1
|
Long Y, Pan N, Yu Y, Zhang S, Qin K, Chen Y, Sweeney JA, DelBello MP, Gong Q. Shared and Distinct Neurobiological Bases of Bipolar Disorder and Attention-Deficit/Hyperactivity Disorder in Children and Adolescents: A Comparative Meta-Analysis of Structural Abnormalities. J Am Acad Child Adolesc Psychiatry 2024; 63:586-604. [PMID: 38072245 DOI: 10.1016/j.jaac.2023.09.551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 09/14/2023] [Accepted: 12/01/2023] [Indexed: 01/02/2024]
Abstract
OBJECTIVE Pediatric bipolar disorder (PBD) and attention-deficit/hyperactivity disorder (ADHD) frequently co-occur and share dysfunctions in affective and cognitive domains. As the neural substrates underlying their overlapping and dissociable symptomatology have not been well delineated, a meta-analysis of whole-brain voxel-based morphometry studies in PBD and ADHD was conducted. METHOD A systematic literature search was performed in PubMed, Web of Science, and Embase. The seed-based d mapping toolbox was used to identify altered clusters of PBD or ADHD and obtain their conjunctive and comparative abnormalities. Suprathreshold patterns were subjected to large-scale network analysis to identify affected brain networks. RESULTS The search revealed 10 PBD studies (268 patients) and 32 ADHD studies (1,333 patients). Decreased gray matter volumes in the right insula and anterior cingulate cortex relative to typically developing individuals were conjunctive in PBD and ADHD. Reduced volumes in the right inferior frontal gyrus, left orbitofrontal cortex, and hippocampus were more substantial in PBD, while decreased volumes in the left precentral gyrus, left inferior frontal gyrus, and right superior frontal gyrus were more pronounced in ADHD. Neurodevelopmental effects modulated patterns of the left hippocampus in PBD and those of the left inferior frontal gyrus in ADHD. CONCLUSION These findings suggest that PBD and ADHD are characterized by both common and distinct patterns of gray matter volume alterations. Their overlapping abnormalities may represent a transdiagnostic problem of attention and emotion regulation shared by PBD and ADHD, whereas the disorder-differentiating substrates may contribute to the relative differences in cognitive and affective features that define the 2 disorders. PLAIN LANGUAGE SUMMARY Pediatric bipolar disorder (BD) and attention-deficit/hyperactivity disorder (ADHD) frequently co-occur, with overlapping changes in emotional and cognitive functioning. This meta-analysis summarizes findings from 10 articles on BD and 32 articles on ADHD to identify similarities and differences in brain structure between youth with BD and youth with ADHD. The authors found that both disorders share decreased gray matter volumes in the right insula and anterior cingulate cortex, which play important roles in emotion processing and attention, respectively. Youth with BD had decreased gray matter volume in the right inferior frontal gyrus, left orbitofrontal gyrus, and left hippocampus, while youth with ADHD had decreased volumes in the left precentral gyrus, left inferior frontal gyrus, and right superior frontal gyrus. STUDY PREREGISTRATION INFORMATION Structural Brain Abnormalities of Attention-Deficit/Hyperactivity Disorder and Bipolar Disorder in Children/Adolescents: An Overlapping Meta-analysis; https://osf.io; trg4m.
Collapse
Affiliation(s)
- Yajing Long
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Nanfang Pan
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan, China; University of Cincinnati, Cincinnati, Ohio
| | - Yifan Yu
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan, China; Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, Sichuan, China; Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Shufang Zhang
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, Sichuan, China; Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Kun Qin
- University of Cincinnati, Cincinnati, Ohio; Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, Sichuan, China; Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Ying Chen
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan, China; Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, Sichuan, China; Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - John A Sweeney
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan, China; University of Cincinnati, Cincinnati, Ohio
| | | | - Qiyong Gong
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan, China; West China Xiamen Hospital of Sichuan University, Xiamen, China.
