1
|
Zheng N, Liao T, Zhang C, Zhang Z, Yan S, Xi X, Ruan F, Yang C, Zhao Q, Deng W, Huang J, Huang Z, Chen Z, Wang X, Qu Q, Zuo Z, He C. Quantum Dots-caused Retinal Degeneration in Zebrafish Regulated by Ferroptosis and Mitophagy in Retinal Pigment Epithelial Cells through Inhibiting Spliceosome. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2406343. [PMID: 39420512 PMCID: PMC11633537 DOI: 10.1002/advs.202406343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 08/23/2024] [Indexed: 10/19/2024]
Abstract
Quantum dots (QDs) are widely used, but their health impact on the visual system is little known. This study aims to elucidate the effects and mechanisms of typical metallic QDs on retinas using zebrafish. Comprehensive histology, imaging, and bulk RNA sequencing reveal that InP/ZnS QDs cause retinal degeneration. Furthermore, single-cell RNA-seq reveals a reduction in the number of retinal pigment epithelial cells (RPE) and short-wave cone UV photoreceptor cells (PR(UV)), accompanied by an increase in middle- and long-wave cone red, green, and blue photoreceptor cells [PR(RGB)]. Mechanistically, after endocytosis by RPE, InP/ZnS QDs inhibit the expression of splicing factor prpf8, resulting in gpx4b mRNA unsplicing, which finally decrease glutathione and induce ferroptosis and mitophagy. The decrease of RPE fails to engulf the damaged outer segments of PR, possibly promoting the differentiation of PR(UV) to PR(RGB). Knockout prpf8 or gpx4b with CRISPR/Cas9 system, the retinal damage is also observed. Whereas, overexpression of prpf8 or gpx4b, or supplement of glutathione can rescue the retinal degenerative damage caused by InP/ZnS QDs. In conclusion, this study illustrates the potential health risks of InP/ZnS QDs on eye development and provides valuable insights into the underlying mechanisms of InP/ZnS QDs-caused retinal degeneration.
Collapse
Affiliation(s)
- Naying Zheng
- Department of Ophthalmology in Xiang'an Hospital of Xiamen UniversityState Key Laboratory of Cellular Stress BiologySchool of Life SciencesFaculty of Medicine and Life SciencesXiamen UniversityXiamenFujian361102China
| | - Tingting Liao
- Department of Ophthalmology in Xiang'an Hospital of Xiamen UniversityState Key Laboratory of Cellular Stress BiologySchool of Life SciencesFaculty of Medicine and Life SciencesXiamen UniversityXiamenFujian361102China
| | - Chuchu Zhang
- Department of Ophthalmology in Xiang'an Hospital of Xiamen UniversityState Key Laboratory of Cellular Stress BiologySchool of Life SciencesFaculty of Medicine and Life SciencesXiamen UniversityXiamenFujian361102China
| | - Zheyang Zhang
- Department of Ophthalmology in Xiang'an Hospital of Xiamen UniversityState Key Laboratory of Cellular Stress BiologySchool of Life SciencesFaculty of Medicine and Life SciencesXiamen UniversityXiamenFujian361102China
| | - Sen Yan
- Department of ChemistryState Key Laboratory of Physical Chemistry of Solid SurfacesCollaborative Innovation Center of Chemistry for Energy Materials (i‐ChEM)Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM)College of Chemistry and Chemical EngineeringXiamen UniversityXiamen361005China
| | - Xiaohan Xi
- Department of ChemistryState Key Laboratory of Physical Chemistry of Solid SurfacesCollaborative Innovation Center of Chemistry for Energy Materials (i‐ChEM)Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM)College of Chemistry and Chemical EngineeringXiamen UniversityXiamen361005China
| | - Fengkai Ruan
- Department of Ophthalmology in Xiang'an Hospital of Xiamen UniversityState Key Laboratory of Cellular Stress BiologySchool of Life SciencesFaculty of Medicine and Life SciencesXiamen UniversityXiamenFujian361102China
| | - Chunyan Yang
- Department of Ophthalmology in Xiang'an Hospital of Xiamen UniversityState Key Laboratory of Cellular Stress BiologySchool of Life SciencesFaculty of Medicine and Life SciencesXiamen UniversityXiamenFujian361102China
| | - Qingliang Zhao
- State Key Laboratory of Vaccines for Infectious DiseasesCenter for Molecular Imaging and Translational MedicineXiang An Biomedicine LaboratorySchool of Public HealthXiamen UniversityXiamenFujian361005China
