1
|
Wang S, Zhan J, Zhou X, He C, Wei P, Yi T. Design and Application of an In Situ Traceable Nitric Oxide Donor for Promoting the Healing of Wound Infections. Adv Healthc Mater 2024; 13:e2400922. [PMID: 38800965 DOI: 10.1002/adhm.202400922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/23/2024] [Indexed: 05/29/2024]
Abstract
Therapies for wound infections require medications with antibacterial and wound-healing functions. However, it remains a challenge to produce a single drug that can perform dual functions. Nitric oxide (NO), with its antibacterial and wound-healing activities, is an ideal solution to address this challenge. However, many controlled-release strategies for NO rely on external probes for tracing the release in situ, making it difficult to precisely assess the location and magnitude. To address this issue, this study describes a novel NO donor, DHU-NO1, capable of efficiently releasing NO under mild conditions (450 nm illumination). Simultaneously, DHU-NO1 generates the fluorophore Azure B (AZB), which enables direct, non-consumptive tracing of the NO release by monitoring the fluorescence and absorption changes in AZB. Given that NO can be conveniently traced, the amount of released NO can be controlled during biological applications, thereby allowing both functions of NO to be performed. When applied to the affected area, DHU-NO1, illuminated by both a simple light-emitting diode (LED) light source and natural light, achieves significant antibacterial effects against wound infections and promotes wound healing in mice. This study offers a novel and effective approach for treating wound infections.
Collapse
Affiliation(s)
- Shasha Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry and Chemical Engineering, Donghua University, Shanghai, 201620, China
| | - Jiexiang Zhan
- Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai, 201620, China
| | - Xiaojun Zhou
- Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai, 201620, China
| | - Chuanglong He
- Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai, 201620, China
| | - Peng Wei
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry and Chemical Engineering, Donghua University, Shanghai, 201620, China
| | - Tao Yi
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry and Chemical Engineering, Donghua University, Shanghai, 201620, China
| |
Collapse
|
2
|
Kim DS, Pessah IN, Santana CM, Purnell BS, Li R, Buchanan GF, Rumbeiha WK. Investigations into hydrogen sulfide-induced suppression of neuronal activity in vivo and calcium dysregulation in vitro. Toxicol Sci 2023; 192:kfad022. [PMID: 36882182 PMCID: PMC10109532 DOI: 10.1093/toxsci/kfad022] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023] Open
Abstract
Acute exposure to high concentrations of hydrogen sulfide (H2S) leads to sudden death and, if survived, lingering neurological disorders. Clinical signs include seizures, loss of consciousness, and dyspnea. The proximate mechanisms underlying H2S-induced acute toxicity and death have not been clearly elucidated. We investigated electrocerebral, cardiac and respiratory activity during H2S exposure using electroencephalogram (EEG), electrocardiogram (EKG) and plethysmography. H2S suppressed electrocerebral activity and disrupted breathing. Cardiac activity was comparatively less affected. To test whether Ca2+ dysregulation contributes to H2S-induced EEG suppression, we developed an in vitro real-time rapid throughput assay measuring patterns of spontaneous synchronized Ca2+ oscillations in cultured primary cortical neuronal networks loaded with the indicator Fluo-4 using the fluorescent imaging plate reader (FLIPR-Tetra®). Sulfide >5 ppm dysregulated synchronous calcium oscillation (SCO) patterns in a dose-dependent manner. Inhibitors of NMDA and AMPA receptors magnified H2S-induced SCO suppression. Inhibitors of L-type voltage gated Ca2+ channels and transient receptor potential channels prevented H2S-induced SCO suppression. Inhibitors of T-type voltage gated Ca2+ channels, ryanodine receptors, and sodium channels had no measurable influence on H2S-induced SCO suppression. Exposures to > 5 ppm sulfide also suppressed neuronal electrical activity in primary cortical neurons measured by multi-electrode array (MEA), an effect alleviated by pretreatment with the nonselective transient receptor potential channel inhibitor, 2-APB. 2-APB also reduced primary cortical neuronal cell death from sulfide exposure. These results improve our understanding of the role of different Ca2+ channels in acute H2S-induced neurotoxicity and identify transient receptor potential channel modulators as novel structures with potential therapeutic benefits.
Collapse
Affiliation(s)
- Dong-Suk Kim
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, Davis, California 95616, USA
| | - Isaac N Pessah
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, Davis, California 95616, USA
| | - Cristina M Santana
- VDPAM, College of Veterinary Medicine, Iowa State University, Ames, Iowa 50011, USA
- MRIGlobal, Kansas City, Missouri 64110, USA
| | - Benton S Purnell
- Department of Neurology, Iowa Neuroscience Institute, Carver College of Medicine, University of Iowa, Iowa City, Iowa 52246, USA
- Department of Nerosurgery, Robert Wood Johnson Medical School, Rutgers University, Piscataway, New Jersey 08854, USA
| | - Rui Li
- Department of Neurology, Iowa Neuroscience Institute, Carver College of Medicine, University of Iowa, Iowa City, Iowa 52246, USA
| | - Gordon F Buchanan
- Department of Neurology, Iowa Neuroscience Institute, Carver College of Medicine, University of Iowa, Iowa City, Iowa 52246, USA
| | - Wilson K Rumbeiha
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, Davis, California 95616, USA
| |
Collapse
|
3
|
Santana Maldonado C, Weir A, Rumbeiha WK. A comprehensive review of treatments for hydrogen sulfide poisoning: past, present, and future. Toxicol Mech Methods 2023; 33:183-196. [PMID: 36076319 DOI: 10.1080/15376516.2022.2121192] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
Hydrogen sulfide (H2S) poisoning remains a significant source of occupational fatalities and is the second most common cause of toxic gas-induced deaths. It is a rapidly metabolized systemic toxicant targeting the mitochondria, among other organelles. Intoxication is mostly acute, but chronic or in-between exposure scenarios also occur. Some genetic defects in H2S metabolism lead to lethal chronic H2S poisoning. In acute exposures, the neural, respiratory, and cardiovascular systems are the primary target organs resulting in respiratory distress, convulsions, hypotension, and cardiac irregularities. Some survivors of acute poisoning develop long-term sequelae, particularly in the central nervous system. Currently, treatment for H2S poisoning is primarily supportive care as there are no FDA-approved drugs. Besides hyperbaric oxygen treatment, drugs in current use for the management of H2S poisoning are controversial. Novel potential drugs are under pre-clinical research development, most of which target binding the H2S. However, there is an acute need to discover new drugs to prevent and treat H2S poisoning, including reducing mortality and morbidity, preventing sequalae from acute exposures, and for treating cumulative pathology from chronic exposures. In this paper, we perform a comprehensive review of H2S poisoning including perspectives on past, present, and future.
