1
|
Lai HY, Fan KC, Lee YH, Lew WZ, Lai WY, Lee SY, Chang WJ, Huang HM. Using a static magnetic field to attenuate the severity in COVID-19-invaded lungs. Sci Rep 2024; 14:16830. [PMID: 39039227 PMCID: PMC11263632 DOI: 10.1038/s41598-024-67806-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 07/16/2024] [Indexed: 07/24/2024] Open
Abstract
Two important factors affecting the progress of coronavirus disease 2019 (COVID-19) caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are the S-protein binding function of ACE2 receptors and the membrane fluidity of host cells. This study aimed to evaluate the effect of static magnetic field (SMF) on S-protein/ACE2 binding and cellular membrane fluidity of lung cells, and was performed in vitro using a Calu-3 cell model and in vivo using an animal model. The ability of ACE2 receptors to bind to SARS-CoV-2 spike protein on host cell surfaces under SMF stimulation was evaluated using fluorescence images. Host lung cell membrane fluidity was tested using fluorescence polarization to determine the effects of SMF. Our results indicate that 0.4 T SMF can affect binding between S-protein and ACE2 receptors and increase Calu-3 cell membrane fluidity, and that SMF exposure attenuates LPS-induced alveolar wall thickening in mice. These results may be of value for developing future non-contact, non-invasive, and low side-effect treatments to reduce disease severity in COVID-19-invaded lungs.
Collapse
Affiliation(s)
- Hsuan-Yu Lai
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, 11031, Taiwan
| | - Kuo-Cheng Fan
- Department of Dentistry, Taipei Medical University Wan Fang Hospital, 11696, Taipei, Taiwan
| | - Yen-Hua Lee
- Department of Animal Science, National Pingtung University of Science and Technology, 912301, Pingtung, Taiwan
| | - Wei-Zhen Lew
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, 11031, Taiwan
| | - Wei-Yi Lai
- Department of Medical Research, Taipei Veterans General Hospital, 112062, Taipei, Taiwan
| | - Sheng-Yang Lee
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, 11031, Taiwan
- Department of Dentistry, Taipei Medical University Wan Fang Hospital, 11696, Taipei, Taiwan
| | - Wei-Jen Chang
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, 11031, Taiwan
| | - Haw-Ming Huang
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, 11031, Taiwan.
| |
Collapse
|
2
|
Luo S, Li Z, Liu L, Zhao J, Ge W, Zhang K, Zhou Z, Liu Y. Static magnetic field-induced IL-6 secretion in periodontal ligament stem cells accelerates orthodontic tooth movement. Sci Rep 2024; 14:9851. [PMID: 38684732 PMCID: PMC11059396 DOI: 10.1038/s41598-024-60621-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 04/25/2024] [Indexed: 05/02/2024] Open
Abstract
Static magnetic field (SMF) promoting bone tissue remodeling is a potential non-invasive therapy technique to accelerate orthodontic tooth movement (OTM). The periodontal ligament stem cells (PDLSCs), which are mechanosensitive cells, are essential for force-induced bone remodeling and OTM. However, whether and how the PDLSCs influence the process of inflammatory bone remodeling under mechanical force stimuli in the presence of SMFs remains unclear. In this study, we found that local SMF stimulation significantly enhanced the OTM distance and induced osteoclastogenesis on the compression side of a rat model of OTM. Further experiments with macrophages cultured with supernatants from force-loaded PDLSCs exposed to an SMF showed enhanced osteoclast formation. RNA-seq analysis showed that interleukin-6 (IL-6) was elevated in force-loaded PDLSCs exposed to SMFs. IL-6 expression was also elevated on the pressure side of a rat OTM model with an SMF. The OTM distance induced by an SMF was significantly decreased after injection of the IL-6 inhibitor tocilizumab. These results imply that SMF promotes osteoclastogenesis by inducing force-loaded PDLSCs to secrete the inflammatory cytokine IL-6, which accelerates OTM. This will help to reveal the mechanism of SMF accelerates tooth movement and should be evaluated for application in periodontitis patients.