| | - Wenbo Deng
- Key Laboratory of Reproductive Health ResearchFujian Province UniversitySchool of MedicineXiamen UniversityXiamenFujian361005China
| | - Jialiang Huang
- Department of Ophthalmology in Xiang'an Hospital of Xiamen UniversityState Key Laboratory of Cellular Stress BiologySchool of Life SciencesFaculty of Medicine and Life SciencesXiamen UniversityXiamenFujian361102China
| | - Zi‐Tao Huang
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk ControlGuangdong‐Hong Kong‐Macao Joint Laboratory for Contaminants Exposure and HealthSchool of Environmental Science and EngineeringGuangdong University of TechnologyGuangzhou510006China
| | - Zhi‐Feng Chen
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk ControlGuangdong‐Hong Kong‐Macao Joint Laboratory for Contaminants Exposure and HealthSchool of Environmental Science and EngineeringGuangdong University of TechnologyGuangzhou510006China
| | - Xiang Wang
- Department of ChemistryState Key Laboratory of Physical Chemistry of Solid SurfacesCollaborative Innovation Center of Chemistry for Energy Materials (i‐ChEM)Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM)College of Chemistry and Chemical EngineeringXiamen UniversityXiamen361005China
| | - Qingming Qu
- Department of Ophthalmology in Xiang'an Hospital of Xiamen UniversityState Key Laboratory of Cellular Stress BiologySchool of Life SciencesFaculty of Medicine and Life SciencesXiamen UniversityXiamenFujian361102China
| | - Zhenghong Zuo
- Department of Ophthalmology in Xiang'an Hospital of Xiamen UniversityState Key Laboratory of Cellular Stress BiologySchool of Life SciencesFaculty of Medicine and Life SciencesXiamen UniversityXiamenFujian361102China
| | - Chengyong He
- Department of Ophthalmology in Xiang'an Hospital of Xiamen UniversityState Key Laboratory of Cellular Stress BiologySchool of Life SciencesFaculty of Medicine and Life SciencesXiamen UniversityXiamenFujian361102China
| |
Collapse
|
2
|
Surendran A, Tintu R, Das KS, Nair VJA, Varghese P. Biomedical and Anticancer Potential of Green Synthesized Chalcogenide Zinc Sulfide Nanoparticles Using Different Plant Extracts as the Capping Agent. BRAZILIAN JOURNAL OF PHYSICS 2024; 54:224. [DOI: 10.1007/s13538-024-01591-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 08/23/2024] [Indexed: 01/05/2025]
|
3
|
Essawy MM, Rafik ST, Awaad AK, Mourad GM, El Achy SN. Photo-excitable zinc sulfide nanoparticles: A theranostic nanotool for cancer management. Oral Dis 2023; 29:3243-3258. [PMID: 35877467 DOI: 10.1111/odi.14324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 06/27/2022] [Accepted: 07/20/2022] [Indexed: 11/26/2022]
Abstract
OBJECTIVES Zinc sulfide nanoparticles (ZnS NPs), as one of the quantum dots less than 10 nm, possess unique size-dependent autofluorescence. Excitation of their valence electrons by energy higher than the bandgap reveals the ZnS NPs' inherited photocatalysis with additive cytotoxic consequences of reactive oxygen species (ROS) release. Coupling the cytotoxicity of photoactivated ZnS NPs with their autofluorescence would be a novel theranostic modality, combating superficially accessible carcinoma. MATERIAL AND METHODS After synthesizing and characterization of ZnS NPs, we verified their photocatalysis and electron donation upon UV excitation in degrading organic dye and DNA cleavage, respectively. We then tested the efficacy of UV-activated ZnS NPs to induce ROS-dependent apoptosis in squamous cell carcinoma and breast cancer cell lines. RESULTS The energetic electron-hole pairs generated upon UV excitation of ZnS NPs with the consequent cascade of ROS release revealed potent apoptotic cancer cell deaths, compared with single treatment modalities of nonexcited nanoparticles and UV. Moreover, the inherited luminescence of ZnS NPs enabled visualization of their predominant intracytoplasmic uptake with tracking of their cellular response. CONCLUSION The intensified luminescence and the fortified cytotoxicity of photoactivated ZnS NPs enhance their theranostic qualifications, boosting their antitumorigenic use.