Collapse
Affiliation(s)
| | - Abigail Weir
- Molecular Biosciences, University of California, Davis, Davis, CA, USA
| | - Wilson K Rumbeiha
- Molecular Biosciences, University of California, Davis, Davis, CA, USA
| |
Collapse
|
4
|
Tang D, Tian N, Cai J, Ma J, Wang T, Zhang H, Sheng F. Analysis of CT and MR imaging features of the brain in patients with hydrogen sulfide poisoning based on clinical symptom grading. BMC Neurol 2022; 22:413. [PMID: 36344920 PMCID: PMC9639311 DOI: 10.1186/s12883-022-02956-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 10/17/2022] [Indexed: 11/09/2022] Open
Abstract
Objective To retrospectively analyze CT and MR imaging features of the brain in patients with hydrogen sulfide poisoning based on clinical symptom grading and to investigate their correlations with clinical symptoms and patients’ prognosis. Methods A retrospective analysis was performed of CT and MR imaging data of the brain in 40 patients with hydrogen sulfide poisoning in our hospital. There were four main imaging manifestations. Patients were clinically graded according to the central nervous system symptom scores of the Poisoning Severity Score (PSS) and staged according to the gas inhalation time segment. Based on clinical symptom grading, the frequencies and proportions of four imaging signs that occurred in each group were counted, their development trends were analyzed, and the correlations of imaging features with clinical grading and prognosis were calculated. Results Forty patients were divided into minor, moderate and severe clinical grades and classified into four stages. In patients with minor and moderate clinical grading, only one patient suffered from generalized brain edema at stage 1, with a good prognosis. Patients with severe clinical grade showed the highest probability of presenting with the four imaging signs. The imaging signs were correlated with the severe clinical grade and a poor prognosis (P = 0.000, R = 0.828; P = 0.000, R = 0.858). Conclusion In patients with the severe clinical grade, generalized brain edema and symmetrical hypodensity/abnormal signals in the bilateral basal ganglia and around the lateral ventricles were the main findings and were shown to persist. The presence of imaging signs can assist in the clinically effective evaluation of clinical symptom grade.
Collapse
Affiliation(s)
- Daidi Tang
- grid.414252.40000 0004 1761 8894Department of Radiology, the Fifth Medical Center of Chinese PLA General Hospital, Dongda Street 8, Beijing, 100071 China
| | - Ning Tian
- grid.414252.40000 0004 1761 8894Department of Radiology, the Fifth Medical Center of Chinese PLA General Hospital, Dongda Street 8, Beijing, 100071 China
| | - Jianming Cai
- grid.414252.40000 0004 1761 8894Department of Radiology, the Fifth Medical Center of Chinese PLA General Hospital, Dongda Street 8, Beijing, 100071 China
| | - Jinlin Ma
- grid.414252.40000 0004 1761 8894Department of Radiology, the Fifth Medical Center of Chinese PLA General Hospital, Dongda Street 8, Beijing, 100071 China
| | - Tingting Wang
- grid.414252.40000 0004 1761 8894Department of Radiology, the Fifth Medical Center of Chinese PLA General Hospital, Dongda Street 8, Beijing, 100071 China
| | - Hongtao Zhang
- grid.414252.40000 0004 1761 8894Department of Radiology, the Fifth Medical Center of Chinese PLA General Hospital, Dongda Street 8, Beijing, 100071 China
| | - Fugeng Sheng
- grid.414252.40000 0004 1761 8894Department of Radiology, the Fifth Medical Center of Chinese PLA General Hospital, Dongda Street 8, Beijing, 100071 China
| |
Collapse
|
5
|
Miyazaki Y, Marutani E, Ikeda T, Ni X, Hanaoka K, Xian M, Ichinose F. A Sulfonyl Azide-Based Sulfide Scavenger Rescues Mice from Lethal Hydrogen Sulfide Intoxication. Toxicol Sci 2021; 183:393-403. [PMID: 34270781 DOI: 10.1093/toxsci/kfab088] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Exposure to hydrogen sulfide (H2S) can cause neurotoxicity and cardiopulmonary arrest. Resuscitating victims of sulfide intoxication is extremely difficult, and survivors often exhibit persistent neurological deficits. However, no specific antidote is available for sulfide intoxication. The objective of this study was to examine whether administration of a sulfonyl azide-based sulfide-specific scavenger, SS20, would rescue mice in models of H2S intoxication: ongoing exposure and post-cardiopulmonary arrest. In the ongoing exposure model, SS20 (1,250 µmol/kg) or vehicle was administered to awake CD-1 mice intraperitoneally at 10 minutes after breathing 790 ppm of H2S followed by another 30 minutes of H2S inhalation. Effects of SS20 on survival was assessed. In the post-cardiopulmonary arrest model, cardiopulmonary arrest was induced by an intraperitoneal administration of sodium sulfide nonahydrate (125 mg/kg) in anesthetized mice. After 1 minute of cardiopulmonary arrest, mice were resuscitated with intravenous administration of SS20 (250 µmol/kg) or vehicle. Effects of SS20 on survival, neurological outcomes, and plasma H2S levels were evaluated. Administration of SS20 during ongoing H2S inhalation improved 24-hour survival (6/6 [100%] in SS20 versus 1/6 [17%] in vehicle; P = 0.0043). Post-arrest administration of SS20 improved 7-day survival (4/10 [40%] in SS20 versus 0/10 [0%] in vehicle; P = 0.0038) and neurological outcomes after resuscitation. SS20 decreased plasma H2S levels to pre-arrest baseline immediately after reperfusion and shortened the time to return of spontaneous circulation and respiration. The current results suggest that SS20 is an effective antidote against lethal H2S intoxication, even when administered after cardiopulmonary arrest.
Collapse
Affiliation(s)
- Yusuke Miyazaki
- Anesthesia Center for Critical Care Research, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA
| | - Eizo Marutani
- Anesthesia Center for Critical Care Research, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA
| | - Takamitsu Ikeda
- Anesthesia Center for Critical Care Research, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA
| | - Xiang Ni
- Department of Chemistry, Brown University, Providence, RI
| | - Kenjiro Hanaoka
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Ming Xian
- Department of Chemistry, Brown University, Providence, RI
| | - Fumito Ichinose
- Anesthesia Center for Critical Care Research, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA
| |
Collapse
|
6
|
Haouzi P, McCann M, Tubbs N. Azure B as a novel cyanide antidote: Preclinical in-vivo studies. Toxicol Rep 2020; 7:1459-1464. [PMID: 33194557 PMCID: PMC7645636 DOI: 10.1016/j.toxrep.2020.10.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 10/15/2020] [Accepted: 10/16/2020] [Indexed: 11/24/2022] Open
Abstract
We have determined the effects of azure B (AzB), the main demethylated metabolite of methylene blue (MB), on a model of lethal cyanide intoxication. Our rationale was the following: AzB 1- possesses redox properties very similar to those of MB, which is a potent cyanide antidote, 2- may present a higher intracellular diffusibility than MB, 3- is already present in commercially available solutions of MB, and 4- appears very quickly in the blood after MB administration. AzB could therefore be a member of the phenothiazium chromophore family of interest to treat cyanide intoxication. We found, in spontaneously breathing urethane sedated rats, that AzB mimicked the effects of MB by increasing metabolism, ventilation and cardiac contractility up to 30-40 mg/kg. AzB had a lethal toxicity when the dose of 60 mg/kg was reached. Doses of AzB were therefore chosen in keeping with these data and the doses of MB previously used against cyanide intoxication (4-20 mg/kg) in the rat - doses corresponding to those used in humans to treat methemoglobinemia. KCN, infused at the rate of 0.375 mg/kg/min iv for 13 min, was fatal within 15 min in 100 % of our un-anesthetized rats. AzB at the dose of 4 mg/kg (n = 5) or 10 mg/kg (n = 5) administered 3 min into cyanide infusion allowed 100 % of the animals to survive with no clinical sequelae. The onset of coma was also significantly delayed and no apnea or gasping occurred. At the dose of 20 mg/kg, AzB was much less effective. At 4 mg/kg, the antidotal effects of AzB were significantly better than those produced by MB at the same dose and were not different from the effects produced by 20 mg/kg MB. We conclude that AzB is a potent cyanide antidote at relatively low doses.
