1
|
Dekić Rozman S, Butorac A, Bertoša R, Hrenović J, Markeš M. Loss of thermotolerance in antibiotic-resistant Acinetobacter baumannii. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2022; 32:1581-1593. [PMID: 33719791 DOI: 10.1080/09603123.2021.1898550] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 03/01/2021] [Indexed: 06/12/2023]
Abstract
Bacterium Acinetobacter baumannii is a leading cause of nosocomial infections. The occurrence of antibiotic-resistant A. baumannii isolates outside hospitals suggests that monitoring of this pathogen in environmental samples is needed. Survival of pandrug-resistant A. baumannii was followed on selective plates with and without carbapenems in water and soil. After a few days of starvation, A. baumannii lost the ability to be cultivated at 44°C on plates supplemented with carbapenems. Once cultivated on plates without carbapenems and/or at 36°C, A. baumannii could grow again at 44°C in the presence of carbapenems. Comparative proteomic analysis revealed that impaired membrane integrity and reduced function of efflux pumps due to elevated temperature combined with antibiotic exposure were the main reasons for this phenomenon. Loss of thermotolerance in the presence of antibiotics points to the need for temperature adjustment in long-term monitoring of A. baumannii in environmental samples, to avoid the underestimation of viable bacteria.
Collapse
Affiliation(s)
| | - Ana Butorac
- BIOCentre Ltd., Bioanalytical Laboratory II - Proteomics, Zagreb, Croatia
| | - Rea Bertoša
- BIOCentre Ltd., Bioanalytical Laboratory II - Proteomics, Zagreb, Croatia
| | - Jasna Hrenović
- Faculty of Science, Department of Biology, University of Zagreb, Zagreb, Croatia
| | - Marina Markeš
- BIOCentre Ltd., Bioanalytical Laboratory II - Proteomics, Zagreb, Croatia
| |
Collapse
|
2
|
Szczypta A, Talaga-Ćwiertnia K, Kielar M, Krzyściak P, Gajewska A, Szura M, Bulanda M, Chmielarczyk A. Investigation of Acinetobacter baumannii Activity in Vascular Surgery Units through Epidemiological Management Based on the Analysis of Antimicrobial Resistance, Biofilm Formation and Genotyping. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18041563. [PMID: 33562194 PMCID: PMC7915860 DOI: 10.3390/ijerph18041563] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 02/01/2021] [Accepted: 02/02/2021] [Indexed: 12/17/2022]
Abstract
Background/Objectives: The genus Acinetobacter demonstrates resistance to antibiotics and has been shown to spread in the hospital environment causing epidemic outbreaks among hospitalized patients. The objectives of the present study was to investigate the antibiotic resistance, biofilm formation, and clonality among Acinetobacter baumannii strains. Materials and Methods: The study involved 6 (I Outbreak) and 3 (II Outbreak) A. baumannii strains isolated from patients hospitalized in vascular surgery unit. Results: All tested A. baumannii strains were extensively drug resistant (XDR) and all the isolates were carbapenem-resistant and among them, all carried the blaOXA-51 gene, the blaOXA-24 gene, as well as the blaOXA-23 gene. All of the investigated strains had the ability to form a biofilm, but all of them produced less biofilm than the reference strain. Multi-locus sequence typing (MLST) showed that all strains belonged to the ST2 clone. Pulsed-field gel electrophoresis (PFGE) divided the tested outbreak strains into two clones (A and B). Conclusion: This study shows a nosocomial spread of XDR A. baumannii ST2 having the blaOXA-51 gene, the blaOXA-24 gene, as well as the blaOXA-23 gene, low biofilm formers, that was prevalent in the vascular surgery unit. To identify the current situation of vascular surgery departments targeted epidemiological investigation was needed. Effective implementation of infection control prevented the spread of the epidemic outbreaks.