| |
Collapse
|
2
|
Yao A, Shimada K, Kasaba R, Tomoda A. Beneficial Effects of Behavioral Parent Training on Inhibitory Control in Children With Attention-Deficit/Hyperactivity Disorder: A Small-Scale Randomized Controlled Trial. Front Psychiatry 2022; 13:859249. [PMID: 35573335 PMCID: PMC9094443 DOI: 10.3389/fpsyt.2022.859249] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 03/17/2022] [Indexed: 11/28/2022] Open
Abstract
The purpose of this study was to examine whether the beneficial effects of behavioral parent training (BPT), as an indirect type of psychosocial treatment, are extended to cognitive manifestations beyond behavioral symptoms of attention-deficit/hyperactivity disorder (ADHD). Although previous studies of community families have shown an association between parenting quality and a child's cognitive functions, little is known about the effects of BPT on cognitive manifestations in children with ADHD. In this study, we focused on inhibitory control among cognitive domains, which is considered to be the most malleable to direct types of psychosocial treatment for ADHD. We hypothesized that inhibitory control is affected by BPT, which uses parents as the primary agents of change to help their children. Thirty school-age children (6-12 years old) with ADHD and their parents (mothers) participated and were randomly assigned to either the standard BPT or waitlist control group. Using two objective laboratory-based tasks of inhibitory control (i.e., go/no-go and single response selection tasks), we assessed baseline and post-treatment response inhibition to suppress task-irrelevant responses and response selection to select task-relevant responses. In addition to decreased ADHD symptoms and negative parenting, the BPT group exhibited significantly improved performance in the single response selection task, but not in the go/no-go task, compared with the waitlist control group. Although tentative, these findings partially support our hypothesis that BPT has beneficial effects on the cognitive inhibitory control of ADHD, highlighting the potential for supportive environmental modifications to advance cognitive development in children with ADHD.
Collapse
Affiliation(s)
- Akiko Yao
- Research Center for Child Mental Development, University of Fukui, Fukui, Japan
- Department of Child Development, United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University, and University of Fukui, Fukui, Japan
| | - Koji Shimada
- Research Center for Child Mental Development, University of Fukui, Fukui, Japan
- Department of Child Development, United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University, and University of Fukui, Fukui, Japan
- Biomedical Imaging Research Center, University of Fukui, Fukui, Japan
| | - Ryoko Kasaba
- Department of Child Development, United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University, and University of Fukui, Fukui, Japan
| | - Akemi Tomoda
- Research Center for Child Mental Development, University of Fukui, Fukui, Japan
- Department of Child Development, United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University, and University of Fukui, Fukui, Japan
- Department of Child and Adolescent Psychological Medicine, University of Fukui Hospital, Fukui, Japan
| |
Collapse
|
3
|
Yu M, Gao X, Niu X, Zhang M, Yang Z, Han S, Cheng J, Zhang Y. Meta-analysis of structural and functional alterations of brain in patients with attention-deficit/hyperactivity disorder. Front Psychiatry 2022; 13:1070142. [PMID: 36683981 PMCID: PMC9853532 DOI: 10.3389/fpsyt.2022.1070142] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 12/05/2022] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND A large and growing body of neuroimaging research has concentrated on patients with attention-deficit/hyperactivity disorder (ADHD), but with inconsistent conclusions. This article was intended to investigate the common and certain neural alterations in the structure and function of the brain in patients with ADHD and further explore the differences in brain alterations between adults and children with ADHD. METHODS We conducted an extensive literature search of whole-brain voxel-based morphometry (VBM) and functional magnetic resonance imaging (fMRI) studies associated with ADHD. Two separate meta-analyses with the seed-based d mapping software package for functional neural activation and gray matter volume (GMV) were carried out, followed by a joint analysis and a subgroup analysis. RESULTS This analysis included 29 VBM studies and 36 fMRI studies. Structurally, VBM analysis showed that the largest GMV diminutions in patients with ADHD were in several frontal-parietal brain regions, the limbic system, and the corpus callosum. Functionally, fMRI analysis discovered significant hypoactivation in several frontal-temporal brain regions, the right postcentral gyrus, the left insula, and the corpus callosum. CONCLUSION This study showed that abnormal alterations in the structure and function of the left superior frontal gyrus and the corpus callosum may be the key brain regions involved in the pathogenesis of ADHD in patients and may be employed as an imaging metric for patients with ADHD pending future research. In addition, this meta-analysis discovered neuroanatomical or functional abnormalities in other brain regions in patients with ADHD as well as findings that can be utilized to guide future research.
