maisanaba S, Puerto M, Prieto AI, Gutiérrez-Praena D, Jos A, Cameán AM. In vitro toxicological evaluation of essential oils and their main compounds used in active food packaging: A review. Food Chem Toxicol 2015; 81:9-27. [PMID: 25865936 DOI: 10.1016/j.fct.2015.03.030] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Revised: 03/30/2015] [Accepted: 03/31/2015] [Indexed: 01/19/2023]
Abstract
Essential oils (EOs) and their main constituent compounds have been extensively investigated due to their application in the food industry for improving the shelf life of perishable products. Although they are still not available for use in food packaging in the market in Europe, considerable research in this field has been carried out recently. The safety of these EOs should be guaranteed before being commercialized. The aim of this work was to review the scientific publications, with a primary focus on the last 10 years, with respect to different in vitro toxicological aspects, mainly focussed on mutagenicity/genotoxicity. In general, fewer genotoxic studies have been reported on EOs in comparison to their main components, and most of them did not show mutagenic activity. However, more studies are needed in this field since the guidelines of the European Food Safety Authority have not always been followed accurately. The mutagenic/genotoxic activities of these substances have been related to metabolic activation. Therefore, in vivo tests are required to confirm the absence of genotoxic effects. Considering the great variability of the EOs and their main compounds, a case-by-case evaluation is needed to assure their safe use in food packaging.
Collapse
Affiliation(s)
- Maria Llana-Ruiz-Cabello
- Area of Toxicology, Faculty of Pharmacy, Universidad de Sevilla, Profesor García González n°2, 41012 Seville, Spain
| | - Silvia Pichardo
- Area of Toxicology, Faculty of Pharmacy, Universidad de Sevilla, Profesor García González n°2, 41012 Seville, Spain
| | - Sara Maisanaba
- Area of Toxicology, Faculty of Pharmacy, Universidad de Sevilla, Profesor García González n°2, 41012 Seville, Spain
| | - Maria Puerto
- Area of Toxicology, Faculty of Pharmacy, Universidad de Sevilla, Profesor García González n°2, 41012 Seville, Spain
| | - Ana I Prieto
- Area of Toxicology, Faculty of Pharmacy, Universidad de Sevilla, Profesor García González n°2, 41012 Seville, Spain
| | - Daniel Gutiérrez-Praena
- Area of Toxicology, Faculty of Pharmacy, Universidad de Sevilla, Profesor García González n°2, 41012 Seville, Spain
| | - Angeles Jos
- Area of Toxicology, Faculty of Pharmacy, Universidad de Sevilla, Profesor García González n°2, 41012 Seville, Spain
| | - Ana M Cameán
- Area of Toxicology, Faculty of Pharmacy, Universidad de Sevilla, Profesor García González n°2, 41012 Seville, Spain.
| |
Collapse
|
14
|
Moosavi M, Jalali A, Siahpoosh A, Farajzadeh A, Kianipur F. Assessing Mutagenicity of Methanolic Exteract of Abrus precatorius Seeds using Ames Bioassay. JOURNAL OF MEDICAL SCIENCES 2013. [DOI: 10.3923/jms.2013.118.123] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
15
|
Sahib NG, Anwar F, Gilani AH, Hamid AA, Saari N, Alkharfy KM. Coriander (Coriandrum sativum L.): a potential source of high-value components for functional foods and nutraceuticals--a review. Phytother Res 2012; 27:1439-56. [PMID: 23281145 DOI: 10.1002/ptr.4897] [Citation(s) in RCA: 110] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Revised: 10/24/2012] [Accepted: 11/06/2012] [Indexed: 11/12/2022]
Abstract
Coriander (Coriandrum sativum L.), a herbal plant, belonging to the family Apiceae, is valued for its culinary and medicinal uses. All parts of this herb are in use as flavoring agent and/or as traditional remedies for the treatment of different disorders in the folk medicine systems of different civilizations. The plant is a potential source of lipids (rich in petroselinic acid) and an essential oil (high in linalool) isolated from the seeds and the aerial parts. Due to the presence of a multitude of bioactives, a wide array of pharmacological activities have been ascribed to different parts of this herb, which include anti-microbial, anti-oxidant, anti-diabetic, anxiolytic, anti-epileptic, anti-depressant, anti-mutagenic, anti-inflammatory, anti-dyslipidemic, anti-hypertensive, neuro-protective and diuretic. Interestingly, coriander also possessed lead-detoxifying potential. This review focuses on the medicinal uses, detailed phytochemistry, and the biological activities of this valuable herb to explore its potential uses as a functional food for the nutraceutical industry.