Collapse
Affiliation(s)
- Anna Szczypta
- Faculty of Medicine and Health Sciences, Andrzej Frycz Modrzewski Krakow University, 30-705 Kraków, Poland;
- The Bonifratri Order Hospital of St. John Grande, 31-061 Kraków, Poland;
| | - Katarzyna Talaga-Ćwiertnia
- Jagiellonian University Medical College, Faculty of Medicine, Chair of Microbiology, Department of Infection Control and Mycology, 31-008 Kraków, Poland; (P.K.); (M.B.)
- Correspondence: ; Tel.: +48-12-633-0877 (ext. 231)
| | - Małgorzata Kielar
- Medical Diagnostic Laboratory with a Bacteriological Unit, St. Louis Regional Specialised Children’s Hospital, 31-503 Kraków, Poland;
| | - Paweł Krzyściak
- Jagiellonian University Medical College, Faculty of Medicine, Chair of Microbiology, Department of Infection Control and Mycology, 31-008 Kraków, Poland; (P.K.); (M.B.)
| | | | - Mirosław Szura
- The Bonifratri Order Hospital of St. John Grande, 31-061 Kraków, Poland;
- Jagiellonian University Medical College, Department of Clinical and Experimental Surgery, 31-008 Kraków, Poland
| | - Małgorzata Bulanda
- Jagiellonian University Medical College, Faculty of Medicine, Chair of Microbiology, Department of Infection Control and Mycology, 31-008 Kraków, Poland; (P.K.); (M.B.)
| | - Agnieszka Chmielarczyk
- Jagiellonian University Medical College, Faculty of Medicine, Chair of Microbiology, Department of Bacteriology, Microbial Ecology and Parasitology, 31-008 Kraków, Poland;
| |
Collapse
|
3
|
Jovcic B, Novovic K, Dekic S, Hrenovic J. Colistin Resistance in Environmental Isolates of Acinetobacter baumannii. Microb Drug Resist 2020; 27:328-336. [PMID: 32762604 DOI: 10.1089/mdr.2020.0188] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Although the molecular mechanisms of carbapenem resistance of environmental isolates of Acinetobacter baumannii are well described, data on the mechanisms of colistin resistance are scarce. In this study, we report the molecular mechanisms of colistin resistance in environmental isolates of A. baumannii. Seven clinically relevant isolates of A. baumannii belonging to ST-2Pasteur were recovered from hospital wastewater and wastewater treatment plant. The phenotypic resistance to colistin was confirmed by broth microdilution with minimum inhibitory concentration values ranging from 20 to 160 mg/L. Colistin sulfate and colistimethate sodium showed bactericidal activity against two colistin-heteroresistant isolates in vitro, but substantially recovery of population was observed after prolonged incubation. In silico genome analysis revealed nucleotide variations resulting in amino acid changes in LpxC (N286D), LpxD (E117K), PmrB (A138T, R263S, L267W, Q309P, and A444V), and EptA (F166L, I228V, R348K, A370S, and K531T). According to reverse transcription quantitative PCR, all isolates had increased levels of eptA mRNA and decreased levels of lpxA and lpxD mRNA. Isolates expressed low hydrophobicity, biofilm, and pellicle formation, but showed excellent survival in river water during 50 days of monitoring. Colistin- and pandrug-resistant A. baumannii disseminated in the environment could represent the source for the occurrence of serious community-acquired infections.