Collapse
Affiliation(s)
- Miaomiao Yu
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, Zhengzhou, China.,Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province, Zhengzhou, China.,Engineering Research Center of Medical Imaging Intelligent Diagnosis and Treatment of Henan Province, Zhengzhou, China.,Key Laboratory of Magnetic Resonance and Brain Function of Henan Province, Zhengzhou, China.,Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging of Zhengzhou, Zhengzhou, China.,Key Laboratory of Imaging Intelligence Research Medicine of Henan Province, Zhengzhou, China
| | - Xinyu Gao
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, Zhengzhou, China.,Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province, Zhengzhou, China.,Engineering Research Center of Medical Imaging Intelligent Diagnosis and Treatment of Henan Province, Zhengzhou, China.,Key Laboratory of Magnetic Resonance and Brain Function of Henan Province, Zhengzhou, China.,Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging of Zhengzhou, Zhengzhou, China.,Key Laboratory of Imaging Intelligence Research Medicine of Henan Province, Zhengzhou, China
| | - Xiaoyu Niu
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, Zhengzhou, China.,Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province, Zhengzhou, China.,Engineering Research Center of Medical Imaging Intelligent Diagnosis and Treatment of Henan Province, Zhengzhou, China.,Key Laboratory of Magnetic Resonance and Brain Function of Henan Province, Zhengzhou, China.,Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging of Zhengzhou, Zhengzhou, China.,Key Laboratory of Imaging Intelligence Research Medicine of Henan Province, Zhengzhou, China
| | - Mengzhe Zhang
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, Zhengzhou, China.,Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province, Zhengzhou, China.,Engineering Research Center of Medical Imaging Intelligent Diagnosis and Treatment of Henan Province, Zhengzhou, China.,Key Laboratory of Magnetic Resonance and Brain Function of Henan Province, Zhengzhou, China.,Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging of Zhengzhou, Zhengzhou, China.,Key Laboratory of Imaging Intelligence Research Medicine of Henan Province, Zhengzhou, China
| | - Zhengui Yang
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, Zhengzhou, China.,Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province, Zhengzhou, China.,Engineering Research Center of Medical Imaging Intelligent Diagnosis and Treatment of Henan Province, Zhengzhou, China.,Key Laboratory of Magnetic Resonance and Brain Function of Henan Province, Zhengzhou, China.,Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging of Zhengzhou, Zhengzhou, China.,Key Laboratory of Imaging Intelligence Research Medicine of Henan Province, Zhengzhou, China
| | - Shaoqiang Han
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, Zhengzhou, China.,Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province, Zhengzhou, China.,Engineering Research Center of Medical Imaging Intelligent Diagnosis and Treatment of Henan Province, Zhengzhou, China.,Key Laboratory of Magnetic Resonance and Brain Function of Henan Province, Zhengzhou, China.,Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging of Zhengzhou, Zhengzhou, China.,Key Laboratory of Imaging Intelligence Research Medicine of Henan Province, Zhengzhou, China
| | - Jingliang Cheng
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, Zhengzhou, China.,Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province, Zhengzhou, China.,Engineering Research Center of Medical Imaging Intelligent Diagnosis and Treatment of Henan Province, Zhengzhou, China.,Key Laboratory of Magnetic Resonance and Brain Function of Henan Province, Zhengzhou, China.,Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging of Zhengzhou, Zhengzhou, China.,Key Laboratory of Imaging Intelligence Research Medicine of Henan Province, Zhengzhou, China
| | - Yong Zhang
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, Zhengzhou, China.,Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province, Zhengzhou, China.,Engineering Research Center of Medical Imaging Intelligent Diagnosis and Treatment of Henan Province, Zhengzhou, China.,Key Laboratory of Magnetic Resonance and Brain Function of Henan Province, Zhengzhou, China.,Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging of Zhengzhou, Zhengzhou, China.,Key Laboratory of Imaging Intelligence Research Medicine of Henan Province, Zhengzhou, China
| |
Collapse
|
4
|
Genetic variations influence brain changes in patients with attention-deficit hyperactivity disorder. Transl Psychiatry 2021; 11:349. [PMID: 34091591 PMCID: PMC8179928 DOI: 10.1038/s41398-021-01473-w] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 05/04/2021] [Accepted: 05/12/2021] [Indexed: 12/12/2022] Open
