1
|
Yan H, Zhu X, Li Z, Liu Z, Jin S, Zhou X, Han Z, Woo J, Meng L, Chi X, Han C, Zhao Y, Tucker ME, Zhao Y, Zhao H, Waheed J. Effect of Ba 2+ on the biomineralization of Ca 2+ and Mg 2+ ions induced by Bacillus licheniformis. World J Microbiol Biotechnol 2024; 40:182. [PMID: 38668902 DOI: 10.1007/s11274-024-03975-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 04/02/2024] [Indexed: 05/18/2024]
Abstract
The effect of barium ions on the biomineralization of calcium and magnesium ions is often overlooked when utilizing microbial-induced carbonate precipitation technology for removing barium, calcium, and magnesium ions from oilfield wastewater. In this study, Bacillus licheniformis was used to bio-precipitate calcium, magnesium, and barium ions. The effects of barium ions on the physiological and biochemical characteristics of bacteria, as well as the components of extracellular polymers and mineral characteristics, were also studied in systems containing coexisting barium, calcium, and magnesium ions. The results show that the increasing concentrations of barium ions decreased pH, carbonic anhydrase activity, and concentrations of bicarbonate and carbonate ions, while it increased the contents of humic acids, proteins, polysaccharides, and DNA in extracellular polymers in the systems containing all three types of ions. With increasing concentrations of barium ions, the content of magnesium within magnesium-rich calcite and the size of minerals precipitated decreased, while the full width at half maximum of magnesium-rich calcite, the content of O-C=O and N-C=O, and the diversity of protein secondary structures in the minerals increased in systems containing all three coexisting ions. Barium ions does inhibit the precipitation of calcium and magnesium ions, but the immobilized bacteria can mitigate the inhibitory effect. The precipitation ratios of calcium, magnesium, and barium ions reached 81-94%, 68-82%, and 90-97%. This research provides insights into the formation of barium-enriched carbonate minerals and offers improvements for treating oilfield wastewater.
Collapse
Affiliation(s)
- Huaxiao Yan
- College of Chemical and Biological Engineering, College of Earth Science and Engineering, Shandong Provincial Key Laboratory of Depositional Mineralization and Sedimentary Minerals, Shandong University of Science and Technology, Qingdao, 266590, China
| | - Xiaofei Zhu
- College of Chemical and Biological Engineering, College of Earth Science and Engineering, Shandong Provincial Key Laboratory of Depositional Mineralization and Sedimentary Minerals, Shandong University of Science and Technology, Qingdao, 266590, China
| | - Zhenjiang Li
- College of Chemical and Biological Engineering, College of Earth Science and Engineering, Shandong Provincial Key Laboratory of Depositional Mineralization and Sedimentary Minerals, Shandong University of Science and Technology, Qingdao, 266590, China
| | - Zhiyong Liu
- College of Chemical and Biological Engineering, College of Earth Science and Engineering, Shandong Provincial Key Laboratory of Depositional Mineralization and Sedimentary Minerals, Shandong University of Science and Technology, Qingdao, 266590, China
| | - Shengping Jin
- College of Chemical and Biological Engineering, College of Earth Science and Engineering, Shandong Provincial Key Laboratory of Depositional Mineralization and Sedimentary Minerals, Shandong University of Science and Technology, Qingdao, 266590, China
| | - Xiaotong Zhou
- College of Chemical and Biological Engineering, College of Earth Science and Engineering, Shandong Provincial Key Laboratory of Depositional Mineralization and Sedimentary Minerals, Shandong University of Science and Technology, Qingdao, 266590, China
| | - Zuozhen Han
- College of Chemical and Biological Engineering, College of Earth Science and Engineering, Shandong Provincial Key Laboratory of Depositional Mineralization and Sedimentary Minerals, Shandong University of Science and Technology, Qingdao, 266590, China.
- Laboratory for Marine Mineral Resources, Center for Isotope Geochemistry and Geochronology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China.
| | - Jusun Woo
- School of Earth and Environmental Sciences, Seoul National University, Seoul, 08826, Korea.