Collapse
Affiliation(s)
- Branko Jovcic
- Faculty of Biology, University of Belgrade, Belgrade, Serbia.,Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Katarina Novovic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Svjetlana Dekic
- Division of Microbiology, Department of Biology, Faculty of Science, University of Zagreb, Zagreb, Croatia
| | - Jasna Hrenovic
- Division of Microbiology, Department of Biology, Faculty of Science, University of Zagreb, Zagreb, Croatia
| |
Collapse
|
4
|
Mohammadi Bardbari A, Mohajeri P, Arabestani MR, Karami M, Keramat F, Asadollahi S, Khodavirdipour A, Alikhani MY. Molecular typing of multi-drug resistant Acinetobacter baumannii isolates from clinical and environmental specimens in three Iranian hospitals by pulsed field gel electrophoresis. BMC Microbiol 2020; 20:101. [PMID: 32334533 PMCID: PMC7183727 DOI: 10.1186/s12866-020-01792-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 04/19/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Multi-drug resistant (MDR) Acinetobacter baumannii is one of the most important causes of nosocomial infections. The purpose of this study was to identify antibiotic resistance patterns, biofilm formation and the clonal relationship of clinical and environmental isolates of A. baumannii by Pulsed Field Gel Electrophoresis method. Forty-three clinical and 26 environmental isolates of the MDR A. baumannii were collected and recognized via API 20NE. Antibiotic resistance of the isolates was assessed by the disk diffusion method, and the biofilm formation test was done by the microtiter plate method. Pulsed Field Gel Electrophoresis (PFGE) was used to assess the genomic features of the bacterial isolates. RESULTS The resistance rate of clinical and environmental isolates against antibiotics were from 95 to 100%. The difference in antibiotic resistance rates between clinical and environmental isolates was not statistically significant (p > 0.05). Biofilm production capabilities revealed that 31 (44.9%), and 30 (43.5%) isolates had strong and moderate biofilm producer activity, respectively. PFGE typing exhibited eight different clusters (A, B, C, D, E, F, G, and H) with two significant clusters included A and G with 21 (30.4%) and 16 (23.2%) members respectively, which comprises up to 53.6% of all isolates. There was no relationship between biofilm formation and antibiotic resistance patterns with PFGE pulsotypes. CONCLUSIONS The results show that there is a close relationship between environmental and clinical isolates of A. baumannii. Cross-contamination is also very important that occurs through daily clinical activities between environmental and clinical isolates. Therefore, in order to reduce the clonal contamination of MDR A. baumannii environmental and clinical isolates, it is necessary to use strict infection control strategies.
Collapse
Affiliation(s)
- Ali Mohammadi Bardbari
- Department of Microbiology, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Parviz Mohajeri
- Department of Microbiology, Faculty of Medicine, Kermanshah University of Medical Sciences, kermanshah, Iran
| | - Mohammad Reza Arabestani
- Department of Microbiology, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Manoochehr Karami
- Department of Epidemiology, School of Public Health, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Fariba Keramat
- Department of Infectious Diseases, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.,Brucellosis Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Saba Asadollahi
- Department of Microbiology, Faculty of Medicine, Kermanshah University of Medical Sciences, kermanshah, Iran
| | - Amir Khodavirdipour
- Division of Human Genetics, Department of Anatomy, St. John's Hospital, Bangalore, India
| | - Mohammad Yousef Alikhani
- Department of Microbiology, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran. .,Brucellosis Research Center, Hamadan University of Medical Sciences, Hamadan, Iran.
| |
Collapse
|
5
|
Sheludchenko M, Padovan A, Katouli M, Stratton H. Acinetobacter baumannii detected on modified charcoal–cefoperazone–deoxycholate agar in a waste stabilization pond. Can J Microbiol 2020; 66:206-213. [DOI: 10.1139/cjm-2019-0282] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Campylobacter is a recommended reference pathogen for the verification and validation of water recycling schemes in Australia and globally. In a larger study investigating the efficacy of pathogen removal in waste stabilization ponds (WSP), we cultivated bacteria from wastewater samples on modified charcoal–cefoperazone–deoxycholate agar (mCCDA) targeting the growth of Campylobacter. A high number of colonies characteristic of Campylobacter grew on this selective medium, but this did not correlate with qPCR data. Using primers targeting the 16S rRNA gene, and additional confirmatory tests to detect VS1, ompA, blaOXA-51-like, blaOXA-23-like genes, we tested 80 random colonies from 10 WSP samples. All 80 were identified as Acinetobacter baumannii. Wastewater grab samples taken three times over 6 months throughout the WSP system showed removal of A. baumannii in the WSP at rates similar to that of Escherichia coli. Our study suggests that mCCDA agar is not a suitable medium for isolating Campylobacter from environmental samples and that A. baumannii can be used as an indicator for removal of pathogens in WSPs.