Collapse
Affiliation(s)
- Philippe Haouzi
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Pennsylvania State University, College of Medicine, Hershey, PA, USA
| | - Marissa McCann
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Pennsylvania State University, College of Medicine, Hershey, PA, USA
| | - Nicole Tubbs
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Pennsylvania State University, College of Medicine, Hershey, PA, USA
| |
Collapse
|
7
|
Haouzi P, McCann M, Wang J, Zhang XQ, Song J, Sariyer I, Langford D, Santerre M, Tubbs N, Haouzi-Judenherc A, Cheung JY. Antidotal effects of methylene blue against cyanide neurological toxicity: in vivo and in vitro studies. Ann N Y Acad Sci 2020; 1479:108-121. [PMID: 32374444 DOI: 10.1111/nyas.14353] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 03/31/2020] [Accepted: 04/04/2020] [Indexed: 12/14/2022]
Abstract
The aim of the present study was to determine whether methylene blue (MB) could directly oppose the neurological toxicity of a lethal cyanide (CN) intoxication. KCN, infused at the rate of 0.375 mg/kg/min intravenously, produced 100% lethality within 15 min in unanaesthetized rats (n = 12). MB at 10 (n = 5) or 20 mg/kg (n = 5), administered 3 min into CN infusion, allowed all animals to survive with no sequelae. No apnea and gasping were observed at 20 mg/kg MB (P < 0.001). The onset of coma was also significantly delayed and recovery from coma was shortened in a dose-dependent manner (median of 359 and 737 seconds, respectively, at 20 and 10 mg/kg). At 4 mg/kg MB (n = 5), all animals presented faster onset of coma and apnea and a longer period of recovery than at the highest doses (median 1344 seconds, P < 0.001). MB reversed NaCN-induced resting membrane potential depolarization and action potential depression in primary cultures of human fetal neurons intoxicated with CN. MB restored calcium homeostasis in the CN-intoxicated human SH-SY5Y neuroblastoma cell line. We conclude that MB mitigates the neuronal toxicity of CN in a dose-dependent manner, preventing the lethal depression of respiratory medullary neurons and fatal outcome.
Collapse
Affiliation(s)
- Philippe Haouzi
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Pennsylvania State University, College of Medicine, Hershey, Pennsylvania
| | - Marissa McCann
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Pennsylvania State University, College of Medicine, Hershey, Pennsylvania
| | - JuFang Wang
- Center for Translational Medicine, Temple University School of Medicine, Philadelphia, Pennsylvania
| | - Xue-Qian Zhang
- Center for Translational Medicine, Temple University School of Medicine, Philadelphia, Pennsylvania
| | - Jianliang Song
- Center for Translational Medicine, Temple University School of Medicine, Philadelphia, Pennsylvania
| | - Ilker Sariyer
- Department of Neurosciences, Temple University School of Medicine, Philadelphia, Pennsylvania
| | - Diane Langford
- Department of Neurosciences, Temple University School of Medicine, Philadelphia, Pennsylvania
| | - Maryline Santerre
- Fels Institute for Cancer Research and Molecular Biology, Temple University School of Medicine, Philadelphia, Pennsylvania
| | - Nicole Tubbs
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Pennsylvania State University, College of Medicine, Hershey, Pennsylvania
| | - Annick Haouzi-Judenherc
- Heart and Vascular Institute, Department of Medicine, Pennsylvania State University, College of Medicine, Hershey, Pennsylvania
| | - Joseph Y Cheung
- Center for Translational Medicine, Temple University School of Medicine, Philadelphia, Pennsylvania.,Department of Medicine, Temple University School of Medicine, Philadelphia, Pennsylvania
| |
Collapse
|
8
|
Haouzi P, Sonobe T, Judenherc-Haouzi A. Hydrogen sulfide intoxication induced brain injury and methylene blue. Neurobiol Dis 2019; 133:104474. [PMID: 31103557 DOI: 10.1016/j.nbd.2019.05.013] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 04/16/2019] [Accepted: 05/15/2019] [Indexed: 02/06/2023] Open
Abstract
Hydrogen sulfide (H2S) remains a chemical hazard in the gas and farming industry. It is easy to manufacture from common chemicals and thus represents a potential threat for the civilian population. It is also employed as a method of suicide, for which incidence has recently increased in the US. H2S is a mitochondrial poison and exerts its toxicity through mechanisms that are thought to result from its high affinity to various metallo-proteins (such as - but not exclusively- the mitochondrial cytochrome c oxidase) and interactions with cysteine residues of proteins. Ion channels with critical implications for the cardiac and the brain functions appear to be affected very early during and following H2S exposure, an effect which is rapidly reversible during a light intoxication. However, during severe H2S intoxication, a coma, associated with a reduction in cardiac contractility, develops within minutes or even seconds leading to death by complete electro-mechanical dissociation of the heart. If the level of intoxication is milder, a rapid and spontaneous recovery of the coma occurs as soon as the exposure stops. The risk, although probably very small, of developing long-term debilitating motor or cognitive deficits is present. One of the major challenges impeding our effort to offer an effective treatment against H2S intoxication after exposure is that the pool of free/soluble H2S almost immediately disappears from the body preventing agents trapping free H2S (cobalt or ferric compounds) to play their protective role. This paper (1) presents and discusses the neurological symptoms and lesions observed in various animals models and in humans following an acute exposure to sub-lethal or lethal levels of H2S, (2) reviews the potential interest of methylene blue (MB), a potent cyclic redox dye - currently used for the treatment of methemoglobinemia - which has potential rescuing effects on the mitochondrial activity, as an antidote against sulfide intoxication.