Collapse
Affiliation(s)
- Marwa M Essawy
- Department of Oral Pathology, Faculty of Dentistry, Alexandria University, Alexandria, Egypt
- Center of Excellence for Research in Regenerative Medicine and Applications (CERRMA), Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Salma T Rafik
- Department of Clinical Pharmacology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Ashraf K Awaad
- Center of Excellence for Research in Regenerative Medicine and Applications (CERRMA), Faculty of Medicine, Alexandria University, Alexandria, Egypt
- Department of Biochemistry, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Ghada M Mourad
- Center of Excellence for Research in Regenerative Medicine and Applications (CERRMA), Faculty of Medicine, Alexandria University, Alexandria, Egypt
- Department of Histology and Cell Biology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Samar N El Achy
- Center of Excellence for Research in Regenerative Medicine and Applications (CERRMA), Faculty of Medicine, Alexandria University, Alexandria, Egypt
- Department of Pathology, Executive Manager of the Nanomedicine Laboratory at the Center of Excellence for Research in Regenerative Medicine (CERRMA), Faculty of Medicine, Alexandria University, Alexandria, Egypt
| |
Collapse
|
4
|
Kaynar AH, Çömelekoğlu Ü, Kibar D, Yıldırım M, Yıldırımcan S, Yılmaz ŞN, Erat S. Cytotoxic effect of silica nanoparticles on human retinal pigment epithelial cells. Biochem Biophys Res Commun 2023; 674:53-61. [PMID: 37406486 DOI: 10.1016/j.bbrc.2023.06.083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/07/2023] [Accepted: 06/26/2023] [Indexed: 07/07/2023]
Abstract
In recent years, the use of nanotechnology-based methods has become widespread in the treatment of ocular diseases. Silica nanoparticles (SiO2 NPs) are most common used NPs in medical field due to their physicochemical properties. SiO2 NPs can easily cross biological membranes and interact with basic biological structures, causing structural and functional changes in cells. In this study, it was aimed to investigate the dose dependent effect of SiO2 NPs on retinal pigment epithelium (RPE) in vitro using electrobiophysical, biochemical and histological methods. A commercially purchased human RPE (hARPE-19) cell line was used in this study. Cells were divided into four groups as control, 50 μg/mL SiO2, 100 μg/mL SiO2 and 150 μg/mL SiO2 groups. Cell index, apoptotic activity, cell cycle and oxidative stress markers were measured in all groups. Findings in the present study showed that SiO2 nanoparticles reduced cell proliferation, increased oxidative stress, apoptosis and arrest in the G0/G1 phase of the cell cycle as dose dependent manner in ARPE-19 cells. In conclusion, SiO2 exposure can induce cytotoxic effects in RPE cell line. The results of this study provide clues that exposure to SiO2 nanoparticles may impair visual function and reduce quality of life. However, further studies are needed in this regard.
Collapse
Affiliation(s)
- Ayşe Hümeyra Kaynar
- Department of Biophysics, Faculty of Medicine, Mersin University, Mersin, Turkey
| | - Ülkü Çömelekoğlu
- Department of Biophysics, Faculty of Medicine, Mersin University, Mersin, Turkey.