Collapse
Affiliation(s)
- Maxim Sheludchenko
- School of Environment and Science, Griffith University, Nathan, Queensland, Australia
| | - Anna Padovan
- Genecology Research Centre, University of the Sunshine Coast, Sippy Downs, Queensland, Australia
| | - Mohammad Katouli
- Research Institute for the Environment and Livelihoods, Charles Darwin University, Darwin, Northern Territory, Australia
| | - Helen Stratton
- School of Environment and Science, Griffith University, Nathan, Queensland, Australia
| |
Collapse
|
6
|
Nasiri MJ, Zamani S, Fardsanei F, Arshadi M, Bigverdi R, Hajikhani B, Goudarzi H, Tabarsi P, Dabiri H, Feizabadi MM. Prevalence and Mechanisms of Carbapenem Resistance in Acinetobacter baumannii: A Comprehensive Systematic Review of Cross-Sectional Studies from Iran. Microb Drug Resist 2019; 26:270-283. [PMID: 30822197 DOI: 10.1089/mdr.2018.0435] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Introduction: Carbapenem-resistant Acinetobacter baumannii (CRAB) is recognized to be among the most difficult antimicrobial-resistant gram-negative bacilli to control and treat. An understanding of the epidemiology of CRAB and the mechanisms of resistance to carbapenems is necessary to develop strategies to curtail their spread. Methods: Electronic databases were searched from January 1995 to December 2017 for all studies, which: (1) provide data on the frequency and antibiotic resistance profile of the isolated A. baumannii and (2) describe the mechanisms of carbapenem resistance in detail. Results: Sixty-eight studies were found referring to mechanisms of carbapenem resistance in clinical isolates of A. baumannii, and 56 studies were found referring to the frequency of CRAB. The pooled frequency of carbapenem resistance was 85.1% (95% confidence interval [CI]: 82.2-88.1) in 8,067 clinical isolates of A. baumannii. Resistances due to blaOXA23 (55.3%), blaOXA24 (41.4%), and blaOXA58 (5.2%) genes were the most prevalent reported mechanisms of resistance to carbapenem, respectively. Conclusions: Our data warn that CRAB will rise if the current situation remains uncontrolled. Better control infection strategies and antibiotic managements, particularly in the health care systems, are needed to limit the spread of this pathogen.
Collapse
Affiliation(s)
- Mohammad Javad Nasiri
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Samin Zamani
- Infectious Diseases Research Center, Golestan University of Medical Sciences, Gorgan, Iran.,Department of Microbiology, School of Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| | - Fatemeh Fardsanei
- Division of Microbiology, Department of Pathobiology, School of Public Health, Tehran University of Medical Science, Tehran, Iran
| | - Mania Arshadi
- Department of Medical Laboratory Sciences, Faculty of Para Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Reza Bigverdi
- Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Bahareh Hajikhani
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hossein Goudarzi
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Payam Tabarsi
- Clinical TB and Epidemiology Research Center, National Research Institute of Tuberculosis and Lung Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hossein Dabiri
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Mehdi Feizabadi
- Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
7
|
Eze EC, Chenia HY, El Zowalaty ME. Acinetobacter baumannii biofilms: effects of physicochemical factors, virulence, antibiotic resistance determinants, gene regulation, and future antimicrobial treatments. Infect Drug Resist 2018; 11:2277-2299. [PMID: 30532562 PMCID: PMC6245380 DOI: 10.2147/idr.s169894] [Citation(s) in RCA: 151] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Acinetobacter baumannii is a leading cause of nosocomial infections due to its increased antibiotic resistance and virulence. The ability of A. baumannii to form biofilms contributes to its survival in adverse environmental conditions including hospital environments and medical devices. A. baumannii has undoubtedly propelled the interest of biomedical researchers due to its broad range of associated infections especially in hospital intensive care units. The interplay among microbial physicochemistry, alterations in the phenotype and genotypic determinants, and the impact of existing ecological niche and the chemistry of antimicrobial agents has led to enhanced biofilm formation resulting in limited access of drugs to their specific targets. Understanding the triggers to biofilm formation is a step towards limiting and containing biofilm-associated infections and development of biofilm-specific countermeasures. The present review therefore focused on explaining the impact of environmental factors, antimicrobial resistance, gene alteration and regulation, and the prevailing microbial ecology in A. baumannii biofilm formation and gives insights into prospective anti-infective treatments.