| | - Long Meng
- College of Chemical and Biological Engineering, College of Earth Science and Engineering, Shandong Provincial Key Laboratory of Depositional Mineralization and Sedimentary Minerals, Shandong University of Science and Technology, Qingdao, 266590, China
| | - Xiangqun Chi
- College of Chemical and Biological Engineering, College of Earth Science and Engineering, Shandong Provincial Key Laboratory of Depositional Mineralization and Sedimentary Minerals, Shandong University of Science and Technology, Qingdao, 266590, China
| | - Chao Han
- College of Chemical and Biological Engineering, College of Earth Science and Engineering, Shandong Provincial Key Laboratory of Depositional Mineralization and Sedimentary Minerals, Shandong University of Science and Technology, Qingdao, 266590, China
- Laboratory for Marine Mineral Resources, Center for Isotope Geochemistry and Geochronology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Yanyang Zhao
- College of Chemical and Biological Engineering, College of Earth Science and Engineering, Shandong Provincial Key Laboratory of Depositional Mineralization and Sedimentary Minerals, Shandong University of Science and Technology, Qingdao, 266590, China
| | - Maurice E Tucker
- School of Earth Sciences, University of Bristol, Bristol, BS8 1RJ, UK
- Cabot Institute, University of Bristol, Cantock's Close, Bristol, BS8 1UJ, UK
| | - Yueming Zhao
- Qingdao West Coast New District First High School, Qingdao, 266555, China
| | - Hui Zhao
- College of Chemical and Biological Engineering, College of Earth Science and Engineering, Shandong Provincial Key Laboratory of Depositional Mineralization and Sedimentary Minerals, Shandong University of Science and Technology, Qingdao, 266590, China.
| | - Junaid Waheed
- University of Azad Jammu and Kashmir, Muzaffarabad, 13110, Azad Jammu and Kashmir, Pakistan
| |
Collapse
|
2
|
Chafik A, Essamadi A, Çelik SY, Mavi A. Purification and biochemical characterization of a novel carbonic anhydrase II from erythrocytes of camel (Camelusdromedarius). Biochem Biophys Res Commun 2023; 676:171-181. [PMID: 37517220 DOI: 10.1016/j.bbrc.2023.07.055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 07/26/2023] [Indexed: 08/01/2023]
Abstract
A novel carbonic anhydrase II (CA II) from erythrocytes of camel (Camelus dromedarius) was purified to homogeneity using affinity chromatography and biochemically characterized. Specific activity of 140.88 U/mg was obtained with 745.17-fold purification and 25.37% yield. The enzyme was a monomer with a lower molecular weight (25 kDa) and lower Zn content (0.50 mol of Zn per mol of protein). The enzyme showed higher optimum temperature (70 °C) and pH (pH 9.0), moreover, it was stable at higher temperatures and strongly alkaline pH as judged by thermodynamic parameters (Ea, kd, Ed, t1/2, D-value, Z-value, ΔH, ΔG and ΔS). The enzyme was inhibited by cations (Al3+, Ca2+, Cd2+, Co2+, Cr3+, Cu2+, Fe3+, Ni2+, Mg2+ and Zn2+) as well as by anions (Br‾, CH3COO‾, ClO4‾, CN‾, F‾, HCO3‾, I‾, N3‾, NO3‾ and SCN‾), some anions (C6H5O73-, CO32-, SeO3‾ and SO42-) does not affect enzyme activity. Effect of various chemicals on enzyme activity was also investigated. Km, Vmax, kcat and kcat/Km values for 4-NPA were found to be 1.74 mM, 0.0093 U/mL, 0,0039 s-1 and 0,0023 s-1 mM-1, respectively. With these interesting biochemical properties, camel CA II represents promising candidate for harsh industrial applications, in particular, for a successful biomimetic CO2 sequestration process.
Collapse
Affiliation(s)
- Abdelbasset Chafik
- Higher School of Technology of El Kelâa des Sraghna, Cadi Ayyad University, Beni Mellal Road Km 8, BP 104, El Kelâa des Sraghna, 43000, Morocco; Laboratory of Biochemistry, Neurosciences, Natural Resources and Environment, Faculty of Sciences and Techniques, Hassan First University, Settat, 26000, Morocco; Bioresources and Food Safety Laboratory, Faculty of Sciences and Techniques, Cadi Ayyad University, Boulevard Abdelkrim Khattabi, BP 549, Marrakech, 40000, Morocco.
