1
|
Profiling the composition and metabolic functions of microbial community in pellicle-forming radish paocai. Int J Food Microbiol 2023; 388:110087. [PMID: 36689828 DOI: 10.1016/j.ijfoodmicro.2023.110087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/29/2022] [Accepted: 01/08/2023] [Indexed: 01/15/2023]
Abstract
Pellicle formation is an obvious indicator of spoilage and is followed by a loss of flavor in a variety of fermented vegetables. In this study, the pellicle-forming microorganisms were isolated using culture-dependent approaches, then a comparative analysis between the pellicle-forming (PF) radish paocai and normal fermented paocai in the diversity and function of microbial community was conducted by metagenome sequencing. Based on a pairwise t-test and OPLS-DA analysis, diallyl sulfide, (z)-1-allyl-2-(prop-1-en-1-yl) disulfane, and terpineol were considered to be the main components responsible for the unpleasant flavor of PF paocai. Yarrowia spp., Enterobacter spp., and Pichia spp. were the main pellicle-forming microorganisms. All 17 isolated Enterobacter strains showed pectinase-producing and cellulase-producing abilities, and 3 isolated Pichia strains showed gas-producing capacity. According to LEfSe analysis based on metagenomes, unclassified_g__Citrobacter and Yarrowia lipolytica were the uppermost biomarkers that distinguished the PF paocai from normal paocai. Unclassified_g__Lactobacillus and Lactobacillus plantarum were found to be actively engaged in starch and sucrose metabolism, cysteine and methionine metabolism, galactose metabolism, fructose and mannose metabolism, lysine biosynthesis, fatty acid biosynthesis, and arginine biosynthesis, all of which contributed to the flavor formation of paocai. Combining the results of metagenome sequencing with the data obtained based on the culture-dependent method, we could deduce that the growth of Yarrowia lipolytica first promoted the increase of pH and the formation of pellicle, which provided a suitable niche for the growth of some harmful bacteria such as Enterobacter, Citrobacter, and Serratia. These hazardous bacteria then worked in concert to induce the odorous stench and texture softening of paocai, as well as more pellicle formation.
Collapse
|
2
|
de Castro A, Ruiz-Barba JL, Romero C, Sánchez AH, García P, Brenes M. Formation of gas pocket defect in Spanish-style green olives by the halophile Celerinatantimonas sp. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.108868] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
3
|
Han H, Li M, Peng Y, Zhang Z, Yue X, Zheng Y. Microbial Diversity and Non-volatile Metabolites Profile of Low-Temperature Sausage Stored at Room Temperature. Front Microbiol 2021; 12:711963. [PMID: 34512589 PMCID: PMC8430334 DOI: 10.3389/fmicb.2021.711963] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 08/05/2021] [Indexed: 11/17/2022] Open
Abstract
Sausage is a highly perishable food with unique spoilage characteristics primarily because of its specific means of production. The quality of sausage during storage is determined by its microbial and metabolite changes. This study developed a preservative-free low-temperature sausage model and coated it with natural casing. We characterized the microbiota and non-volatile metabolites in the sausage after storage at 20°C for up to 12 days. Bacillus velezensis was the most prevalent species observed after 4 days. Lipids and lipid-like molecules, organoheterocyclic compounds, and organic acids and their derivatives were the primary non-volatile metabolites. The key non-volatile compounds were mainly involved in protein catabolism and β-lipid oxidation. These findings provide useful information for the optimization of sausage storage conditions.