Collapse
Affiliation(s)
- Emmanuel C Eze
- Virology and Microbiology Research Group, School of Health Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa,
| | - Hafizah Y Chenia
- Discipline of Microbiology, School of Life Sciences, College of Agriculture, Engineering and Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Mohamed E El Zowalaty
- Virology and Microbiology Research Group, School of Health Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa,
| |
Collapse
|
8
|
Hrenovic J, Durn G, Music MS, Dekic S, Troskot-Corbic T, Skoric D. Extensively and multi drug-resistant Acinetobacter baumannii recovered from technosol at a dump site in Croatia. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 607-608:1049-1055. [PMID: 28724243 DOI: 10.1016/j.scitotenv.2017.07.108] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2017] [Revised: 07/09/2017] [Accepted: 07/12/2017] [Indexed: 06/07/2023]
Abstract
In a karst pit above City of Rijeka in Croatia the hazardous industrial waste was continuously disposed from 1955 to 1990, and later it was periodically used as an illegal dump site. The surface part of a technosol at the edge of dump was analysed mineralogically, geochemically and bacteriologically. From the technosol rich in petroleum hydrocarbons and heavy metals three isolates of Acinetobacter baumannii were recovered. Isolates from technosol shared many features that are previously described for clinically isolates: the affiliation to IC1 and 2, multi-drug resistant (MDR) or extensively drug-resistant (XDR) antibiotic resistance profile, carbapenem resistance mediated by blaOXA72 and blaOXA23 genes, and the expression of virulence factors. In in vitro conditions, isolates were able to survive in contact with technosol during 58days of monitoring. The most probable source of A. baumannii in technosol was the illegally disposed hospital waste. Proper management and disposal of human solid waste is mandatory to prevent the spread of clinically important A. baumannii in nature.
Collapse
Affiliation(s)
- Jasna Hrenovic
- University of Zagreb, Faculty of Science, Zagreb, Croatia
| | - Goran Durn
- University of Zagreb, Faculty of Mining, Geology and Petroleum Engineering, Croatia.
| | | | | | | | - Dijana Skoric
- University of Zagreb, Faculty of Science, Zagreb, Croatia
| |
Collapse
|
9
|
Krzyściak P, Chmielarczyk A, Pobiega M, Romaniszyn D, Wójkowska-Mach J. Acinetobacter baumannii isolated from hospital-acquired infection: biofilm production and drug susceptibility. APMIS 2017; 125:1017-1026. [PMID: 28913903 DOI: 10.1111/apm.12739] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 06/06/2017] [Indexed: 01/03/2023]
Abstract
Acinetobacter baumannii cause opportunistic nosocomial infections and is often multidrug resistant. It has ability to form biofilm. The possession of drug resistance mechanism and ability of biofilm formation seems to be the different way to enhancement of viability in stressful environment. In this study, we evaluate relation between these two factors. The biofilm formation was investigated in M63 medium with casein in microtiter plates, and the drug susceptibility was performed by disk diffusion methods. We found that 80-98% strains formed a biofilm. Strains showing sensitivity to amikacin and tobramycin from ICU produced more biofilm than strains showing resistance to these antibiotics. Ceftazidime-sensitive strains formed a smaller biofilm than resistant. The logistic regression shows association between drug resistance and strains originating from ICU. In case of ceftazidime, strong biofilm formation and descending from ICU reduced the likelihood of drug sensitivity. For other drugs such as aminoglycosides, fluoroquinolones, trimethoprim/sulfamethoxazole, and tetracycline, we found opposite relation (but it was not statistically significance). However, generally it seems that strong biofilm producers from ICUs are often more susceptible to antibiotics. This situation can be explained by the fact that bacteria protected in biofilm do not need mechanisms responsible for resistance of planktonic cells.
