1
|
Žvinys G, Petrosiute A, Zakšauskas A, Zubrienė A, Ščerbavičienė A, Kalnina Z, Čapkauskaitė E, Juozapaitienė V, Mickevičiu̅tė A, Shubin K, Grincevičienė Š, Raišys S, Tars K, Matulienė J, Matulis D. High-Affinity NIR-Fluorescent Inhibitors for Tumor Imaging via Carbonic Anhydrase IX. Bioconjug Chem 2024; 35:790-803. [PMID: 38750635 PMCID: PMC11191402 DOI: 10.1021/acs.bioconjchem.4c00144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 04/25/2024] [Accepted: 04/25/2024] [Indexed: 06/21/2024]
Abstract
Tumor imaging and delivery of therapeutic agents may be achieved by designing high-affinity and high-selectivity compounds recognizing a tumor cell-expressing biomarker, such as carbonic anhydrase IX (CA IX). The CAIX, overexpressed in many hypoxic solid tumors, helps adjust to the energy requirements of the hypoxic environment, reduces intracellular acidification, and participates in the metastatic invasion of adjacent tissues. Here, we designed a series of sulfonamide compounds bearing CAIX-recognizing, high-affinity, and high-selectivity groups conjugated via a PEG linker to near-infrared (NIR) fluorescent probes used in the clinic for optically guided cancer surgery. We determined compound affinities for CAIX and other 11 catalytically active CA isozymes by the thermal shift assay and showed that the affinity Kd value of CAIX was in the subnanomolar range, hundred to thousand-fold higher than those of other CA isozymes. Similar affinities were also observed for CAIX expressed on the cancer cell surface in live HeLa cell cultures, as determined by the competition assay. The NIR-fluorescent compounds showed excellent properties in visualizing CAIX-positive tumors but not CAIX-negative knockout tumors in a nude mice xenograft model. These compounds would therefore be helpful in optically guided cancer surgery and could potentially be developed for anticancer treatment by radiotherapy.
Collapse
Affiliation(s)
- Gediminas Žvinys
- Department
of Biothermodynamics and Drug Design, Institute of Biotechnology,
Life Sciences Center, Vilnius University, Saulėtekio 7, Vilnius LT-10257, Lithuania
| | - Agne Petrosiute
- Department
of Biothermodynamics and Drug Design, Institute of Biotechnology,
Life Sciences Center, Vilnius University, Saulėtekio 7, Vilnius LT-10257, Lithuania
| | - Audrius Zakšauskas
- Department
of Biothermodynamics and Drug Design, Institute of Biotechnology,
Life Sciences Center, Vilnius University, Saulėtekio 7, Vilnius LT-10257, Lithuania
| | - Asta Zubrienė
- Department
of Biothermodynamics and Drug Design, Institute of Biotechnology,
Life Sciences Center, Vilnius University, Saulėtekio 7, Vilnius LT-10257, Lithuania
| | - Alvilė Ščerbavičienė
- Department
of Biological Models, Institute of Biochemistry, Life Sciences Center, Vilnius University, Saulėtekio 7, Vilnius LT-10257, Lithuania
| | - Zane Kalnina
- Latvian
Biomedical Research and Study Centre, Ratsupites 1 k-1, Riga LV-1067, Latvia
| | - Edita Čapkauskaitė
- Department
of Biothermodynamics and Drug Design, Institute of Biotechnology,
Life Sciences Center, Vilnius University, Saulėtekio 7, Vilnius LT-10257, Lithuania
| | - Vaida Juozapaitienė
- Department
of Biothermodynamics and Drug Design, Institute of Biotechnology,
Life Sciences Center, Vilnius University, Saulėtekio 7, Vilnius LT-10257, Lithuania
| | - Aurelija Mickevičiu̅tė
- Department
of Biothermodynamics and Drug Design, Institute of Biotechnology,
Life Sciences Center, Vilnius University, Saulėtekio 7, Vilnius LT-10257, Lithuania
| | - Kirill Shubin
- Latvian
Institute of Organic Synthesis, Aizkraukles 21, Riga LV-1006, Latvia
| | - Švitrigailė Grincevičienė