| | - Deniz Kibar
- Department of Histology-Embryology, Faculty of Medicine, Mersin University, Mersin, Turkey
| | - Metin Yıldırım
- Department of Pharmacy Services, Vocational School of Health Services, Tarsus University, Mersin, Turkey
| | - Saadet Yıldırımcan
- Department of Medical Services and Techniques, Vocational School of Technical Sciences, Mersin, Turkey
| | - Şakir Necat Yılmaz
- Department of Pharmacy Services, Vocational School of Health Services, Tarsus University, Mersin, Turkey
| | - Selma Erat
- Department of Medical Services and Techniques, Vocational School of Technical Sciences, Mersin, Turkey
| |
Collapse
|
5
|
Xie D, Hu J, Wu T, Cao K, Luo X. Potential Biomarkers and Drugs for Nanoparticle-Induced Cytotoxicity in the Retina: Based on Regulation of Inflammatory and Apoptotic Genes. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19095664. [PMID: 35565057 PMCID: PMC9099825 DOI: 10.3390/ijerph19095664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 05/03/2022] [Accepted: 05/05/2022] [Indexed: 02/01/2023]
Abstract
The eye is a superficial organ directly exposed to the surrounding environment. Thus, the toxicity of nanoparticle (NP) pollutants to the eye may be potentially severer relative to inner organs and needs to be monitored. However, the cytotoxic mechanisms of NPs on the eyes remain rarely reported. This study was to screen crucial genes associated with NPs-induced retinal injuries. The gene expression profiles in the retina induced by NPs [GSE49371: Au20, Au100, Si20, Si100; GSE49048: presumptive therapeutic concentration (PTC) TiO2, 10PTC TiO2] and commonly used retinal cell injury models (optic nerve injury procedure: GSE55228, GSE120257 and GSE131486; hypoxia exposure: GSE173233, GSE151610, GSE135844; H2O2 exposure: GSE122270) were obtained from the Gene Expression Omnibus database. A total of 381 differentially expressed genes (including 372 mRNAs and 9 lncRNAs) were shared between NP exposure and the optic nerve injury model when they were compared with their corresponding controls. Function enrichment analysis of these overlapped genes showed that Tlr2, Crhbp, Ccl2, Cxcl10, Fas, Irf8, Socs3, Stat3, Gbp6, Casp1 and Syk were involved in inflammatory- and apoptotic-related processes. Protein-protein interaction network analysis revealed eight of them (Tlr2, Ccl2, Cxcl10, Irf8, Socs3, Stat3, Casp1 and Syk) were hub genes. Moreover, Socs3 could interact with upstream Stat3 and downstream Fas/Casp1/Ccl2/Cxcl10; Irf8 could interact with upstream Tlr2, Syk and downstream Cxcl10. Competing endogenous RNAs network analysis identified Socs3, Irf8, Gdf6 and Crhbp could be regulated by lncRNAs and miRNAs (9330175E14Rik-mmu-miR-762-Socs3, 6430562O15Rik-mmu-miR-207-Irf8, Gm9866-mmu-miR-669b-5p-Gdf6, 4933406C10Rik-mmu-miR-9-5p-Crhbp). CMap-CTD database analyses indicated the expression levels of Tlr2, Ccl2, Cxcl10, Fas, Irf8, Socs3, Stat3, Gbp6, Casp1 and Syk could be reversed by folic acid. Crhbp and Gdf6 were also verified to be downregulated, while Tlr2, Ccl2, Irf8, Socs3 and Stat3 were upregulated in hypoxia/H2O2-induced retinal injury models. Hereby, our findings suggest that Crhbp, Irf8, Socs3 and Gdf6 as well as their upstream mRNAs, lncRNAs and miRNAs may be potential monitoring biomarkers and therapeutic targets for NP-induced retinal injuries. Folic acid supplementation may be a preventive and therapeutic approach.
Collapse
Affiliation(s)
- Dongli Xie
- College of Textile and Clothing Engineering, Soochow University, 199 Ren-Ai Road, Suzhou 215123, China; (D.X.); (J.H.)
| | - Jianchen Hu
- College of Textile and Clothing Engineering, Soochow University, 199 Ren-Ai Road, Suzhou 215123, China; (D.X.); (J.H.)
| | - Tong Wu
- Shanghai Jing Rui Yang Industrial Co., Ltd., 3188 Xiupu Road, Pudong New Area, Shanghai 200122, China;
| | - Kangli Cao
- Shanghai Institute of Spacecraft Equipment, 251 Huaning Road, Shanghai 200240, China;
| | - Xiaogang Luo
- College of Textile and Clothing Engineering, Soochow University, 199 Ren-Ai Road, Suzhou 215123, China; (D.X.); (J.H.)