Collapse
Affiliation(s)
- Philippe Haouzi
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Pennsylvania State University College of Medicine, Hershey, PA, USA.
| | - Takashi Sonobe
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Annick Judenherc-Haouzi
- Heart and Vascular Institute, Pennsylvania State University College of Medicine, Hershey, PA, USA
| |
Collapse
|
9
|
Haouzi P, Tubbs N, Cheung J, Judenherc-Haouzi A. Methylene Blue Administration During and After Life-Threatening Intoxication by Hydrogen Sulfide: Efficacy Studies in Adult Sheep and Mechanisms of Action. Toxicol Sci 2019; 168:443-459. [PMID: 30590764 PMCID: PMC6516679 DOI: 10.1093/toxsci/kfy308] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Exposure to toxic levels of hydrogen sulfide (H2S) produces an acute cardiac depression that can be rapidly fatal. We sought to characterize the time course of the cardiac effects produced by the toxicity of H2S in sheep, a human sized mammal, and to describe the in vivo and in vitro antidotal properties of methylene blue (MB), which has shown efficacy in sulfide intoxicated rats. Infusing NaHS (720 mg) in anesthetized adult sheep produced a rapid dilation of the left ventricular with a decrease in contractility, which was lethal within about 10 min by pulseless electrical activity. MB (7 mg/kg), administered during sulfide exposure, maintained cardiac contractility and allowed all of the treated animals to recover. At a dose of 350 mg NaHS, we were able to produce an intoxication, which led to a persistent decrease in ventricular function for at least 1 h in nontreated animals. Administration of MB, 3 or 30 min after the end of exposure, whereas all free H2S had already vanished, restored cardiac contractility and the pyruvate/lactate (P/L) ratio. We found that MB exerts its antidotal effects through at least 4 different mechanisms: (1) a direct oxidation of free sulfide; (2) an increase in the pool of "trapped" H2S in red cells; (3) a restoration of the mitochondrial substrate-level phosphorylation; and (4) a rescue of the mitochondrial electron chain. In conclusion, H2S intoxication produces acute and long persisting alteration in cardiac function in large mammals even after all free H2S has vanished. MB exerts its antidotal effects against life-threatening sulfide intoxication via multifarious properties, some of them unrelated to any direct interaction with free H2S.
Collapse
Affiliation(s)
- Philippe Haouzi
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| | - Nicole Tubbs
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| | - Joseph Cheung
- Center of Translational Medicine
- Department of Medicine, Lewis Katz School of Medicine of Temple University, Philadelphia, Pennsylvania
| | - Annick Judenherc-Haouzi
- Heart and Vascular Institute, Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| |
Collapse
|
10
|
Cheung JY, Wang J, Zhang XQ, Song J, Davidyock JM, Prado FJ, Shanmughapriya S, Worth AM, Madesh M, Judenherc-Haouzi A, Haouzi P. Methylene Blue Counteracts H 2S-Induced Cardiac Ion Channel Dysfunction and ATP Reduction. Cardiovasc Toxicol 2019; 18:407-419. [PMID: 29603116 DOI: 10.1007/s12012-018-9451-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
We have previously demonstrated that methylene blue (MB) counteracts the effects of hydrogen sulfide (H2S) cardiotoxicity by improving cardiomyocyte contractility and intracellular Ca2+ homeostasis disrupted by H2S poisoning. In vivo, MB restores cardiac contractility severely depressed by sulfide and protects against arrhythmias, ranging from bundle branch block to ventricular tachycardia or fibrillation. To dissect the cellular mechanisms by which MB reduces arrhythmogenesis and improves bioenergetics in myocytes intoxicated with H2S, we evaluated the effects of H2S on resting membrane potential (Em), action potential (AP), Na+/Ca2+ exchange current (INaCa), depolarization-activated K+ currents and ATP levels in adult mouse cardiac myocytes and determined whether MB could counteract the toxic effects of H2S on myocyte electrophysiology and ATP. Exposure to toxic concentrations of H2S (100 µM) significantly depolarized Em, reduced AP amplitude, prolonged AP duration at 90% repolarization (APD90), suppressed INaCa and depolarization-activated K+ currents, and reduced ATP levels in adult mouse cardiac myocytes. Treating cardiomyocytes with MB (20 µg/ml) 3 min after H2S exposure restored Em, APD90, INaCa, depolarization-activated K+ currents, and ATP levels toward normal. MB improved mitochondrial membrane potential (∆ψm) and oxygen consumption rate in myocytes in which Complex I was blocked by rotenone. We conclude that MB ameliorated H2S-induced cardiomyocyte toxicity at multiple levels: (1) reversing excitation-contraction coupling defects (Ca2+ homeostasis and L-type Ca2+ channels); (2) reducing risks of arrhythmias (Em, APD, INaCa and depolarization-activated K+ currents); and (3) improving cellular bioenergetics (ATP, ∆ψm).
Collapse
MESH Headings
- Action Potentials
- Adenosine Triphosphate/metabolism
- Animals
- Arrhythmias, Cardiac/chemically induced
- Arrhythmias, Cardiac/metabolism
- Arrhythmias, Cardiac/physiopathology
- Arrhythmias, Cardiac/prevention & control
- Calcium Channels, L-Type/drug effects
- Calcium Channels, L-Type/metabolism
- Calcium Signaling/drug effects
- Energy Metabolism/drug effects
- Heart Rate/drug effects
- Hydrogen Sulfide/toxicity
- Ion Channels/drug effects
- Ion Channels/metabolism
- Membrane Potential, Mitochondrial/drug effects
- Methylene Blue/pharmacology
- Mice
- Mitochondria, Heart/drug effects
- Mitochondria, Heart/metabolism
- Myocardial Contraction/drug effects
- Myocytes, Cardiac/drug effects
- Myocytes, Cardiac/metabolism
- Oxygen Consumption/drug effects
- Potassium Channels, Voltage-Gated/drug effects
- Potassium Channels, Voltage-Gated/metabolism
- Sodium-Calcium Exchanger/drug effects
- Sodium-Calcium Exchanger/metabolism
Collapse
Affiliation(s)
- Joseph Y Cheung
- Center of Translational Medicine, Lewis Katz School of Medicine of Temple University, 3500 N. Broad Street, MERB 958, Philadelphia, PA, 19140, USA.