Abstract
Attention-deficit hyperactivity disorder (ADHD) is a neurological and neurodevelopmental childhood-onset disorder characterized by a persistent pattern of inattentiveness, impulsiveness, restlessness, and hyperactivity. These symptoms may continue in 55-66% of cases from childhood into adulthood. Even though the precise etiology of ADHD is not fully understood, it is considered as a multifactorial and heterogeneous disorder with several contributing factors such as heritability, auxiliary to neurodevelopmental issues, severe brain injuries, neuroinflammation, consanguineous marriages, premature birth, and exposure to environmental toxins. Neuroimaging and neurodevelopmental assessments may help to explore the possible role of genetic variations on ADHD neuropsychobiology. Multiple genetic studies have observed a strong genetic association with various aspects of neuropsychobiological functions, including neural abnormalities and delayed neurodevelopment in ADHD. The advancement in neuroimaging and molecular genomics offers the opportunity to analyze the impact of genetic variations alongside its dysregulated pathways on structural and functional derived brain imaging phenotypes in various neurological and psychiatric disorders, including ADHD. Recently, neuroimaging genomic studies observed a significant association of brain imaging phenotypes with genetic susceptibility in ADHD. Integrating the neuroimaging-derived phenotypes with genomics deciphers various neurobiological pathways that can be leveraged for the development of novel clinical biomarkers, new treatment modalities as well as therapeutic interventions for ADHD patients. In this review, we discuss the neurobiology of ADHD with particular emphasis on structural and functional changes in the ADHD brain and their interactions with complex genomic variations utilizing imaging genetics methodologies. We also highlight the genetic variants supposedly allied with the development of ADHD and how these, in turn, may affect the brain circuit function and related behaviors. In addition to reviewing imaging genetic studies, we also examine the need for complementary approaches at various levels of biological complexity and emphasize the importance of combining and integrating results to explore biological pathways involved in ADHD disorder. These approaches include animal models, computational biology, bioinformatics analyses, and multimodal imaging genetics studies.
Collapse
|
5
|
Gao X, Zhang M, Yang Z, Wen M, Huang H, Zheng R, Wang W, Wei Y, Cheng J, Han S, Zhang Y. Structural and Functional Brain Abnormalities in Internet Gaming Disorder and Attention-Deficit/Hyperactivity Disorder: A Comparative Meta-Analysis. Front Psychiatry 2021; 12:679437. [PMID: 34276447 PMCID: PMC8281314 DOI: 10.3389/fpsyt.2021.679437] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 05/21/2021] [Indexed: 12/20/2022] Open
Abstract
Background: Patients with Internet gaming disorder (IGD) and attention-deficit/hyperactivity disorder (ADHD) have high comorbidity but it is still unknown whether these disorders have shared and distinctive neuroimage alterations. Objective: The aim of this meta-analysis was to identify shared and disorder-specific structural, functional, and multimodal abnormalities between IGD and ADHD. Methods: A systematic literature search was conducted for whole-brain voxel-based morphometry (VBM) and functional magnetic resonance imaging (fMRI) studies comparing people with IGD or ADHD with healthy controls. Regional gray matter volume (GMV) and fMRI differences were compared over the patient groups and then a quantitative comparison was performed to find abnormalities (relative to controls) between IGD and ADHD using seed-based d mapping meta-analytic methods. Result: The meta-analysis contained 14 IGD VBM studies (contrasts covering 333 IGDs and 335 HCs), 26 ADHD VBM studies (1,051 patients with ADHD and 887 controls), 30 IGD fMRI studies (603 patients with IGD and 564 controls), and 29 ADHD fMRI studies (878 patients with ADHD and 803 controls). Structurally, VBM analysis showed disorder-specific GMV abnormality in the putamen among IGD subjects and orbitofrontal cortex in ADHD and shared GMV in the prefrontal cortex. Functionally, fMRI analysis discovered that IGD-differentiating increased activation in the precuneus and shared abnormal activation in anterior cingulate cortex, insular, and striatum. Conclusion: IGD and ADHD have shared and special structural and functional alterations. IGD has disorder-differentiating structural alterations in the putamen and ADHD has alterations in the orbitofrontal cortex. Disorder-differentiating fMRI activations were predominantly observed in the precuneus among IGD subjects and shared impairing function connection was in the rewards circuit (including ACC, OFC, and striatum).
