1
|
Wang Z, Xu X, Zheng Y, Xu Z, Li Y, Chen H. Analysis of the Overlength Main Noncoding Region in Metacarcinus magister (Decapoda: Brachyura) and a Phylogenetic Study of the Cancroidea Species. Genes (Basel) 2024; 15:437. [PMID: 38674372 PMCID: PMC11049931 DOI: 10.3390/genes15040437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/19/2024] [Accepted: 03/26/2024] [Indexed: 04/28/2024] Open
Abstract
Complete mitochondrial genomes (mitogenomes) can provide important information regarding the molecular evolution and phylogenetic relationships of marine invertebrates, especially in Brachyura. Only one Cancroidea species of mitogenomes has been sequenced before; in this research, the mitogenomic characteristics of Metacarcinus magister (Cancridae: Cancroidea) are newly studied. The length of the M. magister mitogenome was 48,820 bp, and it contained the typical 13 protein-coding genes, 2 ribosomal RNA genes, and 22 transfer RNA genes. We performed a series of analyses on the characteristics of the mNCR of M. magister. The phylogenetics, life circumstances, and selective pressures were all analyzed to explain the formation of this length, which revealed the length of the M. magister mitogenome to be approximately three times greater than the normal length of Brachyuran mitogenomes. Phylogenetic analyses based on a dataset of 215 Decapodan mitogenomes indicated that all Eriphioidea crabs were clustered together as a group. Moreover, the rearrangement mechanism of the Cancroidea species was predicted to provide stronger evidence for the phylogenetic analysis. In general, the results obtained in this study will contribute to a better understanding of the cause of the unusual length of the M. magister mitogenome and provide new insights into the phylogeny of Brachyura.
Collapse
|
2
|
Benito JB, Porter ML, Niemiller ML. The mitochondrial genomes of five spring and groundwater amphipods of the family Crangonyctidae (Crustacea: Amphipoda) from eastern North America. MITOCHONDRIAL DNA PART B-RESOURCES 2021; 6:1662-1667. [PMID: 34104729 PMCID: PMC8143621 DOI: 10.1080/23802359.2021.1926350] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
We sequenced the mitochondrial genomes of one spring-dwelling (Crangonyx forbesi) and four groundwater amphipods (Bactrurus brachycaudus, Stygobromus allegheniensis, S. pizzinii, and S. t. potomacus) from eastern North America using a shotgun sequencing approach on an Illumina HiSeq 4000 (Illumina, San Diego, CA). All five mitochondrial genomes encoded 13 protein-coding genes, 22 transfer RNAs (tRNAs), and two ribosomal RNAs (rRNAs) representative of subphylum Crustacea. Although the four groundwater species exhibited gene orders nearly identical to the ancestral pancrustacean gene order, the spring-dwelling species, C. forbesi, possessed a transposition of the trnH–nad4–nad4l loci downstream after nad6–cytb–trnS2. Moreover, a long nad5 locus, longer rrnL, and rrnS loci, and unconventional start codons distinguished C. forbesi from the four groundwater amphipods. Overall, our five amphipod mitogenomes add to the increasing publicly available mitogenome resources for amphipods that are not only valuable for studying the evolutionary relationships of this diverse group of crustaceans but for exploring the evolution of mitochondrial genomes in general.
Collapse
Affiliation(s)
- Joseph B Benito
- Department of Biological Sciences, The University of Alabama in Huntsville, Huntsville, AL, USA
| | - Megan L Porter
- School of Life Sciences, University of Hawai'i at Mānoa, Honolulu, HI, USA
| | - Matthew L Niemiller
- Department of Biological Sciences, The University of Alabama in Huntsville, Huntsville, AL, USA
| |
Collapse
|
3
|
Zapelloni F, Jurado-Rivera JA, Jaume D, Juan C, Pons J. Comparative Mitogenomics in Hyalella (Amphipoda: Crustacea). Genes (Basel) 2021; 12:genes12020292. [PMID: 33669879 PMCID: PMC7923271 DOI: 10.3390/genes12020292] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 02/16/2021] [Accepted: 02/17/2021] [Indexed: 02/02/2023] Open
Abstract
We present the sequencing and comparative analysis of 17 mitochondrial genomes of Nearctic and Neotropical amphipods of the genus Hyalella, most from the Andean Altiplano. The mitogenomes obtained comprised the usual 37 gene-set of the metazoan mitochondrial genome showing a gene rearrangement (a reverse transposition and a reversal) between the North and South American Hyalella mitogenomes. Hyalella mitochondrial genomes show the typical AT-richness and strong nucleotide bias among codon sites and strands of pancrustaceans. Protein-coding sequences are biased towards AT-rich codons, with a preference for leucine and serine amino acids. Numerous base changes (539) were found in tRNA stems, with 103 classified as fully compensatory, 253 hemi-compensatory and the remaining base mismatches and indels. Most compensatory Watson–Crick switches were AU -> GC linked in the same haplotype, whereas most hemi-compensatory changes resulted in wobble GU and a few AC pairs. These results suggest a pairing fitness increase in tRNAs after crossing low fitness valleys. Branch-site level models detected positive selection for several amino acid positions in up to eight mitochondrial genes, with atp6 and nad5 as the genes displaying more sites under selection.