- Correspondence: ; Tel.: +86-0512-67162531
| |
Collapse
|
6
|
Cosert KM, Kim S, Jalilian I, Chang M, Gates BL, Pinkerton KE, Van Winkle LS, Raghunathan VK, Leonard BC, Thomasy SM. Metallic Engineered Nanomaterials and Ocular Toxicity: A Current Perspective. Pharmaceutics 2022; 14:pharmaceutics14050981. [PMID: 35631569 PMCID: PMC9145553 DOI: 10.3390/pharmaceutics14050981] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 04/06/2022] [Accepted: 04/18/2022] [Indexed: 02/01/2023] Open
Abstract
The ocular surface, comprised of the transparent cornea, conjunctiva, and protective tear film, forms a protective barrier defending deeper structures of the eye from particulate matter and mechanical trauma. This barrier is routinely exposed to a multitude of naturally occurring and engineered nanomaterials (ENM). Metallic ENMs are particularly ubiquitous in commercial products with a high risk of ocular exposure, such as cosmetics and sunscreens. Additionally, there are several therapeutic uses for metallic ENMs owing to their attractive magnetic, antimicrobial, and functionalization properties. The increasing commercial and therapeutic applications of metallic ENMs come with a high risk of ocular exposure with poorly understood consequences to the health of the eye. While the toxicity of metallic ENMs exposure has been rigorously studied in other tissues and organs, further studies are necessary to understand the potential for adverse effects and inform product usage for individuals whose ocular health may be compromised by injury, disease, or surgical intervention. This review provides an update of current literature on the ocular toxicity of metallic ENMs in vitro and in vivo, as well as the risks and benefits of therapeutic applications of metallic ENMs in ophthalmology.
Collapse
Affiliation(s)
- Krista M. Cosert
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California Davis, Davis, CA 95616, USA; (K.M.C.); (S.K.); (I.J.); (M.C.); (B.L.G.); (B.C.L.)
| | - Soohyun Kim
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California Davis, Davis, CA 95616, USA; (K.M.C.); (S.K.); (I.J.); (M.C.); (B.L.G.); (B.C.L.)
| | - Iman Jalilian
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California Davis, Davis, CA 95616, USA; (K.M.C.); (S.K.); (I.J.); (M.C.); (B.L.G.); (B.C.L.)
| | - Maggie Chang
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California Davis, Davis, CA 95616, USA; (K.M.C.); (S.K.); (I.J.); (M.C.); (B.L.G.); (B.C.L.)
| | - Brooke L. Gates
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California Davis, Davis, CA 95616, USA; (K.M.C.); (S.K.); (I.J.); (M.C.); (B.L.G.); (B.C.L.)
| | - Kent E. Pinkerton
- Center for Health and the Environment, University of California Davis, Davis, CA 95616, USA; (K.E.P.); (L.S.V.W.)
- Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California Davis, Davis, CA 95616, USA
| | - Laura S. Van Winkle
- Center for Health and the Environment, University of California Davis, Davis, CA 95616, USA; (K.E.P.); (L.S.V.W.)
- Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California Davis, Davis, CA 95616, USA
| | - Vijay Krishna Raghunathan
- Department of Basic Sciences, College of Optometry, University of Houston, Houston, TX 77004, USA;
- The Ocular Surface Institute, College of Optometry, University of Houston, Houston, TX 77004, USA
- Department of Biomedical Engineering, Cullen College of Engineering, University of Houston, Houston, TX 77204, USA
| | - Brian C. Leonard
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California Davis, Davis, CA 95616, USA; (K.M.C.); (S.K.); (I.J.); (M.C.); (B.L.G.); (B.C.L.)
| | - Sara M. Thomasy
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California Davis, Davis, CA 95616, USA; (K.M.C.); (S.K.); (I.J.); (M.C.); (B.L.G.); (B.C.L.)