Collapse
Affiliation(s)
- Xinyu Gao
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, Zhengzhou, China.,Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province, Zhengzhou, China
| | - Mengzhe Zhang
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, Zhengzhou, China.,Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province, Zhengzhou, China
| | - Zhengui Yang
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, Zhengzhou, China.,Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province, Zhengzhou, China
| | - Mengmeng Wen
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, Zhengzhou, China.,Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province, Zhengzhou, China
| | - Huiyu Huang
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, Zhengzhou, China.,Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province, Zhengzhou, China
| | - Ruiping Zheng
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, Zhengzhou, China.,Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province, Zhengzhou, China
| | - Weijian Wang
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, Zhengzhou, China.,Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province, Zhengzhou, China
| | - Yarui Wei
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, Zhengzhou, China.,Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province, Zhengzhou, China
| | - Jingliang Cheng
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, Zhengzhou, China.,Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province, Zhengzhou, China
| | - Shaoqiang Han
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, Zhengzhou, China.,Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province, Zhengzhou, China
| | - Yong Zhang
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, Zhengzhou, China.,Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province, Zhengzhou, China
| |
Collapse
|
6
|
Jung M, Mizuno Y, Fujisawa TX, Takiguchi S, Kong J, Kosaka H, Tomoda A. The Effects of COMT Polymorphism on Cortical Thickness and Surface Area Abnormalities in Children with ADHD. Cereb Cortex 2020; 29:3902-3911. [PMID: 30508034 DOI: 10.1093/cercor/bhy269] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 09/21/2018] [Indexed: 11/12/2022] Open
Abstract
The catechol-O-methyltransferase (COMT) gene is associated with frontal cortex development and the pathophysiology of attention-deficit/hyperactivity disorder (ADHD). However, how the COMT gene impacts brain structure and behavior in ADHD remains unknown. In the present study, we identify the effect of COMT on cortical thickness and surface area in children with ADHD and children with typically developing (TD) using a machine learning approach. In a sample of 39 children with ADHD and 34 age- and IQ-matched TD children, we found that cortical thickness and surface area differences were predominantly observed in the frontal cortex. Furthermore, a path analysis revealed that a COMT genotype affected abnormal development of the frontal cortex in terms of both cortical thickness and surface area and was associated with working memory changes in children with ADHD. Our study confirms that the role of COMT in ADHD is not restricted to the development of behavior but may also affect the cortical thickness and surface area. Thus, our findings may help to improve the understanding of the neuroanatomic basis for the relationship between the COMT genotype and ADHD pathogenesis.
Collapse
Affiliation(s)
- Minyoung Jung
- Research Center for Child Mental Development, University of Fukui, Eiheiji, Fukui, Japan
| | - Yoshifumi Mizuno
- Department of Child and Adolescent Psychological Medicine, University of Fukui Hospital, Fukui, Japan
| | - Takashi X Fujisawa
- Research Center for Child Mental Development, University of Fukui, Eiheiji, Fukui, Japan
| | - Shinichiro Takiguchi
- Department of Child and Adolescent Psychological Medicine, University of Fukui Hospital, Fukui, Japan
| | - Jian Kong
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Hirotaka Kosaka
- Research Center for Child Mental Development, University of Fukui, Eiheiji, Fukui, Japan.,Department of Child and Adolescent Psychological Medicine, University of Fukui Hospital, Fukui, Japan.,Department of Neuropsychiatry, University of Fukui, University of Fukui, Eiheiji, Fukui, Japan
| | - Akemi Tomoda
- Research Center for Child Mental Development, University of Fukui, Eiheiji, Fukui, Japan.,Department of Child and Adolescent Psychological Medicine, University of Fukui Hospital, Fukui, Japan
| |
Collapse
|
7
|
Abraham E, Scott MA, Blair C. Catechol- O-methyltransferase Val158Met Genotype and Early-Life Family Adversity Interactively Affect Attention-Deficit Hyperactivity Symptoms Across Childhood. Front Genet 2020; 11:724. [PMID: 32765586 PMCID: PMC7381281 DOI: 10.3389/fgene.2020.00724] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 06/15/2020] [Indexed: 12/22/2022] Open
Abstract
Attention-deficit hyperactivity disorder (ADHD) is among the most commonly diagnosed psychiatric disorders of childhood. The dopaminergic system has been shown to have substantial effects on its etiology, with both functional Catechol-O-methyltransferase (COMT) Val158Met genotype and early-life environmental adversity involved in the risk of inattention and hyperactivity/impulsivity symptoms. In this prospective longitudinal study, we examined for the first time the impact of proximal and distal early-life family adversity and COMT Val158Met polymorphism gene - both the direct and the interactive effects, on children's ADHD symptoms across childhood. Data came from the Family Life Project, a prospective longitudinal study of 1,292 children and families in high poverty from birth to 11 years. In infancy, data regarding socioeconomic (SES)-risk-factors, observed-caregiving behaviors, and DNA genotyping were collected. In early and middle childhood teachers rated the occurrence and severity of the child's ADHD symptoms. Multilevel growth curve models revealed independent effects of COMT, early-life SES-risk and negative caregiving on ADHD symptoms in early and middle childhood. Significant gene-environment interactions were found, indicating that overall, carriers of at least one COMT158Met allele were more sensitive to early-life adversity, showing higher inattention and hyperactivity/impulsivity symptoms severity in childhood when exposed to high SES-risk factors in infancy, compared to Val-Val carriers. Findings provide new insights into the complex etiology of ADHD and underline the need for further investigation of the neuronal mechanisms underlying gene-environment interactions. Findings might have implications for prevention and intervention strategies with a focus on early-life family relationships in genetically at-risk children.