Collapse
Affiliation(s)
- Hongjiao Han
- College of Food Science, Shenyang Agricultural University, Shenyang, China
| | - Mohan Li
- College of Food Science, Shenyang Agricultural University, Shenyang, China
| | - Yanqi Peng
- College of Food Science, Shenyang Agricultural University, Shenyang, China
| | - Zhenghan Zhang
- College of Food Science, Shenyang Agricultural University, Shenyang, China
| | - Xiqing Yue
- College of Food Science, Shenyang Agricultural University, Shenyang, China
| | - Yan Zheng
- College of Food Science, Shenyang Agricultural University, Shenyang, China
| |
Collapse
|
4
|
Kamilari E, Anagnostopoulos DA, Papademas P, Kamilaris A, Tsaltas D. Characterizing Halloumi cheese's bacterial communities through metagenomic analysis. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109298] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
5
|
Tamang JP, Cotter PD, Endo A, Han NS, Kort R, Liu SQ, Mayo B, Westerik N, Hutkins R. Fermented foods in a global age: East meets West. Compr Rev Food Sci Food Saf 2020; 19:184-217. [PMID: 33319517 DOI: 10.1111/1541-4337.12520] [Citation(s) in RCA: 254] [Impact Index Per Article: 50.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Revised: 11/17/2019] [Accepted: 11/18/2019] [Indexed: 12/11/2022]
Abstract
Fermented foods and alcoholic beverages have long been an important part of the human diet in nearly every culture on every continent. These foods are often well-preserved and serve as stable and significant sources of proteins, vitamins, minerals, and other nutrients. Despite these common features, however, many differences exist with respect to substrates and products and the types of microbes involved in the manufacture of fermented foods and beverages produced globally. In this review, we describe these differences and consider the influence of geography and industrialization on fermented foods manufacture. Whereas fermented foods produced in Europe, North America, Australia, and New Zealand usually depend on defined starter cultures, those made in Asia and Africa often rely on spontaneous fermentation. Likewise, in developing countries, fermented foods are not often commercially produced on an industrial scale. Although many fermented products rely on autochthonous microbes present in the raw material, for other products, the introduction of starter culture technology has led to greater consistency, safety, and quality. The diversity and function of microbes present in a wide range of fermented foods can now be examined in detail using molecular and other omic approaches. The nutritional value of fermented foods is now well-appreciated, especially in resource-poor regions where yoghurt and other fermented foods can improve public health and provide opportunities for economic development. Manufacturers of fermented foods, whether small or large, should follow Good Manufacturing Practices and have sustainable development goals. Ultimately, preferences for fermented foods and beverages depend on dietary habits of consumers, as well as regional agricultural conditions and availability of resources.
Collapse
Affiliation(s)
- Jyoti Prakash Tamang
- DAICENTER and Bioinformatics Centre, Department of Microbiology, School of Life Sciences, Sikkim University, Gangtok, Sikkim, India
| | - Paul D Cotter
- Food Biosciences, Principal Research Officer, Teagasc Food Research Centre, Moorepark, Fermoy and APC Microbiome Ireland, Cork, Ireland
| | - Akihito Endo
- Department of Food, Aroma and Cosmetic Chemistry, Tokyo University of Agriculture, Tokyo, Japan
| | - Nam Soo Han
- Department of Food Science and Biotechnology, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Remco Kort
- Department of Molecular Cell Biology, VU University Amsterdam, The Netherlands.,Yoba for Life foundation, Amsterdam, The Netherlands
| | - Shao Quan Liu
- Food Science and Technology Programme, National University of Singapore
| | - Baltasar Mayo
- Department of Microbiology and Chemistry of Dairy Products, Instituto de Productos Lácteos de Asturias (IPLA-CSIC), Villaviciosa, Asturias, Spain
| | - Nieke Westerik
- Department of Molecular Cell Biology, VU University Amsterdam, The Netherlands.,Yoba for Life foundation, Amsterdam, The Netherlands
| | - Robert Hutkins
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, Nebraska
| |
Collapse
|
6
|
Rao Y, Qian Y, Tao Y, She X, Li Y, Che Z, Li H, Liu L. Influence of oxygen exposure on fermentation process and sensory qualities of Sichuan pickle (paocai). RSC Adv 2019; 9:38520-38530. [PMID: 35540217 PMCID: PMC9075915 DOI: 10.1039/c9ra05994f] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 11/18/2019] [Indexed: 11/21/2022] Open
Abstract
The physicochemical and microbial changes, volatile profile, texture and appearance were investigated in three groups of Sichuan pickles differing in oxygen exposure during a 64 day fermentation process.