- Department of Medicine, Lewis Katz School of Medicine of Temple University, Philadelphia, PA, 19140, USA.
| | - JuFang Wang
- Center of Translational Medicine, Lewis Katz School of Medicine of Temple University, 3500 N. Broad Street, MERB 958, Philadelphia, PA, 19140, USA
| | - Xue-Qian Zhang
- Center of Translational Medicine, Lewis Katz School of Medicine of Temple University, 3500 N. Broad Street, MERB 958, Philadelphia, PA, 19140, USA
| | - Jianliang Song
- Center of Translational Medicine, Lewis Katz School of Medicine of Temple University, 3500 N. Broad Street, MERB 958, Philadelphia, PA, 19140, USA
| | - John M Davidyock
- Department of Medicine, Lewis Katz School of Medicine of Temple University, Philadelphia, PA, 19140, USA
| | - Fabian Jana Prado
- Center of Translational Medicine, Lewis Katz School of Medicine of Temple University, 3500 N. Broad Street, MERB 958, Philadelphia, PA, 19140, USA
| | - Santhanam Shanmughapriya
- Center of Translational Medicine, Lewis Katz School of Medicine of Temple University, 3500 N. Broad Street, MERB 958, Philadelphia, PA, 19140, USA
| | - Alison M Worth
- Center of Translational Medicine, Lewis Katz School of Medicine of Temple University, 3500 N. Broad Street, MERB 958, Philadelphia, PA, 19140, USA
| | - Muniswamy Madesh
- Center of Translational Medicine, Lewis Katz School of Medicine of Temple University, 3500 N. Broad Street, MERB 958, Philadelphia, PA, 19140, USA
| | - Annick Judenherc-Haouzi
- Heart and Vascular Institute, Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| | - Philippe Haouzi
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| |
Collapse
|
11
|
On the Efficacy of Cardio-Pulmonary Resuscitation and Epinephrine Following Cyanide- and H 2S Intoxication-Induced Cardiac Asystole. Cardiovasc Toxicol 2019; 18:436-449. [PMID: 29644580 DOI: 10.1007/s12012-018-9454-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
This study was aimed at determining the efficacy of epinephrine, followed by chest compressions, in producing a return of spontaneous circulation (ROSC) during cyanide (CN)- or hydrogen sulfide (H2S)-induced toxic cardiac pulseless electrical activity (PEA) in the rat. Thirty-nine anesthetized rats were exposed to either intravenous KCN (n = 27) or H2S solutions (n = 12), at a rate that led to a PEA within less than 10 min. In the group intoxicated by CN, 20 rats were mechanically ventilated and received either epinephrine (0.1 mg/kg i.v. n = 10) followed by chest compressions or saline (n = 10, "control CN") when in PEA. PEA was defined as a systolic pressure below 20 mmHg and a pulse pressure of less than 5 mmHg for 1 min. In addition, seven spontaneously breathing rats were also exposed to the same CN protocol, but infusion was stopped when a central apnea occurred; then, as soon as a PEA occurred, epinephrine (0.1 mg/kg IV) was administered while providing manual chest compressions and mechanical ventilation (CPR). Finally, 12 rats were intoxicated with H2S, while mechanically ventilated, and received either saline (n = 6, "control H2S") or epinephrine (n = 6) with CPR when in PEA. None of the control-intoxicated animals resuscitated (10 rats in the control CN group and 6 in the control H2S group). In contrast, all the animals intoxicated with CN or H2S that received epinephrine followed by chest compressions, returned to effective circulation. In addition, half of the spontaneously breathing CN-intoxicated animals that achieved ROSC after epinephrine resumed spontaneous breathing. In all the animals achieving ROSC, blood pressure, cardiac output, peripheral blood flow and [Formula: see text]O2 returned toward baseline, but remained lower than the pre-intoxication levels (p < 0.01) with a persistent lactic acidosis. Epinephrine, along with CPR maneuvers, was highly effective in resuscitating rodents intoxicated with CN or H2S. Since epinephrine is readily available in any ambulance, its place as an important countermeasure against mitochondrial poisons should be advocated. It remains critical to determine whether the systematic administration of epinephrine to any victims found hypotensive following CN or H2S intoxication could prevent PEA, decrease post-ischemic brain injury and increase the efficacy of current antidotes by improving the circulatory status.
Collapse
|
12
|
Pais-Roldán P, Edlow BL, Jiang Y, Stelzer J, Zou M, Yu X. Multimodal assessment of recovery from coma in a rat model of diffuse brainstem tegmentum injury. Neuroimage 2019; 189:615-630. [PMID: 30708105 DOI: 10.1016/j.neuroimage.2019.01.060] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 01/07/2019] [Accepted: 01/22/2019] [Indexed: 01/03/2023] Open
Abstract
Despite the association between brainstem lesions and coma, a mechanistic understanding of coma pathogenesis and recovery is lacking. We developed a coma model in the rat mimicking human brainstem coma, which allowed multimodal analysis of a brainstem tegmentum lesion's effects on behavior, cortical electrophysiology, and global brain functional connectivity. After coma induction, we observed a transient period (∼1h) of unresponsiveness accompanied by cortical burst-suppression. Comatose rats then gradually regained behavioral responsiveness concurrent with emergence of delta/theta-predominant cortical rhythms in primary somatosensory cortex. During the acute stage of coma recovery (∼1-8h), longitudinal resting-state functional MRI revealed an increase in functional connectivity between subcortical arousal nuclei in the thalamus, basal forebrain, and basal ganglia and cortical regions implicated in awareness. This rat coma model provides an experimental platform to systematically study network-based mechanisms of coma pathogenesis and recovery, as well as to test targeted therapies aimed at promoting recovery of consciousness after coma.
Collapse
Affiliation(s)
- Patricia Pais-Roldán
- High-Field Magnetic Resonance Department, Max Planck Institute for Biological Cybernetics, Tuebingen, 72076, Germany; Graduate Training Centre of Neuroscience, International Max Planck Research School, University of Tuebingen, Tuebingen, 72074, Germany
| | - Brian L Edlow
- Center for Neurotechnology and Neurorecovery, Massachusetts General Hospital, Boston, MA, 02114, USA; Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, 02129, USA
| | - Yuanyuan Jiang
- High-Field Magnetic Resonance Department, Max Planck Institute for Biological Cybernetics, Tuebingen, 72076, Germany
| | - Johannes Stelzer
- High-Field Magnetic Resonance Department, Max Planck Institute for Biological Cybernetics, Tuebingen, 72076, Germany
| | - Ming Zou
- Department of Geriatrics & Neurology, The 2nd Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Xin Yu
- High-Field Magnetic Resonance Department, Max Planck Institute for Biological Cybernetics, Tuebingen, 72076, Germany; Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, 02129, USA.
| |
Collapse
|
13
|
Malone Rubright SL, Pearce LL, Peterson J. Environmental toxicology of hydrogen sulfide. Nitric Oxide 2017; 71:1-13. [PMID: 29017846 PMCID: PMC5777517 DOI: 10.1016/j.niox.2017.09.011] [Citation(s) in RCA: 128] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 08/23/2017] [Accepted: 09/27/2017] [Indexed: 11/24/2022]
Affiliation(s)
- Samantha L Malone Rubright
- University of Pittsburgh Graduate School of Public Health, Department of Environmental Health, 100 Technology Drive, Pittsburgh PA 15219, United States
| | - Linda L Pearce
- University of Pittsburgh Graduate School of Public Health, Department of Environmental Health, 100 Technology Drive, Pittsburgh PA 15219, United States.
| | - Jim Peterson
- University of Pittsburgh Graduate School of Public Health, Department of Environmental Health, 100 Technology Drive, Pittsburgh PA 15219, United States.