Collapse
Affiliation(s)
- Paweł Krzyściak
- Department of Mycology, Jagiellonian University Medical College, Krakow, Poland
| | - Agnieszka Chmielarczyk
- Department of Bacteriology, Microbial Ecology and Parasitology, Jagiellonian University Medical College, Krakow, Poland
| | - Monika Pobiega
- Department of Bacteriology, Microbial Ecology and Parasitology, Jagiellonian University Medical College, Krakow, Poland
| | - Dorota Romaniszyn
- Department of Bacteriology, Microbial Ecology and Parasitology, Jagiellonian University Medical College, Krakow, Poland
| | - Jadwiga Wójkowska-Mach
- Department of Bacteriology, Microbial Ecology and Parasitology, Jagiellonian University Medical College, Krakow, Poland
| |
Collapse
|
10
|
Goic-Barisic I, Seruga Music M, Kovacic A, Tonkic M, Hrenovic J. Pan Drug-Resistant Environmental Isolate of Acinetobacter baumannii from Croatia. Microb Drug Resist 2017; 23:494-496. [DOI: 10.1089/mdr.2016.0229] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Ivana Goic-Barisic
- Department of Clinical Microbiology, University of Split School of Medicine, Split, Croatia
- University Hospital Centre Split, Split, Croatia
| | - Martina Seruga Music
- Department of Biology, Faculty of Science, University of Zagreb, Zagreb, Croatia
| | - Ana Kovacic
- Institute of Public Health of Split and Dalmatia County, Split, Croatia
| | - Marija Tonkic
- Department of Clinical Microbiology, University of Split School of Medicine, Split, Croatia
- University Hospital Centre Split, Split, Croatia
| | - Jasna Hrenovic
- Department of Biology, Faculty of Science, University of Zagreb, Zagreb, Croatia
| |
Collapse
|
11
|
Clinical Isolates of Acinetobacter baumannii From Tehran Hospitals: Pulsed-field Gel Electrophoresis Characterization, Clonal Lineages, Antibiotic Susceptibility, and Biofilm-forming Ability. Jundishapur J Microbiol 2017. [DOI: 10.5812/jjm.13790] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
12
|
Tian Y, Li YH. Comparative analysis of bacteria associated with different mosses by 16S rRNA and 16S rDNA sequencing. J Basic Microbiol 2016; 57:57-67. [PMID: 27515736 DOI: 10.1002/jobm.201600358] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 08/06/2016] [Indexed: 11/07/2022]
Abstract
To understand the differences of the bacteria associated with different mosses, a phylogenetic study of bacterial communities in three mosses was carried out based on 16S rDNA and 16S rRNA sequencing. The mosses used were Hygroamblystegium noterophilum, Entodon compressus and Grimmia montana, representing hygrophyte, shady plant and xerophyte, respectively. In total, the operational taxonomic units (OTUs), richness and diversity were different regardless of the moss species and the library level. All the examined 1183 clones were assigned to 248 OTUs, 56 genera were assigned in rDNA libraries and 23 genera were determined at the rRNA level. Proteobacteria and Bacteroidetes were considered as the most dominant phyla in all the libraries, whereas abundant Actinobacteria and Acidobacteria were detected in the rDNA library of Entodon compressus and approximately 24.7% clones were assigned to Candidate division TM7 in Grimmia montana at rRNA level. The heatmap showed the bacterial profiles derived from rRNA and rDNA were partly overlapping. However, the principle component analysis of all the profiles derived from rDNA showed sharper differences between the different mosses than that of rRNA-based profiles. This suggests that the metabolically active bacterial compositions in different mosses were more phylogenetically similar and the differences of the bacteria associated with different mosses were mainly detected at the rDNA level. Obtained results clearly demonstrate that combination of 16S rDNA and 16S rRNA sequencing is preferred approach to have a good understanding on the constitution of the microbial communities in mosses.