- Department
of Biothermodynamics and Drug Design, Institute of Biotechnology,
Life Sciences Center, Vilnius University, Saulėtekio 7, Vilnius LT-10257, Lithuania
| | - Steponas Raišys
- Institute
of Photonics and Nanotechnology, National Center for Physical Sciences
and Technology, Vilnius University, Saulėtekio 3, Vilnius LT-10257, Lithuania
| | - Kaspars Tars
- Latvian
Biomedical Research and Study Centre, Ratsupites 1 k-1, Riga LV-1067, Latvia
| | - Jurgita Matulienė
- Department
of Biothermodynamics and Drug Design, Institute of Biotechnology,
Life Sciences Center, Vilnius University, Saulėtekio 7, Vilnius LT-10257, Lithuania
| | - Daumantas Matulis
- Department
of Biothermodynamics and Drug Design, Institute of Biotechnology,
Life Sciences Center, Vilnius University, Saulėtekio 7, Vilnius LT-10257, Lithuania
| |
Collapse
|
2
|
Tatiparti K, Rauf MA, Sau S, Iyer AK. Carbonic Anhydrase-IX Guided Albumin Nanoparticles for Hypoxia-mediated Triple-Negative Breast Cancer Cell Killing and Imaging of Patient-derived Tumor. Molecules 2020; 25:molecules25102362. [PMID: 32438691 PMCID: PMC7287925 DOI: 10.3390/molecules25102362] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 05/12/2020] [Accepted: 05/13/2020] [Indexed: 11/16/2022] Open
Abstract
Triple-Negative Breast Cancer (TNBC) is considered as the most onerous cancer subtype, lacking the estrogen, progesterone, and HER2 receptors. Evaluating new markers is an unmet need for improving targeted therapy against TNBC. TNBC depends on several factors, including hypoxia development, which contributes to therapy resistance, immune evasion, and tumor stroma formation. In this study, we studied the curcumin analogue (3,4-Difluorobenzylidene Curcumin; CDF) encapsulated bovine serum albumin (BSA) nanoparticle for tumor targeting. For tumor targeting, we conjugated Acetazolamide (ATZ) with CDF and encapsulated it in the BSA to form a nanoparticle (namely BSA-CDF-ATZ). The in vitro cytotoxicity study suggested that BSA-CDF-ATZ is more efficient when compared to free CDF. The BSA-CDF-ATZ nanoparticles showed significantly higher cell killing in hypoxic conditions compared to normoxic conditions, suggesting better internalization of the nanoparticles into cancer cells under hypoxia. Fluorescent-dye labeled BSA-CDF-ATZ revealed higher cell uptake of the nanoparticle compared to free dye indicative of better delivery, substantiated by a high rate of apoptosis-mediated cell death compared to free CDF. The significantly higher tumor accumulation and low liver and spleen uptake in TNBC patient-derived tumor xenograft models confirm the significant potential of BSA-CDF-ATZ for targeted TNBC imaging and therapy.
Collapse
Affiliation(s)
- Katyayani Tatiparti
- Department of Pharmaceutical Sciences, Use-inspired Biomaterials & Integrated Nano Delivery (U-BiND) Systems Laboratory, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48201, USA; (K.T.); (M.A.R.); (S.S.)
| | - Mohd Ahmar Rauf
- Department of Pharmaceutical Sciences, Use-inspired Biomaterials & Integrated Nano Delivery (U-BiND) Systems Laboratory, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48201, USA; (K.T.); (M.A.R.); (S.S.)
| | - Samaresh Sau
- Department of Pharmaceutical Sciences, Use-inspired Biomaterials & Integrated Nano Delivery (U-BiND) Systems Laboratory, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48201, USA; (K.T.); (M.A.R.); (S.S.)
| | - Arun K. Iyer
- Department of Pharmaceutical Sciences, Use-inspired Biomaterials & Integrated Nano Delivery (U-BiND) Systems Laboratory, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48201, USA; (K.T.); (M.A.R.); (S.S.)
- Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI 48201, USA
- Correspondence: ; Tel.: +1-313-577-5875
| |
Collapse
|
3
|
Yang H, Cai W, Lv W, Zhao P, Shen Y, Zhang L, Ma B, Yuan L, Duan Y, Yao K. A new strategy for accurate targeted diagnosis and treatment of cutaneous malignant melanoma: dual-mode phase-change lipid nanodroplets as ultrasound contrast agents. Int J Nanomedicine 2019; 14:7079-7093. [PMID: 31564866 PMCID: PMC6731466 DOI: 10.2147/ijn.s207419] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Accepted: 07/01/2019] [Indexed: 12/27/2022] Open
Abstract
Background Currently, effective detection and treatment of cutaneous malignant melanoma (CMM) still face severe challenges. Ultrasound molecular imaging as a noninvasive and easy-to-operate method is expected to bring improvements for tumor detection. Purpose The aim of this research is to prepare novel phase-change ultrasound contrast agents, Nds-IR780, which can perform not only dual-mode molecule-targeted imaging but also targeted photothermal therapy for CMM. Methods A double emulsion process was used to prepare the Nds-IR780. Then, the entrapment rate and drug loading of IR-780 iodide in Nds-IR780 were detected by high-performance liquid chromatography. The biocompatibility of Nds-IR780 was evaluated by a CCK-8 assay and the characteristics and stability of that were verified through the particle size analyzer, laser scanning confocal microscopy (LSCM) and transmission electron microscopy (TEM). The abilities of dual-mode molecule-targeted imaging and targeted photothermal therapy for Nds-IR780 were confirmed via the in vitro and in vivo experiments. Results Nds-IR780 had good size distribution, polydispersity index, stability and biosafety. The in vitro and in vivo experiments confirmed that Nds-IR780 were capable of targeting CMM cells with high affinity (22.4±3.2%) and facilitating dual-mode imaging to detect the primary lesion and sentinel lymph nodes (SLNs) of CMM. Furthermore, the photothermal ablation of CMM mediated by Nds-IR780 was very effective in vivo. Conclusion The newly prepared Nds-IR780 were observed to be effective targeted theranostic probe for the precise detection and targeted treatment of CMM.
Collapse
Affiliation(s)
- Hengli Yang
- Department of Ultrasound Diagnosis, Air Force General Hospital, Beijing, People's Republic of China.,Department of Ultrasound Diagnosis, Tang Du Hospital, Fourth Military Medical University, Xi'an, People's Republic of China
| | - Wenbin Cai
- Special Diagnosis Department, General Hospital of Tibet Military Command, Lhasa, People's Republic of China
| | - Wei Lv
- Department of Ultrasound Diagnosis, Tang Du Hospital, Fourth Military Medical University, Xi'an, People's Republic of China
| | - Ping Zhao
- Department of Ultrasound Diagnosis, Tang Du Hospital, Fourth Military Medical University, Xi'an, People's Republic of China
| | - Yamei Shen
- Department of Ultrasound Diagnosis, Shaanxi Provincial People's Hospital, Xi'an, People's Republic of China
| | - Longfang Zhang
- Department of Ultrasound Diagnosis, Air Force General Hospital, Beijing, People's Republic of China
| | - Bin Ma
- Department of Ultrasound Diagnosis, Air Force General Hospital, Beijing, People's Republic of China
| | - Lijun Yuan
- Department of Ultrasound Diagnosis, Tang Du Hospital, Fourth Military Medical University, Xi'an, People's Republic of China
| | - Yunyou Duan
- Department of Ultrasound Diagnosis, Tang Du Hospital, Fourth Military Medical University, Xi'an, People's Republic of China
| | - Kechun Yao
- Department of Ultrasound Diagnosis, Air Force General Hospital, Beijing, People's Republic of China
| |
Collapse
|
4
|
Supuran CT. Carbonic anhydrase inhibitors as emerging agents for the treatment and imaging of hypoxic tumors. Expert Opin Investig Drugs 2018; 27:963-970. [PMID: 30426805 DOI: 10.1080/13543784.2018.1548608] [Citation(s) in RCA: 172] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Hypoxic tumors overexpress two carbonic anhydrases (CA, EC 4.2.1.1), CA IX and XII, involved in complex processes connected to tumorigenesis (pH regulation, metabolism, invasion, and dissemination of the tumor). The biochemical rationale behind these processes is orchestrated by the transcription factor hypoxia inducible factor 1 (HIF-1). AREAS COVERED CA IX and XII have been validated as antitumor/antimetastatic drug targets and may be used for imaging hypoxic tumors. Many CA inhibitors (CAIs) belonging to the sulfonamide, coumarin and sulfocoumarin classes selectively inhibit these two isoforms. CA IX/XII inhibitors inhibit the growth of primary tumors and the formation of metastases and deplete the cancer stem cell population, alone or in combination with other agents. These are three beneficial antitumor mechanisms that make them unique among anticancer drugs available. EXPERT OPINION Indisulam entered clinical trials as an antitumor sulfonamide; it progressed to Phase II trials but was terminated in 2016. However, SLC-0111, a sulfonamide CA IX/XII inhibitor 1, recently completed a successful Phase I clinical trial for the treatment of advanced, metastatic solid tumors. This compound is now in Phase Ib/II clinical trials and is being assessed as a monotherapy or in combination with other agents such as gemcitabine. CA IX/XII inhibitors are synergistic with other anticancer agents (cisplatin, proton pump inhibitors, doxorubicin, temozolamide) and are a versatile, emerging class of antitumor drugs.