Collapse
Affiliation(s)
- Najla Gooda Sahib
- Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | | | | | | | | | | |
Collapse
|
16
|
Burdock GA, Carabin IG. Safety assessment of coriander (Coriandrum sativum L.) essential oil as a food ingredient. Food Chem Toxicol 2008; 47:22-34. [PMID: 19032971 DOI: 10.1016/j.fct.2008.11.006] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2008] [Revised: 11/04/2008] [Accepted: 11/04/2008] [Indexed: 01/11/2023]
Abstract
Coriander essential oil is used as a flavor ingredient, but it also has a long history as a traditional medicine. It is obtained by steam distillation of the dried fully ripe fruits (seeds) of Coriandrum sativum L. The oil is a colorless or pale yellow liquid with a characteristic odor and mild, sweet, warm and aromatic flavor; linalool is the major constituent (approximately 70%). Based on the results of a 28 day oral gavage study in rats, a NOEL for coriander oil is approximately 160 mg/kg/day. In a developmental toxicity study, the maternal NOAEL of coriander oil was 250 mg/kg/day and the developmental NOAEL was 500 mg/kg/day. Coriander oil is not clastogenic, but results of mutagenicity studies for the spice and some extracts are mixed; linalool is non-mutagenic. Coriander oil has broad-spectrum, antimicrobial activity. Coriander oil is irritating to rabbits, but not humans; it is not a sensitizer, although the whole spice may be. Based on the history of consumption of coriander oil without reported adverse effects, lack of its toxicity in limited studies and lack of toxicity of its major constituent, linalool, the use of coriander oil as an added food ingredient is considered safe at present levels of use.
Collapse
Affiliation(s)
- George A Burdock
- Burdock Group, 801 N Orange Ave, Suite 710, Orlando, FL 32801, USA.
| | | |
Collapse
|
17
|
Afifi FU, Abu-Irmaileh B. Herbal medicine in Jordan with special emphasis on less commonly used medicinal herbs. JOURNAL OF ETHNOPHARMACOLOGY 2000; 72:101-110. [PMID: 10967460 DOI: 10.1016/s0378-8741(00)00215-4] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The use of herbal medicine in Jordan is very common. In order to evaluate the knowledge and the attitudes of the herbalists and acquire the common and less common medicinal herbs sold by the Jordanian herbalists, more than 100 herbalists throughout the country were interviewed and data concerning herbs present in their shops, the herbalists' recommendations and other observations were collected. The present paper reports on the less common herbs and problems observed dealing with them.
Collapse
Affiliation(s)
- F U Afifi
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, University of Jordan, Amman, Jordan.
| | | |
Collapse
|
18
|
Surh YJ, Lee E, Lee JM. Chemoprotective properties of some pungent ingredients present in red pepper and ginger. Mutat Res 1998; 402:259-67. [PMID: 9675305 DOI: 10.1016/s0027-5107(97)00305-9] [Citation(s) in RCA: 125] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
There has been a substantial body of data, supporting that dietary factors have a profound impact on prevention as well as etiology of human cancer. Capsaicin has been tested by many investigators for its effects on experimental carcinogenesis and mutagenesis. Data in the literature indicate that capsaicin has dual effects on carcinogenic and mutagenic processes. At present, there is no solid evidence that hot red and chili peppers or their principal pungent ingredient capsaicin are carcinogenic in humans although results of early investigations with experimental animals exhibit the moderate tumorigenicity of this compound. In contrast, recent studies reveal substantial antigenotoxic and anticarcinogenic effects of capsaicin, suggesting this compound as another important dietary phytochemical with a potential chemopreventive activity. Some pungent constituents present in ginger and other zingiberaceous plants have potent antioxidant and anti-inflammatory effects, and some of them exhibit anti-tumor promotional activity in experimental carcinogenesis.
Collapse
Affiliation(s)
- Y J Surh
- College of Pharmacy, Seoul National University, Shinlim-dong, Kwanak-gu, Seoul 151-742, South Korea.
| | | | | |
Collapse
|
19
|
|