| |
Collapse
|
14
|
Frawley KL, Cronican AA, Pearce LL, Peterson J. Sulfide Toxicity and Its Modulation by Nitric Oxide in Bovine Pulmonary Artery Endothelial Cells. Chem Res Toxicol 2017; 30:2100-2109. [PMID: 29088535 DOI: 10.1021/acs.chemrestox.7b00147] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Bovine pulmonary artery endothelial cells (BPAEC) respond in a dose-dependent manner to millimolar (0-10) levels of sodium sulfide (NaHS). No measurable increase in caspase-3 activity and no change in the extent of autophagy (or mitophagy) were observed in BPAEC. However, lactate dehydrogenase levels increased in the BPAEC exposed NaHS, which indicated necrotic cell death. In the case of galactose-conditioned BPAEC, the toxicity of NaHS was increased by 30% compared to that observed in BPAEC maintained in the regular glucose-containing culture medium, which indicated a link between mitochondrial oxidative phosphorylation and the mechanism of toxicant action. This is consistent with the widely held view that cytochrome c oxidase (complex IV of the mitochondrial electron-transport system) is the principal molecular target involved in the acute toxicity of "sulfide" (H2S/HS-). In support of this view, elevated NO (which can reverse cytochrome c oxidase inhibition) ameliorated the toxicity of NaHS and, conversely, suppression of endogenous NO production exacerbated the observed toxicity. Respirometric measurements showed the BPAEC to possess a robust sulfide oxidizing system, which was able to out-compete cytochrome c oxidase for available H2S/HS- at micromolar concentrations. This detoxification system has previously been reported by other groups in several cell types, but notably, not neurons. The findings appear to provide some insight into the question of why human survivors of H2S inhalation frequently present at the clinic with respiratory insufficiency/pulmonary edema, while acutely poisoned laboratory animals tend to either succumb to cardiopulmonary paralysis or fully recover without any intervention.
Collapse
Affiliation(s)
- Kristin L Frawley
- Department of Environmental and Occupational Health, Graduate School of Public Health, The University of Pittsburgh , 100 Technology Drive, Pittsburgh, Pennsylvania 15219, United States
| | - Andrea A Cronican
- Department of Environmental and Occupational Health, Graduate School of Public Health, The University of Pittsburgh , 100 Technology Drive, Pittsburgh, Pennsylvania 15219, United States
| | - Linda L Pearce
- Department of Environmental and Occupational Health, Graduate School of Public Health, The University of Pittsburgh , 100 Technology Drive, Pittsburgh, Pennsylvania 15219, United States
| | - Jim Peterson
- Department of Environmental and Occupational Health, Graduate School of Public Health, The University of Pittsburgh , 100 Technology Drive, Pittsburgh, Pennsylvania 15219, United States
| |
Collapse
|
15
|
Ghirmai S, Bülow L, Sakai H. In vivo evaluation of electron mediators for the reduction of methemoglobin encapsulated in liposomes using electron energies produced by red blood cell glycolysis. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2017; 46:1364-1372. [DOI: 10.1080/21691401.2017.1397003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Semhar Ghirmai
- Department of Chemistry, Nara Medical University, Kashihara, Japan
- Department of Pure and Applied Biochemistry, Lund University, Lund, Sweden
| | - Leif Bülow
- Department of Pure and Applied Biochemistry, Lund University, Lund, Sweden
| | - Hiromi Sakai
- Department of Chemistry, Nara Medical University, Kashihara, Japan
| |
Collapse
|
16
|
Swan KW, Song BM, Chen AL, Chen TJ, Chan RA, Guidry BT, Katakam PVG, Kerut EK, Giles TD, Kadowitz PJ. Analysis of decreases in systemic arterial pressure and heart rate in response to the hydrogen sulfide donor sodium sulfide. Am J Physiol Heart Circ Physiol 2017; 313:H732-H743. [PMID: 28667054 PMCID: PMC5668608 DOI: 10.1152/ajpheart.00729.2016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 06/05/2017] [Accepted: 06/23/2017] [Indexed: 01/16/2023]
Abstract
The actions of hydrogen sulfide (H2S) on the heart and vasculature have been extensively reported. However, the mechanisms underlying the effects of H2S are unclear in the anesthetized rat. The objective of the present study was to investigate the effect of H2S on the electrocardiogram and examine the relationship between H2S-induced changes in heart rate (HR), mean arterial pressure (MAP), and respiratory function. Intravenous administration of the H2S donor Na2S in the anesthetized Sprague-Dawley rat decreased MAP and HR and produced changes in respiratory function. The administration of Na2S significantly increased the RR interval at some doses but had no effect on PR or corrected QT(n)-B intervals. In experiments where respiration was maintained with a mechanical ventilator, we observed that Na2S-induced decreases in MAP and HR were independent of respiration. In experiments where respiration was maintained by mechanical ventilation and HR was maintained by cardiac pacing, Na2S-induced changes in MAP were not significantly altered, whereas changes in HR were abolished. Coadministration of glybenclamide significantly increased MAP and HR responses at some doses, but methylene blue, diltiazem, and ivabradine had no significant effect compared with control. The decreases in MAP and HR in response to Na2S could be dissociated and were independent of changes in respiratory function, ATP-sensitive K+ channels, methylene blue-sensitive mechanism involving L-type voltage-sensitive Ca2+ channels, or hyperpolarization-activated cyclic nucleotide-gated channels. Cardiovascular responses observed in spontaneously hypertensive rats were more robust than those in Sprague-Dawley rats.NEW & NOTEWORTHY H2S is a gasotransmitter capable of producing a decrease in mean arterial pressure and heart rate. The hypotensive and bradycardic effects of H2S can be dissociated, as shown with cardiac pacing experiments. Responses were not blocked by diltiazem, ivabradine, methylene blue, or glybenclamide.
Collapse
Affiliation(s)
- Kevin W Swan
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, Louisiana
| | - Bryant M Song
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, Louisiana
| | - Allen L Chen
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, Louisiana
| | - Travis J Chen
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, Louisiana
| | - Ryan A Chan
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, Louisiana
| | - Bradley T Guidry
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, Louisiana
| | - Prasad V G Katakam
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, Louisiana
| | | | - Thomas D Giles
- Division of Cardiology, Department of Internal Medicine, Tulane University School of Medicine, New Orleans, Louisiana
| | - Philip J Kadowitz
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, Louisiana;
| |
Collapse
|
17
|
Haouzi P, Tubbs N, Rannals MD, Judenherc-Haouzi A, Cabell LA, McDonough JA, Sonobe T. Circulatory Failure During Noninhaled Forms of Cyanide Intoxication. Shock 2017; 47:352-362. [PMID: 27513083 PMCID: PMC5303192 DOI: 10.1097/shk.0000000000000732] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Our objective was to determine how circulatory failure develops following systemic administration of potassium cyanide (KCN). We used a noninhaled modality of intoxication, wherein the change in breathing pattern would not influence the diffusion of CN into the blood, akin to the effects of ingesting toxic levels of CN. In a group of 300 to 400 g rats, CN-induced coma (CN i.p., 7 mg/kg) produced a central apnea within 2 to 3 min along with a potent and prolonged gasping pattern leading to autoresuscitation in 38% of the animals. Motor deficits and neuronal necrosis were nevertheless observed in the surviving animals. To clarify the mechanisms leading to potential autoresuscitation versus asystole, 12 urethane-anesthetized rats were then exposed to the lowest possible levels of CN exposure that would lead to breathing depression within 7 to 8 min; this dose averaged 0.375 mg/kg/min i.v. At this level of intoxication, a cardiac depression developed several minutes only after the onset of the apnea, leading to cardiac asystole as PaO2 reached value approximately 15 Torr, unless breathing was maintained by mechanical ventilation or through spontaneous gasping. Higher levels of KCN exposure in 10 animals provoked a primary cardiac depression, which led to a rapid cardiac arrest by pulseless electrical activity (PEA) despite the maintenance of PaO2 by mechanical ventilation. These effects were totally unrelated to the potassium contained in KCN. It is concluded that circulatory failure can develop as a direct consequence of CN-induced apnea but in a narrow range of exposure. In this "low" range, maintaining pulmonary gas exchange after exposure, through mechanical ventilation (or spontaneous gasping), can reverse cardiac depression and restore spontaneous breathing. At higher level of intoxication, cardiac depression is to be treated as a specific and spontaneously irreversible consequence of CN exposure, leading to a PEA.