Collapse
Affiliation(s)
- Claudiu T Supuran
- a NEUROFARBA Department, Sezione di Scienze Farmaceutiche e Nutraceutiche , Università degli Studi di Firenze , Sesto Fiorentino (Firenze) , Italy
| |
Collapse
|
5
|
Copper-Free 'Click' Chemistry-Based Synthesis and Characterization of Carbonic Anhydrase-IX Anchored Albumin-Paclitaxel Nanoparticles for Targeting Tumor Hypoxia. Int J Mol Sci 2018. [PMID: 29534020 PMCID: PMC5877699 DOI: 10.3390/ijms19030838] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Triple negative breast cancer (TNBC) is a difficult to treat disease due to the absence of the three unique receptors estrogen, progesterone and herceptin-2 (HER-2). To improve the current therapy and overcome the resistance of TNBC, there is unmet need to develop an effective targeted therapy. In this regard, one of the logical and economical approaches is to develop a tumor hypoxia-targeting drug formulation platform for selective delivery of payload to the drug-resistant and invasive cell population of TNBC tumors. Toward this, we developed a Carbonic Anhydrase IX (CA IX) receptor targeting human serum albumin (HSA) carriers to deliver the potent anticancer drug, Paclitaxel (PTX). We used Acetazolamide (ATZ), a small molecule ligand of CA IX to selectively deliver HSA-PTX in TNBC cells. A novel method of synthesis involving copper free ‘click’ chemistry (Dibenzocyclooctyl, DBCO) moiety with an azide-labeled reaction partner, known as Strain-Promoted Alkyne Azide Cycloaddition (SPAAC) along with a desolvation method for PTX loading were used in the present study to arrive at the CA IX selective nano-carriers, HSA-PTX-ATZ. The anticancer effect of HSA-PTX-ATZ is higher compared to HSA, PTX and non-targeted HSA-PTX in MDA-MB-231 and MDA-MB-468 cells. The cell killing effect is associated with induction of early and late phases of apoptosis. Overall, our proof-of-concept study shows a promising avenue for hypoxia-targeted drug delivery that can be adapted to several types of cancers.
Collapse
|
6
|
|
7
|
Lau J, Lin KS, Bénard F. Past, Present, and Future: Development of Theranostic Agents Targeting Carbonic Anhydrase IX. Am J Cancer Res 2017; 7:4322-4339. [PMID: 29158829 PMCID: PMC5695016 DOI: 10.7150/thno.21848] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 08/18/2017] [Indexed: 12/15/2022] Open
Abstract
Theranostics is the integration of diagnostic information with pharmaceuticals to increase effectiveness and safety of cancer treatments. Nuclear medicine provides a non-invasive means to visualize drug target expression across primary and metastatic sites, and assess pharmacokinetics and efficacy of companion therapeutic agents. This is significant given the increasing recognition of the importance of clonal heterogeneity in treatment response and resistance. Carbonic anhydrase IX (CA-IX) has been advocated as an attractive diagnostic and therapeutic biomarker for targeting hypoxia in solid malignancies. CA-IX confers cancer cell survival under low oxygen tension, and is associated with increased propensity for metastasis. As such, CA-IX is overexpressed in a broad spectrum of cancers. Different classes of antigen recognition molecules targeting CA-IX including monoclonal antibodies, peptides, small molecule inhibitors, and antibody mimetics have been radiolabeled for imaging and therapeutic applications. cG250, a chimeric monoclonal antibody, has been labeled with an assortment of radionuclides (124I, 111In, 89Zr, 131I, 90Y, and 177Lu) and is the most extensively investigated CA-IX radiopharmaceutical. In recent years, there have been tremendous advancements made by the research community in developing alternatives to cG250. Although still in preclinical settings, several small molecule inhibitors and antibody mimetics hold great promise in improving the management of aggressive and resistant cancers.