- Department of Ophthalmology & Vision Science, School of Medicine, University of California Davis, Davis, CA 95616, USA
- Correspondence: ; Tel.: +1-530-752-0926
| |
Collapse
|
7
|
Khan AA, Allemailem KS, Almatroudi A, Almatroodi SA, Mahzari A, Alsahli MA, Rahmani AH. Endoplasmic Reticulum Stress Provocation by Different Nanoparticles: An Innovative Approach to Manage the Cancer and Other Common Diseases. Molecules 2020; 25:5336. [PMID: 33207628 PMCID: PMC7697255 DOI: 10.3390/molecules25225336] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 11/12/2020] [Accepted: 11/14/2020] [Indexed: 02/06/2023] Open
Abstract
A proper execution of basic cellular functions requires well-controlled homeostasis including correct protein folding. Endoplasmic reticulum (ER) implements such functions by protein reshaping and post-translational modifications. Different insults imposed on cells could lead to ER stress-mediated signaling pathways, collectively called the unfolded protein response (UPR). ER stress is also closely linked with oxidative stress, which is a common feature of diseases such as stroke, neurodegeneration, inflammation, metabolic diseases, and cancer. The level of ER stress is higher in cancer cells, indicating that such cells are already struggling to survive. Prolonged ER stress in cancer cells is like an Achilles' heel, if aggravated by different agents including nanoparticles (NPs) may be exhausted off the pro-survival features and can be easily subjected to proapoptotic mode. Different types of NPs including silver, gold, silica, graphene, etc. have been used to augment the cytotoxicity by promoting ER stress-mediated cell death. The diverse physico-chemical properties of NPs play a great role in their biomedical applications. Some special NPs have been effectively used to address different types of cancers as these particles can be used as both toxicological or therapeutic agents. Several types of NPs, and anticancer drug nano-formulations have been engineered to target tumor cells to enhance their ER stress to promote their death. Therefore, mitigating ER stress in cancer cells in favor of cell death by ER-specific NPs is extremely important in future therapeutics and understanding the underlying mechanism of how cancer cells can respond to NP induced ER stress is a good choice for the development of novel therapeutics. Thus, in depth focus on NP-mediated ER stress will be helpful to boost up developing novel pro-drug candidates for triggering pro-death pathways in different cancers.
Collapse
Affiliation(s)
- Amjad Ali Khan
- Department of Basic Health Sciences, College of Applied Medical Sciences, Qassim University, Buraydah 52571, Saudi Arabia;
| | - Khaled S. Allemailem
- Department of Basic Health Sciences, College of Applied Medical Sciences, Qassim University, Buraydah 52571, Saudi Arabia;
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 52571, Saudi Arabia; (A.A.); (S.A.A.); (M.A.A.); (A.H.R.)
| | - Ahmad Almatroudi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 52571, Saudi Arabia; (A.A.); (S.A.A.); (M.A.A.); (A.H.R.)
| | - Saleh A. Almatroodi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 52571, Saudi Arabia; (A.A.); (S.A.A.); (M.A.A.); (A.H.R.)
| | - Ali Mahzari
- Department of Laboratory Medicine, Faculty of Applied Medical Sciences, Albaha University, Albaha 65527, Saudi Arabia;
| | - Mohammed A. Alsahli
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 52571, Saudi Arabia; (A.A.); (S.A.A.); (M.A.A.); (A.H.R.)
| | - Arshad Husain Rahmani
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 52571, Saudi Arabia; (A.A.); (S.A.A.); (M.A.A.); (A.H.R.)