Collapse
Affiliation(s)
- Yu Rao
- School of Food Science and Bioengineering
- Xihua University
- Chengdu 610039
- China
| | - Yang Qian
- School of Food Science and Bioengineering
- Xihua University
- Chengdu 610039
- China
- Department of Wine and Food Engineering
| | - Yufei Tao
- School of Food Science and Bioengineering
- Xihua University
- Chengdu 610039
- China
| | - Xiao She
- School of Food Science and Bioengineering
- Xihua University
- Chengdu 610039
- China
| | - Yalin Li
- School of Food Science and Bioengineering
- Xihua University
- Chengdu 610039
- China
| | - Zhenming Che
- School of Food Science and Bioengineering
- Xihua University
- Chengdu 610039
- China
| | - Hehe Li
- Beijing Key Laboratory of Flavor Chemistry
- Beijing Technology and Business University (BTBU)
- Beijing 100048
- China
| | - Lei Liu
- School of Food Science and Bioengineering
- Xihua University
- Chengdu 610039
- China
| |
Collapse
|
7
|
Bacterial and fungal microbiota of spontaneously fermented Chinese products, Rubing milk cake and Yan-cai vegetable pickles. Food Microbiol 2018; 72:106-111. [DOI: 10.1016/j.fm.2017.11.014] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 11/09/2017] [Accepted: 11/24/2017] [Indexed: 01/31/2023]
|
8
|
Zhang F, Tang Y, Ren Y, Yao K, He Q, Wan Y, Chi Y. Microbial composition of spoiled industrial-scale Sichuan paocai and characteristics of the microorganisms responsible for paocai spoilage. Int J Food Microbiol 2018; 275:32-38. [DOI: 10.1016/j.ijfoodmicro.2018.04.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 03/05/2018] [Accepted: 04/02/2018] [Indexed: 11/17/2022]
|
9
|
|
10
|
Rao Y, Qian Y, She X, Yang J, He P, Jiang Y, Wang M, Xiang W. Pellicle formation, microbial succession and lactic acid utilisation during the aerobic deteriorating process of Sichuan pickle. Int J Food Sci Technol 2017. [DOI: 10.1111/ijfs.13652] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yu Rao
- School of Food Science and Bioengineering; Xihua University; Chengdu 610039 China
| | - Yang Qian
- School of Food Science and Bioengineering; Xihua University; Chengdu 610039 China
| | - Xiao She
- School of Food Science and Bioengineering; Xihua University; Chengdu 610039 China
| | - Jiantao Yang
- School of Food Science and Bioengineering; Xihua University; Chengdu 610039 China
| | - Penghui He
- School of Food Science and Bioengineering; Xihua University; Chengdu 610039 China
| | - Yunlu Jiang
- School of Food Science and Bioengineering; Xihua University; Chengdu 610039 China
| | - Meng Wang
- School of Food Science and Bioengineering; Xihua University; Chengdu 610039 China
| | - Wenliang Xiang
- School of Food Science and Bioengineering; Xihua University; Chengdu 610039 China
| |
Collapse
|
11
|
Ferreira S, Oleastro M, Domingues FC. Occurrence, genetic diversity and antibiotic resistance of Arcobacter sp. in a dairy plant. J Appl Microbiol 2017; 123:1019-1026. [PMID: 28712149 DOI: 10.1111/jam.13538] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 07/05/2017] [Accepted: 07/06/2017] [Indexed: 11/28/2022]
Abstract
AIMS The aim of this study was to evaluate the occurrence, diversity and resistance to antibiotics of Arcobacter sp. in a dairy plant samples. METHODS AND RESULTS A total of 75 samples from dairy plant surfaces and materials and several food products collected in different steps of the cheese production process were analysed by culture, under aerobic and microaerobic atmospheric conditions, and by enrichment molecular detection. Isolates were identified and genotyped by ERIC-PCR, and their susceptibility to nine antibiotics was evaluated by agar dilution. Global prevalence of Arcobacter sp. was 42·7%, where 20 of the 42 food samples analysed were positive for A. butzleri by both culture and molecular detection, one for A. marinus by culture and one for A. cryaerophilus by molecular detection only; 10 of the 30 analysed materials and plant surfaces were positive for A. butzleri. All A. butzleri isolates were resistant to nalidixic acid and showed high resistance rates to ampicillin (56·2%) and cefotaxime (97·9%), being all strains susceptible to gentamicin and erythromycin. CONCLUSIONS Contamination of dairy plant environment with A. butzleri and its progression along cheese production process were observed, however, the cheese ripening process may have a relevant role in the reduction of the contamination. SIGNIFICANCE AND IMPACT OF THE STUDY This study showed the presence of Arcobacter sp. in a dairy plant, displaying its high prevalence and genetic diversity and highlighting its high resistance rates. The data obtained could contribute to further acknowledge the Arcobacter food contamination as a potential health hazard.