Collapse
|
8
|
Noninvasive determination of renal tumor histology utilizing molecular imaging. Urol Oncol 2016; 34:525-528. [DOI: 10.1016/j.urolonc.2016.08.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2016] [Revised: 08/18/2016] [Accepted: 08/22/2016] [Indexed: 11/23/2022]
|
9
|
Lv PC, Putt KS, Low PS. Evaluation of Nonpeptidic Ligand Conjugates for SPECT Imaging of Hypoxic and Carbonic Anhydrase IX-Expressing Cancers. Bioconjug Chem 2016; 27:1762-9. [PMID: 27362480 DOI: 10.1021/acs.bioconjchem.6b00271] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
As tumors grow, vasculature is often deficient or malformed, resulting in many localized areas of hypoxia. Cells located in these hypoxic regions exhibit an altered gene expression pattern that can significantly alter resistance to conventional anticancer treatments such as ionizing radiation and chemotherapeutic drugs. A priori knowledge of the level of hypoxia within a tumor may better guide clinical care. In an effort to create a hypoxia specific imaging agent, a ligand for the tissue hypoxia marker, carbonic anhydrase IX (CA IX), was synthesized and used as a targeting ligand to deliver an attached (99m)Tc-chelating agent. Binding of the resulting conjugates to hypoxic cancer cells was first characterized in vitro. Whole animal imaging and biodistribution studies then were performed to determine tumor specificity in vivo. Several conjugates were found to bind selectively to CA IX expressing tumors in a receptor-dependent manner. We suggest that such conjugates could prove useful in identifying hypoxic cancers and/or quantitating the level of hypoxia within a tumor.
Collapse
Affiliation(s)
- Peng-Cheng Lv
- Institute for Drug Discovery and ‡Department of Chemistry, Purdue University , West Lafayette, Indiana 47907 United States
| | - Karson S Putt
- Institute for Drug Discovery and ‡Department of Chemistry, Purdue University , West Lafayette, Indiana 47907 United States
| | - Philip S Low
- Institute for Drug Discovery and ‡Department of Chemistry, Purdue University , West Lafayette, Indiana 47907 United States
| |
Collapse
|
10
|
Sneddon D, Niemans R, Bauwens M, Yaromina A, van Kuijk SJA, Lieuwes NG, Biemans R, Pooters I, Pellegrini PA, Lengkeek NA, Greguric I, Tonissen KF, Supuran CT, Lambin P, Dubois L, Poulsen SA. Synthesis and in Vivo Biological Evaluation of 68Ga-Labeled Carbonic Anhydrase IX Targeting Small Molecules for Positron Emission Tomography. J Med Chem 2016; 59:6431-43. [DOI: 10.1021/acs.jmedchem.6b00623] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Deborah Sneddon
- Eskitis
Institute for Drug Discovery, Griffith University, Nathan, Queensland 4111, Australia
| | - Raymon Niemans
- Maastricht
Radiation Oncology (MAASTRO Lab), GROW − School for Oncology
and Developmental Biology, Maastricht University, Medical Centre, 6200 MD Maastricht, The Netherlands
| | - Matthias Bauwens
- Departments
of Radiology and Nuclear Medicine, Maastricht University Medical Centre, 6202 AZ Maastricht, The Netherlands
| | - Ala Yaromina
- Maastricht
Radiation Oncology (MAASTRO Lab), GROW − School for Oncology
and Developmental Biology, Maastricht University, Medical Centre, 6200 MD Maastricht, The Netherlands
| | - Simon J. A. van Kuijk
- Maastricht
Radiation Oncology (MAASTRO Lab), GROW − School for Oncology
and Developmental Biology, Maastricht University, Medical Centre, 6200 MD Maastricht, The Netherlands