| |
Collapse
|
8
|
Mahanthappa M, Savanur MA, Yellappa S. Molecular interaction studies of zinc sulphide nanoparticles with DNA and its consequence: a multitechnique approach. LUMINESCENCE 2020; 36:45-56. [DOI: 10.1002/bio.3912] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Revised: 05/24/2020] [Accepted: 07/05/2020] [Indexed: 12/27/2022]
Affiliation(s)
- Mallappa Mahanthappa
- Department of Chemistry Bangalore University Jnanabharathi Campus Bengaluru India
- Research Resource Centre Visvesvaraya Technological University Belagavi India
- School of Applied Sciences REVA University Bengaluru 560064 India
| | - Mohammed Azharuddin Savanur
- Department of Biochemistry Karnatak University Dharwad India
- Department of Biochemistry Indian Institute of Science Bengaluru India
| | - Shivaraj Yellappa
- Department of Chemistry Bangalore University Jnanabharathi Campus Bengaluru India
| |
Collapse
|
9
|
Žid L, Zeleňák V, Girman V, Bednarčík J, Zeleňáková A, Szűcsová J, Hornebecq V, Hudák A, Šuleková M, Váhovská L. Doxorobicin as cargo in a redox-responsive drug delivery system capped with water dispersible ZnS nanoparticles. RSC Adv 2020; 10:15825-15835. [PMID: 35493685 PMCID: PMC9052939 DOI: 10.1039/d0ra02091e] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 04/13/2020] [Indexed: 11/29/2022] Open
Abstract
In this work, we have prepared and investigated a redox-responsive drug delivery system (DDS) based on a porous carrier. Doxorubicin (DOX), a chemotherapy medication for treatment of different kinds of cancer, was used as a model drug in the study. DOX was loaded in ordered hexagonal mesoporous silica SBA-15, a nanoporous material with good biocompatibility, stability, large pore size and specific surface area (SBET = 908 m2 g−1, VP = 0.79 cm3 g−1, d = 5.9 nm) and easy surface modification. To prepare the redox-responsive system, cystamine derivative ligands, with redox active disulphide linkers were grafted onto the surface of SBA-15. To ensure no significant premature release of DOX from the porous system, thioglycolic acid modified ZnS nanoparticles (ZnS–COOH NPs) were used as pore capping agents. The grafted redox-responsive cystamine derivative ligand containing disulphide linkers was bonded by a peptide bond to the thioglycolic acid groups of ZnS–COOH NPs, capping the pores. Once the disulphide bond was cleaved, the ZnS–COOH NPs caps were released and pores were opened to deliver the DOX cargo. The dithiol bond was cleavable by redox active molecules such as dithiothreitol (DTT) or glutathione, the concentration of which in cancer cells is 4 times higher than in healthy cells. The redox release of DOX was studied in two different media, physiological saline solution with DTT and saline without DTT. The prepared DDS proved the concept of redox responsive release. All samples were characterised by powder X-ray diffraction (XRD), transition electron microscopy (TEM), nitrogen adsorption/desorption at 77 K, Fourier-transform infrared spectroscopy (FTIR), thermal analysis and zeta potential measurements. The presence of semiconducting ZnS nanoparticle caps on the pore openings was detected by magnetic measurements using SQUID magnetometry showing that such cargo systems could be monitored using magnetic measurements which opens up the possibilities of using such drug delivery systems as theranostic agents. Redox-responsive drug delivery system was studied. ZnS nanoparticles served as pore capping agent to prevent premature release of anticancer drug. Such cargo can be monitored by magnetic field which opens possibilities its use in theranostics.![]()
Collapse
Affiliation(s)
- Lukáš Žid
- Department of Inorganic Chemistry Faculty of Science
- P. J. Šafárik University
- SK-041 54 Košice
- Slovak Republic
| | - Vladimír Zeleňák
- Department of Inorganic Chemistry Faculty of Science
- P. J. Šafárik University
- SK-041 54 Košice
- Slovak Republic
| | - Vladimír Girman
- Institute of Physics
- P. J. Šafárik University
- 04001 Košice
- Slovakia
| | - Jozef Bednarčík
- Institute of Physics
- P. J. Šafárik University
- 04001 Košice
- Slovakia
| | | | | | | | - Alexander Hudák
- Department of Chemistry
- Biochemistry and Biophysics
- Institute of Pharmaceutical Chemistry
- The University of Veterinary Medicine and Pharmacy in Košice
- Košice 041 81
| | - Monika Šuleková
- Department of Chemistry
- Biochemistry and Biophysics
- Institute of Pharmaceutical Chemistry
- The University of Veterinary Medicine and Pharmacy in Košice
- Košice 041 81