Collapse
Affiliation(s)
- Francesco Zapelloni
- Department of Biology, University of the Balearic Islands, Ctra. Valldemossa km 7,5, 07122 Palma, Spain; (F.Z.); (J.A.J.-R.); (C.J.)
| | - José A. Jurado-Rivera
- Department of Biology, University of the Balearic Islands, Ctra. Valldemossa km 7,5, 07122 Palma, Spain; (F.Z.); (J.A.J.-R.); (C.J.)
| | - Damià Jaume
- IMEDEA (CSIC-UIB), Mediterranean Institute for Advanced Studies, C/Miquel Marquès 21, 07190 Esporles, Spain;
| | - Carlos Juan
- Department of Biology, University of the Balearic Islands, Ctra. Valldemossa km 7,5, 07122 Palma, Spain; (F.Z.); (J.A.J.-R.); (C.J.)
- IMEDEA (CSIC-UIB), Mediterranean Institute for Advanced Studies, C/Miquel Marquès 21, 07190 Esporles, Spain;
| | - Joan Pons
- IMEDEA (CSIC-UIB), Mediterranean Institute for Advanced Studies, C/Miquel Marquès 21, 07190 Esporles, Spain;
- Correspondence: ; Tel.: +34-971-173-332
| |
Collapse
|
4
|
Adrián‐Serrano S, Lozano‐Fernandez J, Pons J, Rozas J, Arnedo MA. On the shoulder of giants: Mitogenome recovery from non‐targeted genome projects for phylogenetic inference and molecular evolution studies. J ZOOL SYST EVOL RES 2020. [DOI: 10.1111/jzs.12415] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Silvia Adrián‐Serrano
- Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals & Institut de Recerca de la Biodiversitat (IRBio) Universitat de Barcelona Barcelona Spain
| | - Jesus Lozano‐Fernandez
- Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals & Institut de Recerca de la Biodiversitat (IRBio) Universitat de Barcelona Barcelona Spain
- Institut de Biologia Evolutiva (CSIC‐Universitat Pompeu Fabra) Barcelona Spain
| | - Joan Pons
- Departament de Biodiversitat i Conservació Institut Mediterrani d'Estudis Avançats (CSIC‐UIB) Esporles Spain
| | - Julio Rozas
- Departament de Genètica, Microbiologia i Estadística & Institut de Recerca de la Biodiversitat (IRBio) Universitat de Barcelona Barcelona Spain
| | - Miquel A. Arnedo
- Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals & Institut de Recerca de la Biodiversitat (IRBio) Universitat de Barcelona Barcelona Spain
| |
Collapse
|
5
|
Pons J, Bover P, Bidegaray-Batista L, Arnedo MA. Arm-less mitochondrial tRNAs conserved for over 30 millions of years in spiders. BMC Genomics 2019; 20:665. [PMID: 31438844 PMCID: PMC6706885 DOI: 10.1186/s12864-019-6026-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 08/12/2019] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND In recent years, Next Generation Sequencing (NGS) has accelerated the generation of full mitogenomes, providing abundant material for studying different aspects of molecular evolution. Some mitogenomes have been observed to harbor atypical sequences with bizarre secondary structures, which origins and significance could only be fully understood in an evolutionary framework. RESULTS Here we report and analyze the mitochondrial sequences and gene arrangements of six closely related spiders in the sister genera Parachtes and Harpactocrates, which belong to the nocturnal, ground dwelling family Dysderidae. Species of both genera have compacted mitogenomes with many overlapping genes and strikingly reduced tRNAs that are among the shortest described within metazoans. Thanks to the conservation of the gene order and the nucleotide identity across close relatives, we were able to predict the secondary structures even on arm-less tRNAs, which would be otherwise unattainable for a single species. They exhibit aberrant secondary structures with the lack of either DHU or TΨC arms and many miss-pairings in the acceptor arm but this degeneracy trend goes even further since at least four tRNAs are arm-less in the six spider species studied. CONCLUSIONS The conservation of at least four arm-less tRNA genes in two sister spider genera for about 30 myr suggest that these genes are still encoding fully functional tRNAs though they may be post-transcriptionally edited to be fully functional as previously described in other species. We suggest that the presence of overlapping and truncated tRNA genes may be related and explains why spider mitogenomes are smaller than those of other invertebrates.