Collapse
Affiliation(s)
- Eyal Abraham
- Department of Psychiatry, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, United States
- Division of Translational Epidemiology, New York State Psychiatric Institute, New York, NY, United States
- Department of Applied Psychology, New York University, New York, NY, United States
| | - Marc A. Scott
- Department of Applied Statistics, Social Science, and Humanities, New York University, New York, NY, United States
| | - Clancy Blair
- Department of Applied Psychology, New York University, New York, NY, United States
- Department of Population Health, New York University Grossman School of Medicine, New York, NY, United States
| |
Collapse
|
8
|
Lukito S, Norman L, Carlisi C, Radua J, Hart H, Simonoff E, Rubia K. Comparative meta-analyses of brain structural and functional abnormalities during cognitive control in attention-deficit/hyperactivity disorder and autism spectrum disorder. Psychol Med 2020; 50:894-919. [PMID: 32216846 PMCID: PMC7212063 DOI: 10.1017/s0033291720000574] [Citation(s) in RCA: 150] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND People with attention-deficit/hyperactivity disorder (ADHD) and autism spectrum disorder (ASD) have abnormalities in frontal, temporal, parietal and striato-thalamic networks. It is unclear to what extent these abnormalities are distinctive or shared. This comparative meta-analysis aimed to identify the most consistent disorder-differentiating and shared structural and functional abnormalities. METHODS Systematic literature search was conducted for whole-brain voxel-based morphometry (VBM) and functional magnetic resonance imaging (fMRI) studies of cognitive control comparing people with ASD or ADHD with typically developing controls. Regional gray matter volume (GMV) and fMRI abnormalities during cognitive control were compared in the overall sample and in age-, sex- and IQ-matched subgroups with seed-based d mapping meta-analytic methods. RESULTS Eighty-six independent VBM (1533 ADHD and 1295 controls; 1445 ASD and 1477 controls) and 60 fMRI datasets (1001 ADHD and 1004 controls; 335 ASD and 353 controls) were identified. The VBM meta-analyses revealed ADHD-differentiating decreased ventromedial orbitofrontal (z = 2.22, p < 0.0001) but ASD-differentiating increased bilateral temporal and right dorsolateral prefrontal GMV (zs ⩾ 1.64, ps ⩽ 0.002). The fMRI meta-analyses of cognitive control revealed ASD-differentiating medial prefrontal underactivation but overactivation in bilateral ventrolateral prefrontal cortices and precuneus (zs ⩾ 1.04, ps ⩽ 0.003). During motor response inhibition specifically, ADHD relative to ASD showed right inferior fronto-striatal underactivation (zs ⩾ 1.14, ps ⩽ 0.003) but shared right anterior insula underactivation. CONCLUSIONS People with ADHD and ASD have mostly distinct structural abnormalities, with enlarged fronto-temporal GMV in ASD and reduced orbitofrontal GMV in ADHD; and mostly distinct functional abnormalities, which were more pronounced in ASD.