Collapse
Affiliation(s)
- S Ferreira
- CICS-UBI-Health Sciences Research Centre, Universidade da Beira Interior, Covilhã, Portugal
| | - M Oleastro
- Department of Infectious Diseases, National Institute of Health Dr Ricardo Jorge, National Reference Laboratory for Gastrointestinal Infections, Lisbon, Portugal
| | - F C Domingues
- CICS-UBI-Health Sciences Research Centre, Universidade da Beira Interior, Covilhã, Portugal
| |
Collapse
|
12
|
Medina E, Ruiz-Bellido MA, Romero-Gil V, Rodríguez-Gómez F, Montes-Borrego M, Landa BB, Arroyo-López FN. Assessment of the bacterial community in directly brined Aloreña de Málaga table olive fermentations by metagenetic analysis. Int J Food Microbiol 2016; 236:47-55. [PMID: 27442850 DOI: 10.1016/j.ijfoodmicro.2016.07.014] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 06/11/2016] [Accepted: 07/10/2016] [Indexed: 11/19/2022]
Abstract
This study uses an "omics" approach to evaluate the bacterial biodiversity changes during fermentation process of natural green cracked Aloreña de Málaga table olives, from raw material to fermented fruit. For this purpose, two industries separated by almost 20km in Guadalhorce Valley (Málaga, Spain) were analysed for obtaining both brines and fruit samples at different moments of fermentation (0, 7, 30 and 120days). Physicochemical and microbial counts during fermentation showed the typical evolution of this type of processes, apparently dominated by yeasts. However, high-throughput barcoded pyrosequencing analysis of V2-V3 hypervariable region of the bacterial 16S rRNA gene showed at 97% identity the presence of 131 bacterial genera included in 357 operational taxonomic units, not detected by the conventional approach. The bacterial biodiversity was clearly higher in the olives at the moment of reception in the industry and during the first days of fermentation, while decreased considerably as elapse the fermentation process. The presence of Enterobacteriaceae and Lactobacillaceae species was scarce during the four months of study. On the contrary, the most important genus at the end of fermentation was Celerinatantimonas in both brine (95.3% of frequency) and fruit (89.4%) samples, while the presence of well-known spoilage microorganisms (Pseudomonas and Propionibacterium) and halophilic bacteria (Modestobacter, Rhodovibrio, Salinibacter) was also common during the course of fermentation. Among the most important bacterial pathogens related to food, only Staphylococcus genus was found at low frequencies (<0.02% of total sequences). Results show the need of this type of studies to enhance our knowledge of the microbiology of table olive fermentations. It is also necessary to determine the role played by these species not previously detected in table olives on the quality and safety of this fermented vegetable.
Collapse
Affiliation(s)
- E Medina
- Food Biotechnology Department, Instituto de la Grasa (IG-CSIC), University Campus Pablo de Olavide, Building 46, Ctra, Utrera, km 1, 41013 Seville, Spain
| | - M A Ruiz-Bellido
- Regulatory Council of PDO Aloreña de Málaga Table Olives, C/ Dehesa, 80, 29560 Pizarra, Malaga, Spain
| | - V Romero-Gil
- Food Biotechnology Department, Instituto de la Grasa (IG-CSIC), University Campus Pablo de Olavide, Building 46, Ctra, Utrera, km 1, 41013 Seville, Spain; Regulatory Council of PDO Aloreña de Málaga Table Olives, C/ Dehesa, 80, 29560 Pizarra, Malaga, Spain
| | - F Rodríguez-Gómez
- Food Biotechnology Department, Instituto de la Grasa (IG-CSIC), University Campus Pablo de Olavide, Building 46, Ctra, Utrera, km 1, 41013 Seville, Spain
| | - M Montes-Borrego
- Crop Protection Department, Institute for Sustainable Agriculture (IAS-CSIC), Avenida Menéndez Pidal s/n, Campus Alameda del Obispo, 14004 Cordoba, Spain
| | - B B Landa
- Crop Protection Department, Institute for Sustainable Agriculture (IAS-CSIC), Avenida Menéndez Pidal s/n, Campus Alameda del Obispo, 14004 Cordoba, Spain.
| | - F N Arroyo-López
- Food Biotechnology Department, Instituto de la Grasa (IG-CSIC), University Campus Pablo de Olavide, Building 46, Ctra, Utrera, km 1, 41013 Seville, Spain
| |
Collapse
|