Collapse
Affiliation(s)
- Joan Pons
- Departamento de Biodiversidad y Conservación, Instituto Mediterráneo de Estudios Avanzados (CSIC-UIB), Miquel Marquès, 21, 07190 Esporles, Illes Balears Spain
| | - Pere Bover
- ARAID Foundation – IUCA Grupo-Aragosaurus, Facultad de Ciencias, Universidad de Zaragoza, Pedro Cerbuna 12 -, 50009 Zaragoza, Spain
| | - Leticia Bidegaray-Batista
- Departamento de Biodiversidad y Genética, Instituto de Investigaciones Biológicas Clemente Estable, Avenida Italia 3318, 11600 Montevideo, CP Uruguay
| | - Miquel A. Arnedo
- Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals & Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Av. Diagonal 643, E-8028 Barcelona, Catalonia Spain
| |
Collapse
|
6
|
Luchetti A, Forni G, Skaist AM, Wheelan SJ, Mantovani B. Mitochondrial genome diversity and evolution in Branchiopoda (Crustacea). ZOOLOGICAL LETTERS 2019; 5:15. [PMID: 31149346 PMCID: PMC6537178 DOI: 10.1186/s40851-019-0131-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 05/19/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND The crustacean class Branchiopoda includes fairy shrimps, clam shrimps, tadpole shrimps, and water fleas. Branchiopods, which are well known for their great variety of reproductive strategies, date back to the Cambrian and extant taxa can be mainly found in freshwater habitats, also including ephemeral ponds. Mitochondrial genomes of the notostracan taxa Lepidurus apus lubbocki (Italy), L. arcticus (Iceland) and Triops cancriformis (an Italian and a Spanish population) are here characterized for the first time and analyzed together with available branchiopod mitogenomes. RESULTS Overall, branchiopod mitogenomes share the basic structure congruent with the ancestral Pancrustacea model. On the other hand, rearrangements involving tRNAs and the control region are observed among analyzed taxa. Remarkably, an unassigned region in the L. apus lubbocki mitogenome showed a chimeric structure, likely resulting from a non-homologous recombination event between the two flanking trnC and trnY genes. Notably, Anostraca and Onychocaudata mitogenomes showed increased GC content compared to both Notostraca and the common ancestor, and a significantly higher substitution rate, which does not correlate with selective pressures, as suggested by dN/dS values. CONCLUSIONS Branchiopod mitogenomes appear rather well-conserved, although gene rearrangements have occurred. For the first time, it is reported a putative non-homologous recombination event involving a mitogenome, which produced a pseudogenic tRNA sequence. In addition, in line with data in the literature, we explain the higher substitution rate of Anostraca and Onychocaudata with the inferred GC substitution bias that occurred during their evolution.