| | - Natasja G. Lieuwes
- Maastricht
Radiation Oncology (MAASTRO Lab), GROW − School for Oncology
and Developmental Biology, Maastricht University, Medical Centre, 6200 MD Maastricht, The Netherlands
| | - Rianne Biemans
- Maastricht
Radiation Oncology (MAASTRO Lab), GROW − School for Oncology
and Developmental Biology, Maastricht University, Medical Centre, 6200 MD Maastricht, The Netherlands
| | - Ivo Pooters
- Departments
of Radiology and Nuclear Medicine, Maastricht University Medical Centre, 6202 AZ Maastricht, The Netherlands
| | - Paul A. Pellegrini
- LifeSciences
Division, Australian Nuclear Science and Technology Organisation (ANSTO), Locked Bag 2001, Kirrawee DC, New South Wales 2232, Australia
| | - Nigel A. Lengkeek
- LifeSciences
Division, Australian Nuclear Science and Technology Organisation (ANSTO), Locked Bag 2001, Kirrawee DC, New South Wales 2232, Australia
| | - Ivan Greguric
- LifeSciences
Division, Australian Nuclear Science and Technology Organisation (ANSTO), Locked Bag 2001, Kirrawee DC, New South Wales 2232, Australia
| | - Kathryn F. Tonissen
- Eskitis
Institute for Drug Discovery, Griffith University, Nathan, Queensland 4111, Australia
| | - Claudiu T. Supuran
- Dipartimento
Neurofarba, Sezione di Scienze Farmaceutiche, Polo Scientifico, Università degli Studi di Firenze, 50019 Sesto Fiorentino, Italy
| | - Philippe Lambin
- Maastricht
Radiation Oncology (MAASTRO Lab), GROW − School for Oncology
and Developmental Biology, Maastricht University, Medical Centre, 6200 MD Maastricht, The Netherlands
| | - Ludwig Dubois
- Maastricht
Radiation Oncology (MAASTRO Lab), GROW − School for Oncology
and Developmental Biology, Maastricht University, Medical Centre, 6200 MD Maastricht, The Netherlands
| | - Sally-Ann Poulsen
- Eskitis
Institute for Drug Discovery, Griffith University, Nathan, Queensland 4111, Australia
| |
Collapse
|
11
|
Lv PC, Roy J, Putt KS, Low PS. Evaluation of a Carbonic Anhydrase IX-Targeted Near-Infrared Dye for Fluorescence-Guided Surgery of Hypoxic Tumors. Mol Pharm 2016; 13:1618-25. [PMID: 27043317 DOI: 10.1021/acs.molpharmaceut.6b00065] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Proof-of-principle studies in ovarian, lung, and brain cancer patients have shown that fluorescence-guided surgery can enable removal of otherwise undetectable malignant lesions, decrease the number of cancer-positive margins, and permit identification of disease-containing lymph nodes that would have normally evaded resection. Unfortunately, the current arsenal of tumor-targeted fluorescent dyes does not permit identification of all cancers, raising the need to design new tumor-specific fluorescent dyes to illuminate the currently undetectable cancers. In an effort to design a more universal fluorescent cancer imaging agent, we have undertaken to synthesize a fluorophore that could label all hypoxic regions of tumors. We report here the synthesis, in vitro binding, and in vivo imaging of a near-infrared (NIR) fluorescent dye that is targeted to carbonic anhydrase IX (CA IX), i.e., a widely accepted marker of hypoxic tissues. The low molecular weight NIR probe, named Hypoxyfluor, is shown to bind CA IX with high affinity and accumulate rapidly and selectively in CA IX positive tumors. Because nearly all human cancers contain hypoxic regions that express CA IX abundantly, this NIR probe should facilitate surgical resection of a wide variety of solid tumors.