| | - Lucia Váhovská
- Department of Chemistry
- Biochemistry and Biophysics
- Institute of Pharmaceutical Chemistry
- The University of Veterinary Medicine and Pharmacy in Košice
- Košice 041 81
| |
Collapse
|
10
|
Xu J, Zhang Y, Zhu W, Cui Y. Synthesis of Polymeric Nanocomposite Hydrogels Containing the Pendant ZnS Nanoparticles: Approach to Higher Refractive Index Optical Polymeric Nanocomposites. Macromolecules 2018. [DOI: 10.1021/acs.macromol.7b02315] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Jinku Xu
- Shandong Provincial Key Laboratory of Fine Chemical, School of Chemistry and Pharmaceutical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Yongchun Zhang
- Shandong Provincial Key Laboratory of Fine Chemical, School of Chemistry and Pharmaceutical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Weiyue Zhu
- Shandong Provincial Key Laboratory of Fine Chemical, School of Chemistry and Pharmaceutical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Yuezhi Cui
- Shandong Provincial Key Laboratory of Fine Chemical, School of Chemistry and Pharmaceutical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| |
Collapse
|
11
|
Karthikeyan B, Harini L, Krishnakumar V, Kannan VR, Sundar K, Kathiresan T. Insights on the involvement of (-)-epigallocatechin gallate in ER stress-mediated apoptosis in age-related macular degeneration. Apoptosis 2018; 22:72-85. [PMID: 27778132 DOI: 10.1007/s10495-016-1318-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Endoplasmic reticulum (ER) stress-mediated apoptosis is a well-known factor in the pathogenesis of age-related macular degeneration (AMD). ER stress leads to accumulation of misfolded proteins, which in turn activates unfolded protein response (UPR) of the cell for its survival. The prolonged UPR of ER stress promotes cell death; however, the transition between adaptation and ER stress-induced apoptosis has not been clearly understood. Hence, the present study investigates the regulatory effect of (-)-epigallocatechin gallate (EGCG) on ER stress-induced by hydrogen peroxide (H2O2) and disturbance of calcium homeostasis by thapsigargin (TG) in mouse retinal pigment epithelial (MRPE) cells. The oxidant molecules influenced MRPE cells showed an increased level of intracellular calcium [Ca2+]i in ER and transferred to mitochondria through ER-mitochondrial tether site then increased ROS production. EGCG restores [Ca2+]i homeostasis by decreasing ROS production through inhibition of prohibitin1 which regulate ER-mitochondrial tether site and inhibit apoptosis. Effect of EGCG on ER stress-mediated apoptosis was elucidated by exploring the UPR signalling pathways. EGCG downregulated GRP78, CHOP, PERK, ERO1α, IRE1α, cleaved PARP, cleaved caspase 3, caspase 12 and upregulated expression of calnexinin MRPE cells. In addition to this, inhibition of apoptosis by EGCG was also confirmed with expression of proteins Akt, PTEN and GSK3β. MRPE cells with EGCG upregulates phosphorylation of Akt at ser473 and phospho ser380 of PTEN, but phosphorylation at ser9 of GSK3β was inhibited. Further, constitutively active (myristoylated) CA-Akt transfected in MRPE cells had an increased Akt activity in EGCG influenced cells. These findings strongly suggest that antioxidant molecules inhibit cell death through the proper balancing of [Ca2+]i and ROS production in order to maintain UPR of ER in MRPE cells. Thus, modulation of UPR signalling may provide a potential target for the therapeutic approaches of AMD.
Collapse
Affiliation(s)
- Bose Karthikeyan
- Department of Biotechnology, Kalasalingam University, Anand Nagar, Krishnankoil, Tamil Nadu, 626 126, India.,Department of Ophthalmic Research, Cole Eye Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Lakshminarasimhan Harini
- Department of Biotechnology, Kalasalingam University, Anand Nagar, Krishnankoil, Tamil Nadu, 626 126, India
| | | | - Velu Rajesh Kannan
- Department of Microbiology, Bharathidasan University, Tiruchirappalli, Tamil Nadu, 620 024, India
| | - Krishnan Sundar
- Department of Biotechnology, Kalasalingam University, Anand Nagar, Krishnankoil, Tamil Nadu, 626 126, India.,International Research Centre, Kalasalingam University, Krishnankoil, Tamil Nadu, 626 126, India
| | - Thandavarayan Kathiresan
- Department of Biotechnology, Kalasalingam University, Anand Nagar, Krishnankoil, Tamil Nadu, 626 126, India. .,International Research Centre, Kalasalingam University, Krishnankoil, Tamil Nadu, 626 126, India.
| |
Collapse
|