Collapse
Affiliation(s)
- Andrea Luchetti
- Department of Biological, Geological and Environmental Sciences, University of Bologna, via Selmi 3, 40126 Bolgna, Italy
| | - Giobbe Forni
- Department of Biological, Geological and Environmental Sciences, University of Bologna, via Selmi 3, 40126 Bolgna, Italy
| | - Alyza M. Skaist
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
| | - Sarah J. Wheelan
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
| | - Barbara Mantovani
- Department of Biological, Geological and Environmental Sciences, University of Bologna, via Selmi 3, 40126 Bolgna, Italy
| |
Collapse
|
7
|
ORDER within the chaos: Insights into phylogenetic relationships within the Anomura (Crustacea: Decapoda) from mitochondrial sequences and gene order rearrangements. Mol Phylogenet Evol 2018; 127:320-331. [DOI: 10.1016/j.ympev.2018.05.015] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 05/03/2018] [Accepted: 05/13/2018] [Indexed: 01/08/2023]
|
8
|
Stokkan M, Jurado-Rivera JA, Oromí P, Juan C, Jaume D, Pons J. Species delimitation and mitogenome phylogenetics in the subterranean genus Pseudoniphargus (Crustacea: Amphipoda). Mol Phylogenet Evol 2018; 127:988-999. [PMID: 30004011 DOI: 10.1016/j.ympev.2018.07.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 06/28/2018] [Accepted: 07/04/2018] [Indexed: 11/29/2022]
Abstract
The amphi-Atlantic distributions exhibited by many thalassoid stygobiont (obligate subterranean) crustaceans have been explained by fragmentation by plate tectonics of ancestral shallow water marine populations. The amphipod stygobiont genus Pseudoniphargus is distributed across the Mediterranean region but also in the North Atlantic archipelagos of Bermuda, Azores, Madeira and the Canaries. We used species delimitation methods and mitogenome phylogenetic analyses to clarify the species diversity and evolutionary relationships within the genus and timing their diversification. Analyses included samples from the Iberian Peninsula, northern Morocco, the Balearic, Canarian, Azores and Madeira archipelagoes plus Bermuda. In most instances, morphological and molecular-based species delimitation analyses yielded consistent results. Notwithstanding, in a few cases either incipient speciation with no involvement of detectable morphological divergence or species crypticism were the most plausible explanations for the disagreement found between morphological and molecular species delimitations. Phylogenetic analyses based on a robust calibrated mitochondrial tree suggested that Pseudoniphargus lineages have a younger age than for other thalassoid amphipods displaying a disjunct distribution embracing both sides of the Atlantic Ocean. A major split within the family was estimated to occur at the Paleocene, when a lineage from Northern Iberian Peninsula diverged from the rest of pseudoniphargids. Species diversification in the peri-Mediterranean area was deduced to occur in early Miocene to Tortonian times, while in the Atlantic islands it started in the Pliocene. Our results show that the current distribution pattern of Pseudoniphargus resulted from a complex admix of relatively ancient vicariance events and several episodes of long- distance dispersal.
Collapse
Affiliation(s)
- Morten Stokkan
- IMEDEA (CSIC-UIB), Mediterranean Institute for Advanced Studies, C/ Miquel Marquès 21, Esporles, 07190 Balearic Islands, Spain
| | - José A Jurado-Rivera
- Dept. of Biology, Universitat de les Illes Balears, Ctra. Valldemossa km 7'5, Palma 07122, Balearic Islands, Spain
| | - Pedro Oromí
- Dept. of Animal Biology, Edaphology and Geology, Universidad de La Laguna, Avda. Astrofísico Francisco Sánchez, s/n. Campus de Anchieta, Ap. correos 456, La Laguna 38200, Tenerife, Spain
| | - Carlos Juan
- IMEDEA (CSIC-UIB), Mediterranean Institute for Advanced Studies, C/ Miquel Marquès 21, Esporles, 07190 Balearic Islands, Spain; Dept. of Biology, Universitat de les Illes Balears, Ctra. Valldemossa km 7'5, Palma 07122, Balearic Islands, Spain
| | - Damià Jaume
- IMEDEA (CSIC-UIB), Mediterranean Institute for Advanced Studies, C/ Miquel Marquès 21, Esporles, 07190 Balearic Islands, Spain
| | - Joan Pons
- IMEDEA (CSIC-UIB), Mediterranean Institute for Advanced Studies, C/ Miquel Marquès 21, Esporles, 07190 Balearic Islands, Spain.