| | - Abdelkhalid Essamadi
- Laboratory of Biochemistry, Neurosciences, Natural Resources and Environment, Faculty of Sciences and Techniques, Hassan First University, Settat, 26000, Morocco
| | - Safinur Yildirim Çelik
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Atatürk University, 25240, Erzurum, Turkey
| | - Ahmet Mavi
- Chemistry Laboratory, Department of Mathematics and Science Education, Kazim Karabekir Education Faculty, Atatürk University, 25240, Erzurum, Turkey; Department of Nanoscience & Nanoengineering, Graduate School of Natural & Applied Science, Atatürk University, Erzurum, Turkey
| |
Collapse
|
3
|
Harnpicharnchai P, Mayteeworakoon S, Kitikhun S, Chunhametha S, Likhitrattanapisal S, Eurwilaichitr L, Ingsriswang S. High level of calcium carbonate precipitation achieved by mixed culture containing ureolytic and non-ureolytic bacterial strains. Lett Appl Microbiol 2022; 75:888-898. [PMID: 35611563 DOI: 10.1111/lam.13748] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 05/13/2022] [Accepted: 05/17/2022] [Indexed: 12/01/2022]
Abstract
This study demonstrates a remarkably high level of microbial-induced calcium carbonate precipitation (MICP) using a mixed culture containing TBRC 1396 (Priestia megaterium), TBRC 8147 (Neobacillus drentensis), and ATCC 11859 (Sporosarcina pasteurii) bacterial strains. The mixed culture produced CaCO3 weights 1.4 times higher than those obtained from S. pasteurii, the gold standard for efficient MICP processes. The three strains were selected after characterization of various Bacillus spp. and related species for their ability to induce the MICP process, especially in an alkaline and high temperature environment. Results showed that TBRC 1396 and TBRC 8147 strains, as well as TBRC 5949 (Bacillus subtilis) and TBRC 8986 (Priestia aryabhattai) strains, could generate calcium carbonate at pH 9-12 and temperature 30-40 °C, which is suitable for construction and consolidation purposes. The TBRC 8147 strain also exhibited CaCO3 precipitation at 45 °C. The TBRC 8986 and TBRC 8147 strains are non-ureolytic bacteria capable of MICP in the absence of urea, which can be used to avoid the generation of undesirable ammonia associated with the ureolytic MICP process. These findings facilitate the successful use of MICP as a sustainable and environmentally friendly technology for the development of various materials, including self-healing concrete and soil consolidation.
Collapse
Affiliation(s)
- Piyanun Harnpicharnchai
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Khlong Luang, Pathum Thani, Thailand
| | - Sermsiri Mayteeworakoon
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Khlong Luang, Pathum Thani, Thailand
| | - Supattra Kitikhun
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Khlong Luang, Pathum Thani, Thailand
| | - Suwanee Chunhametha
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Khlong Luang, Pathum Thani, Thailand
| | - Somsak Likhitrattanapisal
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Khlong Luang, Pathum Thani, Thailand
| | - Lily Eurwilaichitr
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Khlong Luang, Pathum Thani, Thailand
| | - Supawadee Ingsriswang
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Khlong Luang, Pathum Thani, Thailand
| |
Collapse
|
4
|
Caglayan C, Taslimi P, Türk C, Kandemir FM, Demir Y, Gulcin İ. Purification and characterization of the carbonic anhydrase enzyme from horse mackerel (Trachurus trachurus) muscle and the impact of some metal ions and pesticides on enzyme activity. Comp Biochem Physiol C Toxicol Pharmacol 2019; 226:108605. [PMID: 31422160 DOI: 10.1016/j.cbpc.2019.108605] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 08/10/2019] [Accepted: 08/14/2019] [Indexed: 12/18/2022]
Abstract
In this paper, the total carbonic anhydrase (CA) enzyme was purified from horse mackerel (Trachurus trachurus) muscle with a specific activity of 23,063.93 EU/mg, purification fold of 551.08, total activity of 1522.22 EU/mL and a yield of 18.50% using sulfanilamide affinity column chromatography. For obtaining the subunit molecular mass and enzyme purity, sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) for this part was performed and a single band was clearly recorded. The molecular mass of this enzyme was found approximately 35 kDa. The optimum temperature and pH values were obtained from Arrhenius plot. In addition, the inhibitory effects of different heavy metal ions (Fe2+, Cu2+, Co2+, Pb2+ Hg2+ and As3+) and some pesticides (thiram, clofentezine, propineb, deltamethrin, azoxystrobin and thiophanate) on horse mackerel (Trachurus trachurus) muscle tissue CA enzyme activities were investigated by utilizing esterase assay activity. The used metal ions and pesticides had IC50 values in the range of 0.21-13.84 mM and 3.78-70.58 mM, respectively.
Collapse
Affiliation(s)
- Cuneyt Caglayan
- Department of Biochemistry, Faculty of Veterinary Medicine, Bingol University, 12000 Bingol, Turkey
| | - Parham Taslimi
- Department of Biotechnology, Faculty of Science, Bartin University, 74100 Bartin, Turkey.
| | - Cebrahil Türk
- Department of Fisheries, Genç Vocational School, Bingol University, 12500 Bingol, Turkey
| | - Fatih Mehmet Kandemir
- Department of Biochemistry, Faculty of Veterinary Medicine, Atatürk University, 25240 Erzurum, Turkey
| | - Yeliz Demir
- Department of Pharmacy Services, Nihat Delibalta Göle Vocational High School, Ardahan University, 75700 Ardahan, Turkey
| | - İlhami Gulcin
- Department of Chemistry, Faculty of Science, Atatürk University, 25240 Erzurum, Turkey
| |
Collapse
|