1
|
Huang H, Zhang L, Moser MAJ, Zhang W, Zhang B. A review of antenna designs for percutaneous microwave ablation. Phys Med 2021; 84:254-264. [PMID: 33773908 DOI: 10.1016/j.ejmp.2021.03.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 03/03/2021] [Accepted: 03/06/2021] [Indexed: 12/15/2022] Open
Abstract
Microwave (MW) antenna is a key element in microwave ablation (MWA) treatments as the means that energy is delivered in a focused manner to the tumor and its surrounding area. The energy delivered results in a rise in temperature to a lethal level, resulting in cell death in the ablation zone. The delivery of energy and hence the success of MWA is closely dependent on the structure of the antennas. Therefore, three design criteria, such as expected ablation zone pattern, efficiency of energy delivery, and minimization of the diameter of the antennas have been the focus along the evolution of the MW antenna. To further improve the performance of MWA in the treatment of various tumors through inventing novel antennas, this article reviews the state-of-the-art and summarizes the development of MW antenna designs regarding the three design criteria.
Collapse
Affiliation(s)
- Hangming Huang
- Energy-based Tumor Ablation Laboratory, School of Mechatronic Engineering and Automation, Shanghai University, Shanghai, China
| | - Lifeng Zhang
- Department of General Surgery, the First Affiliated Hospital of Soochow University,Soochow University, Jiangsu, China
| | - Michael A J Moser
- Department of Surgery, College of Medicine, University of Saskatchewan, Saskatoon, Canada
| | - Wenjun Zhang
- Division of Biomedical Engineering, College of Engineering, University of Saskatchewan, Saskatoon, Canada
| | - Bing Zhang
- Energy-based Tumor Ablation Laboratory, School of Mechatronic Engineering and Automation, Shanghai University, Shanghai, China.
| |
Collapse
|
2
|
Zhou ZQ, Zhao JJ, Chen CL, Liu Y, Zeng JX, Wu ZR, Tang Y, Zhu Q, Weng DS, Xia JC. HUS1 checkpoint clamp component (HUS1) is a potential tumor suppressor in primary hepatocellular carcinoma. Mol Carcinog 2018; 58:76-87. [PMID: 30182378 DOI: 10.1002/mc.22908] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 08/18/2018] [Accepted: 08/31/2018] [Indexed: 12/14/2022]
Abstract
The HUS1 checkpoint clamp component (HUS1), which is a member of an evolutionarily conserved, genotoxin-activated checkpoint complex (Rad9-Rad1-Hus1 [9-1-1] complex), is involved in cell cycle arrest and DNA repair in response to DNA damage. We conducted this study to investigate the biological significances of HUS1 expression in hepatocellular carcinoma (HCC) development. The mRNA and protein expression levels of HUS1 were determined using Real-time PCR and Western blot, respectively. One hundered and twenty four paraffin sections from HCC tissues were analyzed by immunohistochemistry to assess the association between HUS1 expression and clinicopathological characteristics of patients. The Kaplan-Meier method was performed to calculate the OS and RFS curves. Cell proliferation and colony formation assays, cell migration and invasion assays and cell cycle assays were used to determine the suppressor role of HUS1 in vitro. A mouse model was used to determine the effect of HUS1 on tumorigenesis. The expression of HUS1 was significantly decreased in HCC cell lines and tissues, and low HUS1 expression was associated with poor prognosis of HCC patients. Upregulation of HUS1 expression inhibited the cell proliferation, colony formation, migration, and invasion, as well as arrested cell cycle at G0/G1 in HCC cells in vitro. Moreover, sufficient HUS1 expression inhibited the tumor growth in nude mice. Our study revealed for the first time that HUS1 is a potential tumor suppressor that might produce an antitumor effect in human HCC. Furthermore, HUS1 may serve as a prognostic indicator and could be used for therapeutic application in HCC patients.
Collapse
Affiliation(s)
- Zi-Qi Zhou
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, China.,Department of Biotherapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Jing-Jing Zhao
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, China.,Department of Biotherapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Chang-Long Chen
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, China.,Department of Biotherapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yuan Liu
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, China.,Department of Biotherapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Jian-Xiong Zeng
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, China.,Department of Biotherapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Zheng-Rong Wu
- Department of Pathology, School of Basic Medicine, Southern Medical University, Guangzhou, China
| | - Yan Tang
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, China.,Department of Biotherapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Qian Zhu
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, China.,Department of Biotherapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - De-Sheng Weng
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, China.,Department of Biotherapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Jian-Chuan Xia
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, China.,Department of Biotherapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| |
Collapse
|