| |
Collapse
|
9
|
Tan MH, Gan HM, Lee YP, Poore GC, Austin CM. Digging deeper: new gene order rearrangements and distinct patterns of codons usage in mitochondrial genomes among shrimps from the Axiidea, Gebiidea and Caridea (Crustacea: Decapoda). PeerJ 2017; 5:e2982. [PMID: 28265498 PMCID: PMC5335691 DOI: 10.7717/peerj.2982] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 01/12/2017] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Whole mitochondrial DNA is being increasingly utilized for comparative genomic and phylogenetic studies at deep and shallow evolutionary levels for a range of taxonomic groups. Although mitogenome sequences are deposited at an increasing rate into public databases, their taxonomic representation is unequal across major taxonomic groups. In the case of decapod crustaceans, several infraorders, including Axiidea (ghost shrimps, sponge shrimps, and mud lobsters) and Caridea (true shrimps) are still under-represented, limiting comprehensive phylogenetic studies that utilize mitogenomic information. METHODS Sequence reads from partial genome scans were generated using the Illumina MiSeq platform and mitogenome sequences were assembled from these low coverage reads. In addition to examining phylogenetic relationships within the three infraorders, Axiidea, Gebiidea, and Caridea, we also investigated the diversity and frequency of codon usage bias and mitogenome gene order rearrangements. RESULTS We present new mitogenome sequences for five shrimp species from Australia that includes two ghost shrimps, Callianassa ceramica and Trypaea australiensis, along with three caridean shrimps, Macrobrachium bullatum, Alpheus lobidens, and Caridina cf. nilotica. Strong differences in codon usage were discovered among the three infraorders and significant gene order rearrangements were observed. While the gene order rearrangements are congruent with the inferred phylogenetic relationships and consistent with taxonomic classification, they are unevenly distributed within and among the three infraorders. DISCUSSION Our findings suggest potential for mitogenome rearrangements to be useful phylogenetic markers for decapod crustaceans and at the same time raise important questions concerning the drivers of mitogenome evolution in different decapod crustacean lineages.
Collapse
Affiliation(s)
- Mun Hua Tan
- School of Science, Monash University Malaysia, Bandar Sunway, Selangor, Malaysia
- Genomics Facility, Tropical Medicine and Biology Platform, Monash University Malaysia, Bandar Sunway, Selangor, Malaysia
| | - Han Ming Gan
- School of Science, Monash University Malaysia, Bandar Sunway, Selangor, Malaysia
- Genomics Facility, Tropical Medicine and Biology Platform, Monash University Malaysia, Bandar Sunway, Selangor, Malaysia
| | - Yin Peng Lee
- School of Science, Monash University Malaysia, Bandar Sunway, Selangor, Malaysia
- Genomics Facility, Tropical Medicine and Biology Platform, Monash University Malaysia, Bandar Sunway, Selangor, Malaysia
| | | | - Christopher M. Austin
- School of Science, Monash University Malaysia, Bandar Sunway, Selangor, Malaysia
- Genomics Facility, Tropical Medicine and Biology Platform, Monash University Malaysia, Bandar Sunway, Selangor, Malaysia
- School of Life and Environmental Sciences, Deakin University, Burwood, VIC, Australia
| |
Collapse
|
10
|
Romanova EV, Aleoshin VV, Kamaltynov RM, Mikhailov KV, Logacheva MD, Sirotinina EA, Gornov AY, Anikin AS, Sherbakov DY. Evolution of mitochondrial genomes in Baikalian amphipods. BMC Genomics 2016; 17:1016. [PMID: 28105939 PMCID: PMC5249044 DOI: 10.1186/s12864-016-3357-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND Amphipods (Crustacea) of Lake Baikal are a very numerous and diverse group of invertebrates generally believed to have originated by adaptive radiation. The evolutionary history and phylogenetic relationships in Baikalian amphipods still remain poorly understood. Sequencing of mitochondrial genomes is a relatively feasible way for obtaining a set of gene sequences suitable for robust phylogenetic inferences. The architecture of mitochondrial genomes also may provide additional information on the mechanisms of evolution of amphipods in Lake Baikal. RESULTS Three complete and four nearly complete mitochondrial genomes of Baikalian amphipods were obtained by high-throughput sequencing using the Illumina platform. A phylogenetic inference based on the nucleotide sequences of all mitochondrial protein coding genes revealed the Baikalian species to be a monophyletic group relative to the nearest non-Baikalian species with a completely sequenced mitochondrial genome - Gammarus duebeni. The phylogeny of Baikalian amphipods also suggests that the shallow-water species Eulimnogammarus has likely evolved from a deep-water ancestor, however many other species have to be added to the analysis to test this hypothesis. The gene order in all mitochondrial genomes of studied Baikalian amphipods differs from the pancrustacean ground pattern. Mitochondrial genomes of four species possess 23 tRNA genes, and in three genomes the extra tRNA gene copies have likely undergone remolding. Widely varying lengths of putative control regions and other intergenic spacers are typical for the mitochondrial genomes of Baikalian amphipods. CONCLUSIONS The mitochondrial genomes of Baikalian amphipods display varying organization suggesting an intense rearrangement process during their evolution. Comparison of complete mitochondrial genomes is a potent approach for studying the amphipod evolution in Lake Baikal.