Collapse
Affiliation(s)
- Peng-Cheng Lv
- Center for Drug Discovery and ‡Department of Chemistry, Purdue University , West Lafayette, Indiana 47907, United States
| | - Jyoti Roy
- Center for Drug Discovery and ‡Department of Chemistry, Purdue University , West Lafayette, Indiana 47907, United States
| | - Karson S Putt
- Center for Drug Discovery and ‡Department of Chemistry, Purdue University , West Lafayette, Indiana 47907, United States
| | - Philip S Low
- Center for Drug Discovery and ‡Department of Chemistry, Purdue University , West Lafayette, Indiana 47907, United States
| |
Collapse
|
12
|
Lau J, Zhang Z, Jenni S, Kuo HT, Liu Z, Vullo D, Supuran CT, Lin KS, Bénard F. PET Imaging of Carbonic Anhydrase IX Expression of HT-29 Tumor Xenograft Mice with 68Ga-Labeled Benzenesulfonamides. Mol Pharm 2016; 13:1137-46. [DOI: 10.1021/acs.molpharmaceut.5b00934] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Joseph Lau
- Department of Molecular
Oncology, BC Cancer Agency, Vancouver, BC, Canada
| | - Zhengxing Zhang
- Department of Molecular
Oncology, BC Cancer Agency, Vancouver, BC, Canada
| | - Silvia Jenni
- Department of Molecular
Oncology, BC Cancer Agency, Vancouver, BC, Canada
| | - Hsiou-Ting Kuo
- Department of Molecular
Oncology, BC Cancer Agency, Vancouver, BC, Canada
| | - Zhibo Liu
- Department of Chemistry, University of British Columbia, Vancouver, BC, Canada
| | - Daniela Vullo
- Dipartimento Neurofarba and Laboratorio di Chimica Bioinorganica, Università degli Studi di Firenze, Florence, Italy
| | - Claudiu T. Supuran
- Dipartimento Neurofarba and Laboratorio di Chimica Bioinorganica, Università degli Studi di Firenze, Florence, Italy
| | - Kuo-Shyan Lin
- Department of Molecular
Oncology, BC Cancer Agency, Vancouver, BC, Canada
- Department
of Radiology, University of British Columbia, Vancouver, BC, Canada
| | - François Bénard
- Department of Molecular
Oncology, BC Cancer Agency, Vancouver, BC, Canada
- Department
of Radiology, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
13
|
Teruya K, Tonissen KF, Poulsen SA. Recent developments of small molecule chemical probes for fluorescence-based detection of human carbonic anhydrase II and IX. MEDCHEMCOMM 2016. [DOI: 10.1039/c6md00296j] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The increasingly sophisticated array of approaches for the specific labeling and fluorescence-based detection of carbonic anhydrase enzymes using small molecule affinity-based chemical probes is reviewed.
Collapse
Affiliation(s)
- Kanae Teruya
- Eskitis Institute for Drug Discovery
- Griffith University
- Nathan
- Australia
| | | | - Sally-Ann Poulsen
- Eskitis Institute for Drug Discovery
- Griffith University
- Nathan
- Australia
| |
Collapse
|
14
|
Mahon BP, Hendon AM, Driscoll JM, Rankin GM, Poulsen SA, Supuran CT, McKenna R. Saccharin: a lead compound for structure-based drug design of carbonic anhydrase IX inhibitors. Bioorg Med Chem 2015; 23:849-54. [PMID: 25614109 PMCID: PMC4352949 DOI: 10.1016/j.bmc.2014.12.030] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Revised: 12/08/2014] [Accepted: 12/15/2014] [Indexed: 12/11/2022]
Abstract
Carbonic anhydrase IX (CA IX) is a key modulator of aggressive tumor behavior and a prognostic marker and target for several cancers. Saccharin (SAC) based compounds may provide an avenue to overcome CA isoform specificity, as they display both nanomolar affinity and preferential binding, for CA IX compared to CA II (>50-fold for SAC and >1000-fold when SAC is conjugated to a carbohydrate moiety). The X-ray crystal structures of SAC and a SAC-carbohydrate conjugate bound to a CA IX-mimic are presented and compared to CA II. The structures provide substantial new insight into the mechanism of SAC selective CA isoform inhibition.
Collapse
Affiliation(s)
- Brian P Mahon
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Box 100245, Gainesville, FL 32610, USA
| | - Alex M Hendon
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Box 100245, Gainesville, FL 32610, USA
| | - Jenna M Driscoll
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Box 100245, Gainesville, FL 32610, USA
| | - Gregory M Rankin
- Eskitis Institute for Drug Discovery, Griffith University, Nathan, Queensland 4111, Australia
| | - Sally-Ann Poulsen
- Eskitis Institute for Drug Discovery, Griffith University, Nathan, Queensland 4111, Australia
| | - Claudiu T Supuran
- Polo Scientifico, Neurofarba Department and Laboratorio di Chimica Bioinorganica, Università degli Studi di Firenze, Rm. 188, Via della Lastruccia 3, 50019 Sesto Fiorentino, Florence, Italy
| | - Robert McKenna
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Box 100245, Gainesville, FL 32610, USA.
| |
Collapse
|