Collapse
Affiliation(s)
- Philippe Haouzi
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Hershey, PA
| | - Nicole Tubbs
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Hershey, PA
| | - Matthew D. Rannals
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Hershey, PA
| | - Annick Judenherc-Haouzi
- Heart and Vascular Institute, Pennsylvania State University, College of Medicine, Hershey, PA
| | | | | | - Takashi Sonobe
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Hershey, PA
| |
Collapse
|
18
|
Sonobe T, Haouzi P. H2S concentrations in the heart after acute H2S administration: methodological and physiological considerations. Am J Physiol Heart Circ Physiol 2016; 311:H1445-H1458. [PMID: 27638880 DOI: 10.1152/ajpheart.00464.2016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 09/15/2016] [Indexed: 11/22/2022]
Abstract
In this study, we have tried to characterize the limits of the approach typically used to determine H2S concentrations in the heart based on the amount of H2S evaporating from heart homogenates-spontaneously, after reaction with a strong reducing agent, or in a very acidic solution. Heart homogenates were prepared from male rats in control conditions or after H2S infusion induced a transient cardiogenic shock (CS) or cardiac asystole (CA). Using a method of determination of gaseous H2S with a detection limit of 0.2 nmol, we found that the process of homogenization could lead to a total disappearance of free H2S unless performed in alkaline conditions. Yet, after restoration of neutral pH, free H2S concentration from samples processed in alkaline and nonalkaline milieus were similar and averaged ∼0.2-0.4 nmol/g in both control and CS homogenate hearts and up to 100 nmol/g in the CA group. No additional H2S was released from control, CS, or CA hearts by using the reducing agent tris(2-carboxyethyl)phosphine or a strong acidic solution (pH < 2) to "free" H2S from combined pools. Of note, the reducing agent DTT produced a significant sulfide artifact and was not used. These data suggest that 1) free H2S found in heart homogenates is not a reflection of H2S present in a "living" heart and 2) the pool of combined sulfides, released in a strong reducing or acidic milieu, does not increase in the heart in a measurable manner even after toxic exposure to sulfide.
Collapse
Affiliation(s)
- Takashi Sonobe
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Pennsylvania State University, College of Medicine, Hershey, Pennsylvania
| | - Philippe Haouzi
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Pennsylvania State University, College of Medicine, Hershey, Pennsylvania
| |
Collapse
|
19
|
Haouzi P. Is exogenous hydrogen sulfide a relevant tool to address physiological questions on hydrogen sulfide? Respir Physiol Neurobiol 2016; 229:5-10. [PMID: 27045466 PMCID: PMC4887406 DOI: 10.1016/j.resp.2016.03.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 03/25/2016] [Accepted: 03/27/2016] [Indexed: 10/22/2022]
Abstract
This review challenges the use of solutions of dissolved exogenous H2S in the literature as a tool to determine the potential physiological functions of endogenous H2S as well as its putative therapeutic applications. Our major point of contention is that solutions of dissolved H2S are used in vitro at concentrations, within the high microM range, which are above the concentrations of dissolved H2S found in blood and tissues during lethal H2S exposure in vivo. In addition, since the levels of toxicity are extremely variable among cell types, a property that is seldom acknowledged, the physiological relevance of data obtained after local or in-vitro administrations of H2S at concentrations of few microM is far from certain. Conversely, the rate of disappearance of the dissolved pool of H2S in the body (being trapped or oxidized), which we found to be at least of several micromoles/kg/min, is so rapid in vivo that if relatively low quantities of H2S, i.e. few micromoles for instance, are administered, no change in H2S concentrations in the body is to be expected, unless toxic levels are used. Protocols looking at the effects of compounds slowly releasing H2S must also resolve a similar conundrum, as their effects must be reconciled with the unique ability of the blood and tissues to get rid of H2S and the steepness of the dose-toxic effects relationship. Only by developing a comprehensive framework in which H2S metabolism and toxicity will be used as a rationale to justify any experimental approach will we be able to bring definitive evidence supporting a protective role for exogenous H2S, if any, and its putative function as an endogenous mediator.
Collapse
Affiliation(s)
- Philippe Haouzi
- Pennsylvania State University, College of Medicine, Division of Pulmonary and Critical Care Medicine, Department of Medicine, 500 University Drive, H041, Hershey, PA 17033 USA.
| |
Collapse
|
20
|
Warrick BJ, Tataru AP, Smolinske S. A systematic analysis of methylene blue for drug-induced shock. Clin Toxicol (Phila) 2016; 54:547-55. [DOI: 10.1080/15563650.2016.1180390] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Brandon J. Warrick
- New Mexico Poison and Drug Information Center, University of New Mexico, Albuquerque, NM, USA
| | - Anita Paula Tataru
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, Canada
| | - Susan Smolinske
- New Mexico Poison and Drug Information Center, University of New Mexico, Albuquerque, NM, USA
| |
Collapse
|
21
|
Judenherc-Haouzi A, Zhang XQ, Sonobe T, Song J, Rannals MD, Wang J, Tubbs N, Cheung JY, Haouzi P. Methylene blue counteracts H2S toxicity-induced cardiac depression by restoring L-type Ca channel activity. Am J Physiol Regul Integr Comp Physiol 2016; 310:R1030-44. [PMID: 26962024 DOI: 10.1152/ajpregu.00527.2015] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 03/08/2016] [Indexed: 11/22/2022]
Abstract
We have previously reported that methylene blue (MB) can counteract hydrogen sulfide (H2S) intoxication-induced circulatory failure. Because of the multifarious effects of high concentrations of H2S on cardiac function, as well as the numerous properties of MB, the nature of this interaction, if any, remains uncertain. The aim of this study was to clarify 1) the effects of MB on H2S-induced cardiac toxicity and 2) whether L-type Ca(2+) channels, one of the targets of H2S, could transduce some of the counteracting effects of MB. In sedated rats, H2S infused at a rate that would be lethal within 5 min (24 μM·kg(-1)·min(-1)), produced a rapid fall in left ventricle ejection fraction, determined by echocardiography, leading to a pulseless electrical activity. Blood concentrations of gaseous H2S reached 7.09 ± 3.53 μM when cardiac contractility started to decrease. Two to three injections of MB (4 mg/kg) transiently restored cardiac contractility, blood pressure, and V̇o2, allowing the animals to stay alive until the end of H2S infusion. MB also delayed PEA by several minutes following H2S-induced coma and shock in unsedated rats. Applying a solution containing lethal levels of H2S (100 μM) on isolated mouse cardiomyocytes significantly reduced cell contractility, intracellular calcium concentration ([Ca(2+)]i) transient amplitudes, and L-type Ca(2+) currents (ICa) within 3 min of exposure. MB (20 mg/l) restored the cardiomyocyte function, ([Ca(2+)]i) transient, and ICa The present results offer a new approach for counteracting H2S toxicity and potentially other conditions associated with acute inhibition of L-type Ca(2+) channels.