Collapse
Affiliation(s)
- Steve Lukito
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Luke Norman
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- Department of Psychiatry, University of Michigan, Ann Arbor, Michigan, USA
- The Social and Behavioral Research Branch, National Human Genome Research Institute, National Institute of Health, Bethesda, Maryland, USA
| | - Christina Carlisi
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- Division of Psychology and Language Sciences, University College London, London, UK
| | - Joaquim Radua
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- Imaging of Mood- and Anxiety-Related Disorders (IMARD) Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), CIBERSAM, Barcelona, Spain
- Department of Clinical Neuroscience, Centre for Psychiatric Research and Education, Karolinska Institutet, Stockholm, Sweden
| | - Heledd Hart
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Emily Simonoff
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Katya Rubia
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| |
Collapse
|
9
|
Mizuno Y, Jung M, Fujisawa TX, Takiguchi S, Shimada K, Saito DN, Kosaka H, Tomoda A. Catechol-O-methyltransferase polymorphism is associated with the cortico-cerebellar functional connectivity of executive function in children with attention-deficit/hyperactivity disorder. Sci Rep 2017; 7:4850. [PMID: 28687733 PMCID: PMC5501850 DOI: 10.1038/s41598-017-04579-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 05/17/2017] [Indexed: 12/02/2022] Open
Abstract
The cerebellum, although traditionally considered a motor structure, has been increasingly recognized to play a role in regulating executive function, the dysfunction of which is a factor in attention-deficit/hyperactivity disorder (ADHD). Additionally, catechol-O-methyltransferase (COMT) polymorphism has been reported to be associated with executive function. We examined whether the cortico-cerebellar executive function network is altered in children with ADHD and whether COMT polymorphism is associated with the altered network. Thirty-one children with ADHD and thirty age- and IQ-matched typically developing (TD) controls underwent resting-state functional MRI, and functional connectivity of executive function-related Crus I/II in the cerebellum was analysed. COMT Val158Met genotype data were also obtained from children with ADHD. Relative to TD controls, children with ADHD showed significantly lower functional connectivity of the right Crus I/II with the left dorsolateral prefrontal cortex. Additionally, the functional connectivity of children with ADHD was modulated by COMT polymorphism, with Met-carriers exhibiting significantly lower functional connectivity than the Val/Val genotype. These results suggest the existence of variations, such as ethnic differences, in COMT genetic effects on the cortico-cerebellar executive function network. These variations contribute to heterogeneity in ADHD. Further neuroimaging genetics study might lead to the development of fundamental therapies that target ADHD pathophysiology.
Collapse
Affiliation(s)
- Yoshifumi Mizuno
- Department of Child and Adolescent Psychological Medicine, University of Fukui Hospital, 23-3 Matsuokashimoaizuki, Eiheiji-cho, Yoshida-gun, Fukui, 910-1193, Japan.,Division of Developmental Higher Brain Functions, United Graduate School of Child Development, University of Fukui, 23-3 Matsuokashimoaizuki, Eiheiji-cho, Yoshida-gun, Fukui, 910-1193, Japan
| | - Minyoung Jung
- Department of Psychiatry, Harvard Medical School, Harvard University, Bldg. 120, 1st Ave., Charlestown, MA, 02129, USA
| | - Takashi X Fujisawa
- Division of Developmental Higher Brain Functions, United Graduate School of Child Development, University of Fukui, 23-3 Matsuokashimoaizuki, Eiheiji-cho, Yoshida-gun, Fukui, 910-1193, Japan.,Research Center for Child Mental Development, University of Fukui, 23-3 Matsuokashimoaizuki, Eiheiji-cho, Yoshida-gun, Fukui, 910-1193, Japan
| | - Shinichiro Takiguchi
- Department of Child and Adolescent Psychological Medicine, University of Fukui Hospital, 23-3 Matsuokashimoaizuki, Eiheiji-cho, Yoshida-gun, Fukui, 910-1193, Japan
| | - Koji Shimada
- Division of Developmental Higher Brain Functions, United Graduate School of Child Development, University of Fukui, 23-3 Matsuokashimoaizuki, Eiheiji-cho, Yoshida-gun, Fukui, 910-1193, Japan.,Research Center for Child Mental Development, University of Fukui, 23-3 Matsuokashimoaizuki, Eiheiji-cho, Yoshida-gun, Fukui, 910-1193, Japan
| | - Daisuke N Saito
- Research Center for Child Mental Development, Kanazawa University, Kanazawa, 13-1 Takaramachi, Kanazawa-shi, Ishikawa, 920-8640, Japan
| | - Hirotaka Kosaka
- Department of Child and Adolescent Psychological Medicine, University of Fukui Hospital, 23-3 Matsuokashimoaizuki, Eiheiji-cho, Yoshida-gun, Fukui, 910-1193, Japan.,Division of Developmental Higher Brain Functions, United Graduate School of Child Development, University of Fukui, 23-3 Matsuokashimoaizuki, Eiheiji-cho, Yoshida-gun, Fukui, 910-1193, Japan.,Research Center for Child Mental Development, University of Fukui, 23-3 Matsuokashimoaizuki, Eiheiji-cho, Yoshida-gun, Fukui, 910-1193, Japan
| | - Akemi Tomoda
- Department of Child and Adolescent Psychological Medicine, University of Fukui Hospital, 23-3 Matsuokashimoaizuki, Eiheiji-cho, Yoshida-gun, Fukui, 910-1193, Japan. .,Division of Developmental Higher Brain Functions, United Graduate School of Child Development, University of Fukui, 23-3 Matsuokashimoaizuki, Eiheiji-cho, Yoshida-gun, Fukui, 910-1193, Japan. .,Research Center for Child Mental Development, University of Fukui, 23-3 Matsuokashimoaizuki, Eiheiji-cho, Yoshida-gun, Fukui, 910-1193, Japan.
