1
|
Dalio FM, Machado MFM, Marcondes MF, Juliano MA, Chagas JR, Cunha RLOR, Oliveira V. CPP-Ala-Ala-Tyr-PABA inhibitor analogs with improved selectivity for neurolysin or thimet oligopeptidase. Biochem Biophys Res Commun 2020; 522:368-373. [PMID: 31761323 DOI: 10.1016/j.bbrc.2019.11.097] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 11/15/2019] [Indexed: 11/15/2022]
Abstract
Thimet oligopeptidase (TOP, EC 3.4.24.15) and neurolysin (NEL, EC 3.4.24.16) are closely related zinc-dependent metalo-oligopeptidases, which take part in the metabolism of oligopeptides (from 5 to 17 amino acid residues) inside and outside cells. Both peptidases are ubiquitously distributed in tissues. TOP is one of the main intracellular peptide-processing enzymes being important for the antigen selection in the MHC Class I presentation route, while NEL function has been more associated with the extracellular degradation of neurotensin. Despite efforts being made to develop specific inhibitors for these peptidases, the most used are: CPP-Ala-Ala-Tyr-PABA, described by Orlowski et al. in 1988, and CPP-Ala-Aib-Tyr-PABA (JA-2) that is an analog more resistant to proteolysis, which development was made by Shrimpton et al. in 2000. In the present work, we describe other analogs of these compounds but, with better discriminatory capacity to inhibit specifically NEL or TOP. The modifications introduced in these new analogs were based on a key difference existent in the extended binding sites of NEL and TOP: the negatively charged Glu469 residue of TOP corresponds to the positively charged Arg470 residue of NEL. These residues are in position to interact with the residue at the P1' and/or P2' of their substrates (mimicked by the Ala-Ala/P1'-P2' residues of the CPP-Ala-Ala-Tyr-PABA). Therefore, exploring this single difference, the following compounds were synthesized: CPP-Asp-Ala-Tyr-PABA, CPP-Arg-Ala-Tyr-PABA, CPP-Ala-Asp-Tyr-PABA, CPP-Ala-Arg-Tyr-PABA. Confirming the predictions, the replacement of each non-charged residue of the internal portion Ala-Ala by a charged residue Asp or Arg resulted in compounds with higher selectivity for NEL or TOP, especially due to the electrostatic attraction or repulsion by the NEL Arg470 or TOP Glu469 residue. The CPP-Asp-Ala-Tyr-PABA and CPP-Ala-Asp-Tyr-PABA presented higher affinities for NEL, and, the CFP-Ala-Arg-Tyr-PABA showed higher affinity for TOP.
Collapse
Affiliation(s)
- Fernanda M Dalio
- Departamento de Biofísica, Universidade Federal de São Paulo, 04044-020, São Paulo, SP, Brazil
| | - Maurício F M Machado
- Centro Interdisciplinar de Investigação Bioquímica (CIIB), Universidade de Mogi das Cruzes, 08780-911, Mogi das Cruzes, SP, Brazil
| | - Marcelo F Marcondes
- Departamento de Biofísica, Universidade Federal de São Paulo, 04044-020, São Paulo, SP, Brazil
| | - Maria A Juliano
- Departamento de Biofísica, Universidade Federal de São Paulo, 04044-020, São Paulo, SP, Brazil
| | - Jair R Chagas
- Departamento de Biofísica, Universidade Federal de São Paulo, 04044-020, São Paulo, SP, Brazil
| | - Rodrigo L O R Cunha
- Laboratório de Biologia Química, Centro de Ciências Naturais e Humanas (CCNH), Universidade Federal do ABC, 09210-170, Santo André, SP, Brazil
| | - Vitor Oliveira
- Departamento de Biofísica, Universidade Federal de São Paulo, 04044-020, São Paulo, SP, Brazil.
| |
Collapse
|
2
|
Steer DL, Lew RA, Perlmutter P, Smith AI, Aguilar MI. Design and synthesis of inhibitors incorporating beta -amino acids of metalloendopeptidase EC 3.4.24.15. J Pept Sci 2000; 6:470-7. [PMID: 11016884 DOI: 10.1002/1099-1387(200009)6:9<470::aid-psc287>3.0.co;2-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Endopeptidase EC 3.4.24.15 (EP 24.15) is a thermolysin-like metalloendopeptidase which is expressed widely throughout the body, with the highest concentrations in the brain, pituitary and testis. While the precise role of EP 24.15 remains unknown, it is thought to participate in the regulated metabolism of a number of specific neuropeptides. Of the limited number of inhibitors described for EP 24.15, N-[1-(R,S)-carboxy-3-phenylpropyl]-Ala-Ala-Tyr-p-amino benzoate (CFP) is the most widely studied. CFP is a potent and specific inhibitor, but is unstable in vivo due to its cleavage between the alanine and tyrosine residues by the enzyme neprilysin (EP 24.11). The cpp-Ala-Ala N-terminal product of this cleavage is a potent inhibitor of angiotensin converting enzyme, which further limits the use of CFP in vivo. To generate specific inhibitors of EP 24.15 that are resistant to in vivo proteolysis by EP 24.11, beta-amino acids have been incorporated into the structure of CFP. We have prepared racemic mixtures of beta-amino acids containing proteogenic side chains, which are 9-fluorenylmethoxycarbonyl (Fmoc)-protected, and several analogues of CFP containing beta-amino acids have been synthesized by solid phase peptide synthesis. The results of stability and inhibitory studies of these new analogues show that the incorporation of beta-amino acids adjacent to the scissile bond can indeed stabilize the peptides against cleavage by EP 24.11 and still inhibit EP 24.15. The results obtained in these studies demonstrate the potential of these amino acids in the synthesis of peptidomimetics and in the design of new stable and specific therapeutics.
Collapse
Affiliation(s)
- D L Steer
- Department of Biochemistry & Molecular Biology, Monash University, Victoria, Australia
| | | | | | | | | |
Collapse
|
3
|
Anderson RJ, Clark BP, Hewage CM, Smith AI, Mackay SP. Conformational analysis of an EP24.15 inhibitor by NMR and molecular modelling. Int J Pept Res Ther 1999. [DOI: 10.1007/bf02443437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|