Collapse
Affiliation(s)
- Elena V. Romanova
- Laboratory of Molecular Systematics, Limnological Institute, Siberian Branch of Russian Academy of Sciences, Irkutsk, 664033 Russian Federation
| | - Vladimir V. Aleoshin
- Belozersky Institute for Physicochemical Biology, Lomonosov Moscow State University, Moscow, 119991 Russian Federation
- Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, 127994 Russian Federation
| | - Ravil M. Kamaltynov
- Laboratory of Molecular Systematics, Limnological Institute, Siberian Branch of Russian Academy of Sciences, Irkutsk, 664033 Russian Federation
| | - Kirill V. Mikhailov
- Belozersky Institute for Physicochemical Biology, Lomonosov Moscow State University, Moscow, 119991 Russian Federation
- Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, 127994 Russian Federation
| | - Maria D. Logacheva
- Belozersky Institute for Physicochemical Biology, Lomonosov Moscow State University, Moscow, 119991 Russian Federation
- Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, 127994 Russian Federation
- Extreme Biology Laboratory, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, 420012 Russian Federation
| | - Elena A. Sirotinina
- Laboratory of Molecular Systematics, Limnological Institute, Siberian Branch of Russian Academy of Sciences, Irkutsk, 664033 Russian Federation
| | - Alexander Yu. Gornov
- Institute for System Dynamics and Control Theory, Siberian Branch of Russian Academy of Sciences, Irkutsk, 664033 Russian Federation
| | - Anton S. Anikin
- Institute for System Dynamics and Control Theory, Siberian Branch of Russian Academy of Sciences, Irkutsk, 664033 Russian Federation
| | - Dmitry Yu. Sherbakov
- Laboratory of Molecular Systematics, Limnological Institute, Siberian Branch of Russian Academy of Sciences, Irkutsk, 664033 Russian Federation
- Faculty of Biology and Soil Studies, Irkutsk State University, Irkutsk, 664003 Russian Federation
| |
Collapse
|
11
|
Aunins AW, Nelms DL, Hobson CS, King TL. Comparative mitogenomic analyses of three North American stygobiont amphipods of the genus Stygobromus (Crustacea: Amphipoda). MITOCHONDRIAL DNA PART B-RESOURCES 2016; 1:560-563. [PMID: 33473556 PMCID: PMC7800481 DOI: 10.1080/23802359.2016.1174086] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The mitochondrial genomes of three North American stygobiont amphipods Stygobromus tenuis potomacus, S. foliatus and S. indentatus collected from Caroline County, VA, were sequenced using a shotgun sequencing approach on an Illumina NextSeq500 (Illumina Inc., San Diego, CA). All three mitogenomes displayed 13 protein-coding genes, 22 tRNAs and two rRNAs typical of metazoans. While S. tenuis and S. indentatus displayed identical gene orders similar to the pancrustacean ground pattern, S. foliatus displayed a transposition of the trnL2-cox2 genes to after atp8-atp6. In addition, a short atp8 gene, longer rrnL gene and large inverted repeat within the Control Region distinguished S. foliatus from S. tenuis potomacus and S. indentatus. Overall, it appears that gene order varies considerably among amphipods, and the addition of these Stygobromus mitogenomes to the existing sequenced amphipod mitogenomes will prove useful for characterizing evolutionary relationships among various amphipod taxa, as well as investigations of the evolutionary dynamics of the mitogenome in general.
Collapse
Affiliation(s)
- Aaron William Aunins
- Leetown Science Center, Aquatic Ecology Branch, Natural Systems Analysts, Inc, Kearneysville, WV, USA
| | - David L Nelms
- United States Geological Survey, Virginia Water Science Center, Richmond, VA, USA
| | | | - Timothy L King
- United States Geological Survey, Leetown Science Center, Aquatic Ecology Branch, Kearneysville, WV, USA
| |
Collapse
|