Collapse
Affiliation(s)
- Shitong Luo
- Department of Orthodontics, School and Hospital of Stomatology, Kunming Medical University, 1088 Middle Haiyuan Road, High-Tech Zone, Kunming, 650106, Yunnan, China
- Yunnan Key Laboratory of Stomatology, Kunming, 650106, China
- Department of Orthodontics, Suining Central Hospital, Suining, 629000, China
| | - Zhilian Li
- Department of Orthodontics, School and Hospital of Stomatology, Kunming Medical University, 1088 Middle Haiyuan Road, High-Tech Zone, Kunming, 650106, Yunnan, China
- Yunnan Key Laboratory of Stomatology, Kunming, 650106, China
| | - Lizhiyi Liu
- Department of Orthodontics, School and Hospital of Stomatology, Kunming Medical University, 1088 Middle Haiyuan Road, High-Tech Zone, Kunming, 650106, Yunnan, China
- Yunnan Key Laboratory of Stomatology, Kunming, 650106, China
| | - Juan Zhao
- Department of Pathology, Suining Central Hospital, Suining, 629000, China
| | - Wenbin Ge
- Department of Orthodontics, School and Hospital of Stomatology, Kunming Medical University, 1088 Middle Haiyuan Road, High-Tech Zone, Kunming, 650106, Yunnan, China
- Yunnan Key Laboratory of Stomatology, Kunming, 650106, China
| | - Kun Zhang
- Department of Orthodontics, School and Hospital of Stomatology, Kunming Medical University, 1088 Middle Haiyuan Road, High-Tech Zone, Kunming, 650106, Yunnan, China
- Yunnan Key Laboratory of Stomatology, Kunming, 650106, China
| | - Zhi Zhou
- Department of Orthodontics, Affiliated Hospital of Yunnan University, Yunnan University, 176 Qingnian Road, Wuhua District, Kunming, 650021, Yunnan, China.
| | - Yali Liu
- Department of Orthodontics, School and Hospital of Stomatology, Kunming Medical University, 1088 Middle Haiyuan Road, High-Tech Zone, Kunming, 650106, Yunnan, China.
- Yunnan Key Laboratory of Stomatology, Kunming, 650106, China.
| |
Collapse
|
3
|
Xu A, Wang Q, Lv X, Lin T. Progressive Study on the Non-thermal Effects of Magnetic Field Therapy in Oncology. Front Oncol 2021; 11:638146. [PMID: 33816280 PMCID: PMC8010190 DOI: 10.3389/fonc.2021.638146] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Accepted: 02/08/2021] [Indexed: 12/16/2022] Open
Abstract
Cancer is one of the most common causes of death worldwide. Although the existing therapies have made great progress and significantly improved the prognosis of patients, it is undeniable that these treatment measures still cause some serious side effects. In this context, a new treatment method is needed to address these shortcomings. In recent years, the magnetic fields have been proposed as a novel treatment method with the advantages of less side effects, high efficiency, wide applications, and low costs without forming scars. Previous studies reported that static magnetic fields (SMFs) and low-frequency magnetic fields (LF-MFs, frequency below 300 Hz) exert anti-tumor function, independent of thermal effects. Magnetic fields (MFs) could inhibit cell growth and proliferation; induce cell cycle arrest, apoptosis, autophagy, and differentiation; regulate the immune system; and suppress angiogenesis and metastasis via various signaling pathways. In addition, they are effective in combination therapies: MFs not only promote the absorption of chemotherapy drugs by producing small holes on the surface of cell membrane but also enhance the inhibitory effects by regulating apoptosis and cell cycle related proteins. At present, MFs can be used as drug delivery systems to target magnetic nanoparticles (MNPs) to tumors. This review aims to summarize and analyze the current knowledge of the pre-clinical studies of anti-tumor effects and their underlying mechanisms and discuss the prospects of the application of MF therapy in cancer prevention and treatment.