Collapse
Affiliation(s)
- Annick Judenherc-Haouzi
- Heart and Vascular Institute, Pennsylvania State University, College of Medicine, Hershey, Pennsylvania;
| | - Xue-Qian Zhang
- Center of Translational Medicine, Temple University School of Medicine, Philadelphia, Pennsylvania; and
| | - Takashi Sonobe
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Pennsylvania State University, College of Medicine, Hershey, Pennsylvania
| | - Jianliang Song
- Center of Translational Medicine, Temple University School of Medicine, Philadelphia, Pennsylvania; and
| | - Matthew D Rannals
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Pennsylvania State University, College of Medicine, Hershey, Pennsylvania
| | - JuFang Wang
- Center of Translational Medicine, Temple University School of Medicine, Philadelphia, Pennsylvania; and
| | - Nicole Tubbs
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Pennsylvania State University, College of Medicine, Hershey, Pennsylvania
| | - Joseph Y Cheung
- Center of Translational Medicine, Temple University School of Medicine, Philadelphia, Pennsylvania; and Department of Medicine, Temple University School of Medicine, Philadelphia, Pennsylvania
| | - Philippe Haouzi
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Pennsylvania State University, College of Medicine, Hershey, Pennsylvania
| |
Collapse
|
22
|
Haouzi P, Sonobe T, Judenherc-Haouzi A. Developing effective countermeasures against acute hydrogen sulfide intoxication: challenges and limitations. Ann N Y Acad Sci 2016; 1374:29-40. [PMID: 26945701 DOI: 10.1111/nyas.13015] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Revised: 12/25/2015] [Accepted: 01/11/2016] [Indexed: 12/20/2022]
Abstract
Hydrogen sulfide (H2 S) is a chemical hazard in the gas and farming industry. As it is easy to manufacture from common chemicals, it has also become a method of suicide. H2 S exerts its toxicity through its high affinity with metalloproteins, such as cytochrome c oxidase and possibly via its interactions with cysteine residues of various proteins. The latter was recently proposed to acutely alter ion channels with critical implications for cardiac and brain functions. Indeed, during severe H2 S intoxication, a coma, associated with a reduction in cardiac contractility, develops within minutes or even seconds leading to death by complete electromechanical dissociation of the heart. In addition, long-term neurological deficits can develop owing to the direct toxicity of H2 S on neurons combined with the consequences of a prolonged apnea and circulatory failure. Here, we review the challenges impeding efforts to offer an effective treatment against H2 S intoxication using agents that trap free H2 S, and present novel pharmacological approaches aimed at correcting some of the most harmful consequences of H2 S intoxication.
Collapse
Affiliation(s)
- Philippe Haouzi
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, College of Medicine, Pennsylvania State University, Hershey, Pennsylvania
| | - Takashi Sonobe
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, College of Medicine, Pennsylvania State University, Hershey, Pennsylvania
| | - Annick Judenherc-Haouzi
- Heart and Vascular Institute, Department of Medicine, College of Medicine, Pennsylvania State University, Hershey, Pennsylvania
| |
Collapse
|
23
|
Sonobe T, Chenuel B, Cooper TK, Haouzi P. Immediate and Long-Term Outcome of Acute H2S Intoxication Induced Coma in Unanesthetized Rats: Effects of Methylene Blue. PLoS One 2015; 10:e0131340. [PMID: 26115032 PMCID: PMC4482667 DOI: 10.1371/journal.pone.0131340] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Accepted: 06/01/2015] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Acute hydrogen sulfide (H2S) poisoning produces a coma, the outcome of which ranges from full recovery to severe neurological deficits. The aim of our study was to 1--describe the immediate and long-term neurological effects following H2S-induced coma in un-anesthetized rats, and 2--determine the potential benefit of methylene blue (MB), a compound we previously found to counteract acute sulfide cardiac toxicity. METHODS NaHS was administered IP in un-sedated rats to produce a coma (n = 34). One minute into coma, the rats received MB (4 mg/kg i.v.) or saline. The surviving rats were followed clinically and assigned to Morris water maze (MWM) and open field testing then sacrificed at day 7. RESULTS Sixty percent of the non-treated comatose rats died by pulseless electrical activity. Nine percent recovered with neurological deficits requiring euthanasia, their brain examination revealed major neuronal necrosis of the superficial and middle layers of the cerebral cortex and the posterior thalamus, with variable necrosis of the caudate putamen, but no lesions of the hippocampus or the cerebellum, in contrast to the typical distribution of post-ischemic lesions. The remaining animals displayed, on average, a significantly less effective search strategy than the control rats (n = 21) during MWM testing. Meanwhile, 75% of rats that received MB survived and could perform the MWM test (P<0.05 vs non-treated animals). The treated animals displayed a significantly higher occurrence of spatial search than the non-treated animals. However, a similar proportion of cortical necrosis was observed in both groups, with a milder clinical presentation following MB. CONCLUSION In conclusion, in rats surviving H2S induced coma, spatial search patterns were used less frequently than in control animals. A small percentage of rats presented necrotic neuronal lesions, which distribution differed from post-ischemic lesions. MB dramatically improved the immediate survival and spatial search strategy in the surviving rats.
Collapse
Affiliation(s)
- Takashi Sonobe
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Pennsylvania State University, College of Medicine, Hershey, PA, United States of America
| | - Bruno Chenuel
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Pennsylvania State University, College of Medicine, Hershey, PA, United States of America
| | - Timothy K. Cooper
- Department of Comparative Medicine, Pennsylvania State University, College of Medicine, Hershey, PA, United States of America
- Department of Pathology, Pennsylvania State University, College of Medicine, Hershey, PA, United States of America
| | - Philippe Haouzi
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Pennsylvania State University, College of Medicine, Hershey, PA, United States of America
- * E-mail:
| |
Collapse
|