Collapse
Affiliation(s)
- Yang Tian
- College of Life Science, Capital Normal University, Haidian District, Beijing, China
| | - Yan Hong Li
- College of Life Science, Capital Normal University, Haidian District, Beijing, China
| |
Collapse
|
13
|
de Campos PA, Royer S, Batistão DWDF, Araújo BF, Queiroz LL, de Brito CS, Gontijo-Filho PP, Ribas RM. Multidrug Resistance Related to Biofilm Formation in Acinetobacter baumannii and Klebsiella pneumoniae Clinical Strains from Different Pulsotypes. Curr Microbiol 2016; 72:617-27. [PMID: 26846651 DOI: 10.1007/s00284-016-0996-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 12/22/2015] [Indexed: 11/25/2022]
Abstract
The emergence of Acinetobacter baumannii and Klebsiella pneumoniae strains in the hospital environment has been associated with the presence of multiple genetic elements, virulence factors and the ability to form biofilms. This study evaluated the biofilm formation ability of clinical and environmental A. baumannii and K. pneumoniae strains, isolated from various sources and presenting different molecular characteristics, resistance profiles and pulsed-field gel electrophoresis patterns. Fifty-three isolates were recovered from 2009 to 2014 in a Brazilian university hospital. Investigation of biofilm formation was performed for 10 strains of each species assessed by an initial adhesion assay, biofilm cell concentration and biofilm biomass, evaluated by quantitative assays in replicates, in three independent experiments. All strains of A. baumannii were able to attach to polystyrene plates, although two strains adhered to a lesser degree than the control. K. pneumoniae strains showed opposite behaviour, where only three strains adhered significantly when compared to the control. Quantitative evaluation revealed that in five A. baumannii and four K. pneumoniae isolates the biomass production could be characterised as moderate. None of the isolates were strong biofilm producers. Our results demonstrate: (1) biofilm formation is a heterogeneous property amongst A. baumannii and K. pneumoniae clinical strains and it was not associated with certain clonal types; (2) no relationship between multidrug resistance and biofilm production was observed; (3) more virulent K. pneumoniae strains tended to present higher production of biofilm.
Collapse
Affiliation(s)
- Paola Amaral de Campos
- Laboratory of Molecular Microbiology, Biomedical Science Institute, Federal University of Uberlândia, Av. Pará, 1720, Umuarama, Uberlândia, MG, 38400-902, Brazil
| | - Sabrina Royer
- Laboratory of Molecular Microbiology, Biomedical Science Institute, Federal University of Uberlândia, Av. Pará, 1720, Umuarama, Uberlândia, MG, 38400-902, Brazil.
| | - Deivid William da Fonseca Batistão
- Laboratory of Molecular Microbiology, Biomedical Science Institute, Federal University of Uberlândia, Av. Pará, 1720, Umuarama, Uberlândia, MG, 38400-902, Brazil
| | - Bruna Fuga Araújo
- Laboratory of Molecular Microbiology, Biomedical Science Institute, Federal University of Uberlândia, Av. Pará, 1720, Umuarama, Uberlândia, MG, 38400-902, Brazil
| | - Lícia Ludendorff Queiroz
- Laboratory of Molecular Microbiology, Biomedical Science Institute, Federal University of Uberlândia, Av. Pará, 1720, Umuarama, Uberlândia, MG, 38400-902, Brazil
| | - Cristiane Silveira de Brito
- Laboratory of Molecular Microbiology, Biomedical Science Institute, Federal University of Uberlândia, Av. Pará, 1720, Umuarama, Uberlândia, MG, 38400-902, Brazil
| | - Paulo P Gontijo-Filho
- Laboratory of Molecular Microbiology, Biomedical Science Institute, Federal University of Uberlândia, Av. Pará, 1720, Umuarama, Uberlândia, MG, 38400-902, Brazil
| | - Rosineide Marques Ribas
- Laboratory of Molecular Microbiology, Biomedical Science Institute, Federal University of Uberlândia, Av. Pará, 1720, Umuarama, Uberlândia, MG, 38400-902, Brazil
| |
Collapse
|