| |
Collapse
|
10
|
Yang PY, Menga YJ, Li T, Huang Y. Associations of endocrine stress-related gene polymorphisms with risk of autism spectrum disorders: Evidence from an integrated meta-analysis. Autism Res 2017; 10:1722-1736. [PMID: 28656683 DOI: 10.1002/aur.1822] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 04/12/2017] [Accepted: 05/23/2017] [Indexed: 02/05/2023]
Abstract
Autism spectrum disorders (ASD) are related to serotonin transporter (5-HTT) and catechol-O-methyl transferase (COMT) as two most monoaminergic polymorphic variations. However, multiple studies assessing rs4680 and 5-HTTLPR variants in ASD have reported inconsistent results. Therefore, we conducted an integrated meta-analysis to combine case-control and transmission/disequilibrium test (TDT) studies to determine whether COMT and 5-HTT are associated with ASD. We searched multiple electronic databases (PubMed, EmBase and Web of Science) to identify studies assessing the rs4680 and 5-HTTLPR variants in ASD from Jan 1997 to Dec 2016. Then allelic data from case-control and TDT studies were analyzed by the Catmap package in the R software. A total of 5 studies were eligible for the meta-analysis of rs4680, including 3 case-control, 1 TDT and 1 TDT & case-control studies. Meanwhile, 22 studies of 5-HTTLPR were available, including 16 TDT, 4 case-control and 2 TDT & case-control studies. The current meta-analysis included 814 ASD cases, 741 controls and 311 families related to rs4680; 749 ASD cases, 1,118 controls and 1,861 families relevant to 5-HTTLPR were also evaluated. For rs4680, the pooled OR was 1.18 (95% CI = 0.87-1.59, P = 0.29, Pheterogeneity < 0.00001). There was no significant association of rs4680 with risk of ASD between the two subgroups. For 5-HTTLPR, the pooled OR was 1.05 (95% CI = 0.92-1.20, P = 0.4652, Pheterogeneity < 0.00001). Meanwhile, we found no significant risk in individual case-control or TDT studies. The above findings indicated that neither COMT rs4680 nor 5-HTT 5-HTTLPR polymorphism significantly affects ASD risk. Autism Res 2017, 10: 1722-1736. © 2017 International Society for Autism Research, Wiley Periodicals, Inc. LAY SUMMARY Our results showed no evidence of significant association of either COMT rs4680 or 5-HTT 5-HTTLPR variants with ASD, showing that these two genes may not be major susceptible genetic factors in ASD occurrence, and may have a reciprocal action with each other in combination with environmental factors. These findings further provide evidence that a single gene variant may not dictate autism occurrence, but possibly contributes to a specific phenotype or subtype of ASD.
Collapse
Affiliation(s)
- Ping-Yuan Yang
- Mental Health Center, West China Hospital of Sichuan University, Chengdu, China
| | - Ya-Jing Menga
- Psychiatric Laboratory, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China.,Brain Research Center, West China Hospital of Sichuan University, Chengdu, China
| | - Tao Li
- Mental Health Center, West China Hospital of Sichuan University, Chengdu, China.,Psychiatric Laboratory, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China.,Brain Research Center, West China Hospital of Sichuan University, Chengdu, China
| | - Yi Huang
- Mental Health Center, West China Hospital of Sichuan University, Chengdu, China.,Psychiatric Laboratory, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China.,Brain Research Center, West China Hospital of Sichuan University, Chengdu, China
| |
Collapse
|