Collapse
Affiliation(s)
- Aoshu Xu
- College of Instrumentation and Electrical Engineering, Jilin University, Changchun, China
- Key Laboratory of Geophysics Exploration Equipment, Ministry of Education of China, Changchun, China
| | - Qian Wang
- College of Instrumentation and Electrical Engineering, Jilin University, Changchun, China
- Key Laboratory of Geophysics Exploration Equipment, Ministry of Education of China, Changchun, China
| | - Xin Lv
- College of Instrumentation and Electrical Engineering, Jilin University, Changchun, China
- Key Laboratory of Geophysics Exploration Equipment, Ministry of Education of China, Changchun, China
| | - Tingting Lin
- College of Instrumentation and Electrical Engineering, Jilin University, Changchun, China
- Key Laboratory of Geophysics Exploration Equipment, Ministry of Education of China, Changchun, China
| |
Collapse
|
4
|
Lew WZ, Feng SW, Lin CT, Huang HM. Use of 0.4-Tesla static magnetic field to promote reparative dentine formation of dental pulp stem cells through activation of p38 MAPK signalling pathway. Int Endod J 2018; 52:28-43. [PMID: 29869795 DOI: 10.1111/iej.12962] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 05/30/2018] [Indexed: 11/29/2022]
Abstract
AIM To investigate whether static magnetic fields (SMFs) have a positive effect on the migration and dentinogenesis of dental pulp stem cells (DPSCs) to promote reparative dentine formation. METHODOLOGY In vitro scratch assays and a traumatic pulp exposure model were performed to evaluate the effect of 0.4-Tesla (T) SMF on DPSC migration. The cytoskeletons of the DPSCs were identified by fluorescence immunostaining and compared with those of a sham-exposed group. Dentinogenic evaluation was performed by analysing the expressions of DMP-1 and DSPP marker genes using a quantitative real-time polymerase chain reaction (qRT-PCR) process. Furthermore, the formation of calcified deposits was examined by staining the dentinogenic DPSCs with Alizarin Red S dye. Finally, the role played by the p38 MAPK signalling pathway in the migration and dentinogenesis of DPSCs under 0.4-T SMF was investigated by incorporating p38 inhibitor (SB203580) into the in vitro DPSC experiments. The Student's t-test and the Kruskal-Wallis test followed by Dunn's post hoc test with a significance level of P < 0.05 were used for statistical analysis. RESULTS The scratch assay results revealed that the application of 0.4-T SMF enhanced DPSCs migration towards the scratch wound (P < 0.05). The cytoskeletons of the SMF-treated DPSCs were found to be aligned perpendicular to the scratch wound. After 20 days of culture, the SMF-treated group had a greater number of out-grown cells than the sham-exposed group (nonmagnetized control). For the SMF-treated group, the DMP-1 (P < 0.05) and DSPP genes (P < 0.05), analysed by qRT-PCR, exhibited a higher expression. The distribution of calcified nodules was also found to be denser in the SMF-treated group when stained with Alizarin Red S dye (P < 0.05). Given the incorporation of p38 inhibitor SB203580 into the DPSCs, cell migration and dentinogenesis were suppressed. No difference was found between the SMF-treated and sham-exposed cells (P > 0.05). CONCLUSION 0.4-T SMF enhanced DPSC migration and dentinogenesis through the activation of the p38 MAPK-related pathway.
Collapse
Affiliation(s)
- W-Z Lew
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan
| | - S-W Feng
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan.,School of Oral Hygiene, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan
| | - C-T Lin
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan
| | - H-M Huang
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan.,Graduate Institute of Biomedical Optomechatronics, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
5
|
Static magnetic field attenuates lipopolysaccharide-induced inflammation in pulp cells by affecting cell membrane stability. ScientificWorldJournal 2015; 2015:492683. [PMID: 25884030 PMCID: PMC4391652 DOI: 10.1155/2015/492683] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Accepted: 08/28/2014] [Indexed: 12/02/2022] Open
Abstract
One of the causes of dental pulpitis is lipopolysaccharide- (LPS-) induced inflammatory response. Following pulp tissue inflammation, odontoblasts, dental pulp cells (DPCs), and dental pulp stem cells (DPSCs) will activate and repair damaged tissue to maintain homeostasis. However, when LPS infection is too serious, dental repair is impossible and disease may progress to irreversible pulpitis. Therefore, the aim of this study was to examine whether static magnetic field (SMF) can attenuate inflammatory response of dental pulp cells challenged with LPS. In methodology, dental pulp cells were isolated from extracted teeth. The population of DPSCs in the cultured DPCs was identified by phenotypes and multilineage differentiation. The effects of 0.4 T SMF on DPCs were observed through MTT assay and fluorescent anisotropy assay. Our results showed that the SMF exposure had no effect on surface markers or multilineage differentiation capability. However, SMF exposure increases cell viability by 15%. In addition, SMF increased cell membrane rigidity which is directly related to higher fluorescent anisotropy. In the LPS-challenged condition, DPCs treated with SMF demonstrated a higher tolerance to LPS-induced inflammatory response when compared to untreated controls. According to these results, we suggest that 0.4 T SMF attenuates LPS-induced inflammatory response to DPCs by changing cell membrane stability.
Collapse
|
6
|
Lai WY, Huang YC, Chang WJ, Wang HT, Fong TH, Lin CT, Huang HM. Static magnetic field attenuates lipopolysaccharide-induced multiple organ failure: A histopathologic study in mice. Int J Radiat Biol 2015; 91:135-41. [DOI: 10.3109/09553002.2015.959669] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
7
|
Juhász M, Nagy VL, Székely H, Kocsis D, Tulassay Z, László JF. Influence of inhomogeneous static magnetic field-exposure on patients with erosive gastritis: a randomized, self- and placebo-controlled, double-blind, single centre, pilot study. J R Soc Interface 2014; 11:20140601. [PMID: 25008086 PMCID: PMC4233709 DOI: 10.1098/rsif.2014.0601] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Accepted: 06/13/2014] [Indexed: 01/22/2023] Open
Abstract
This pilot study was devoted to the effect of static magnetic field (SMF)-exposure on erosive gastritis. The randomized, self- and placebo-controlled, double-blind, pilot study included 16 patients of the 2nd Department of Internal Medicine, Semmelweis University diagnosed with erosive gastritis. The instrumental analysis followed a qualitative (pre-intervention) assessment of the symptoms by the patient: lower heartburn (in the ventricle), upper heartburn (in the oesophagus), epigastric pain, regurgitation, bloating and dry cough. Medical diagnosis included a double-line upper panendoscopy followed by 30 min local inhomogeneous SMF-exposure intervention at the lower sternal region over the stomach with peak-to-peak magnetic induction of 3 mT and 30 mT m(-1) gradient at the target site. A qualitative (post-intervention) assessment of the same symptoms closed the examination. Sham- or SMF-exposure was used in a double-blind manner. The authors succeeded in justifying the clinically and statistically significant beneficial effect of the SMF- over sham-exposure on the symptoms of erosive gastritis, the average effect of inhibition was 56% by p = 0.001, n = 42 + 96. This pilot study was aimed to encourage gastroenterologists to test local, inhomogeneous SMF-exposure on erosive gastritis patients, so this intervention may become an evidence-based alternative or complementary method in the clinical use especially in cases when conventional therapy options are contraindicated.
Collapse
Affiliation(s)
- Márk Juhász
- 2nd Department of Internal Medicine, Semmelweis University, Budapest, Szentkirályi u. 46, 1088, Hungary
| | - Viktor L Nagy
- 2nd Department of Internal Medicine, Semmelweis University, Budapest, Szentkirályi u. 46, 1088, Hungary
| | - Hajnal Székely
- 2nd Department of Internal Medicine, Semmelweis University, Budapest, Szentkirályi u. 46, 1088, Hungary
| | - Dorottya Kocsis
- 2nd Department of Internal Medicine, Semmelweis University, Budapest, Szentkirályi u. 46, 1088, Hungary
| | - Zsolt Tulassay
- 2nd Department of Internal Medicine, Semmelweis University, Budapest, Szentkirályi u. 46, 1088, Hungary
| | - János F László
- e-Comers LLC, Csejtei u. 1-3, Budapest 1025, Hungary Department of Computer Science, University of Debrecen, Kassai út 26, Debrecen 4028, Hungary
| |
Collapse
|
8
|
Moon CH, Kwon O, Woo CH, Ahn HD, Kwon YS, Park SJ, Song CH, Ku SK. Therapeutic effect of irradiation of magnetic infrared laser on osteoarthritis rat model. Photochem Photobiol 2014; 90:1150-9. [PMID: 24962501 DOI: 10.1111/php.12304] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Accepted: 06/18/2014] [Indexed: 12/11/2022]
Abstract
Osteoarthritis (OA) is a degenerative joint disease caused by articular cartilage loss. Many complementary and alternative medicines for OA have been reported so far, but the effectiveness is controversial. Previously, we have shown anti-inflammatory effects of low level laser therapy with static magnetic field, magnetic infrared laser (MIL), in various animal models. Therefore, the beneficial effects were examined in OA rat model. Rats were divided by six groups; no treatment controls of sham and OA model, three MIL treatment groups of OA model at 6.65, 2.66 and 1.33 J cm(-2), and Diclofenac group of OA model with 2 mg kg(-1) diclofenac sodium. The OA control exhibited typical symptoms of OA, but 4-week MIL treatment improved the functional movement of knee joint with reduced edematous changes. In addition, cartilage GAGs were detected more in all MIL treatment groups than OA control. It suggests that 4-week MIL irradiation has dose-dependent anti-inflammatory and chondroprotective effects on OA. Histopathological analyses revealed that MIL treatment inhibits the cartilage degradation and enhances chondrocyte proliferation. The fact that MIL has an additional potential for the cartilage formation and no adverse effects can be regarded as great advantages for OA treatment. These suggest that MIL can be useful for OA treatment.
Collapse
Affiliation(s)
- Chul-Hwan Moon
- Department of Oriental Rehabilitation Medicine, College of Korean Medicine, Daegu Haany University, Gyeongsan, Korea
| | | | | | | | | | | | | | | |
Collapse
|