1
|
Peng X, Zhang Z, Chen H, Zhang X, Zhang X, Tan C, Bai X, Gong Y, Li H. The investigation of the binding ability between sodium dodecyl sulfate and Cu (II) in urban stormwater runoff. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 350:119671. [PMID: 38039706 DOI: 10.1016/j.jenvman.2023.119671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 10/24/2023] [Accepted: 11/20/2023] [Indexed: 12/03/2023]
Abstract
The simultaneous presence of heavy metals and surfactants in runoff induces complexation and ecological harm during migration. However, interactions between these pollutants are often overlooked in past studies. Thus, investigating heavy metal-surfactant complexes in runoff is imperative. In this work, Cu (II) and sodium dodecyl sulfate (SDS) were selected to investigate the interaction between heavy metals and surfactants due to the higher detected frequency in runoff. Through 1H NMR and FTIR observation of hydrogen atom nuclear displacement and functional group displacement of SDS, the change of SDS and Cu (II) complexation was obtained, and then the complexation form of Cu (II) and SDS was verified. The results showed that solution pH values and ionic strength had significant effects on the complexation of Cu (II). When the pH values increase from 3.0 to 6.0, the complexation efficiency of SDS with Cu (II) increased by 12.12% at low concentration of SDS, which may be attributed to the excessive protonation in the aqueous solution at acidic condition. The increase of ionic strength would inhibit the complexation reaction efficiency by 19.57% and finally reached the platform with concentration of NaNO3 was 0.10 mmol/L, which was mainly due to the competitive relationship between Na (I) and Cu (II). As a general filtering material in stormwater treatment measures, natural zeolite could affect the interaction between SDS and Cu (II) greatly. After the addition of SDS, the content of free Cu (II) in the zeolite-SDS-Cu (II) three-phase mixed system was significantly reduced, indicating that SDS had a positive effect on the removal of Cu (II) from runoff. This study is of great significance for investigating the migration and transformation mechanism of SDS and Cu (II) in the future and studying the control technology of storm runoff pollution.
Collapse
Affiliation(s)
- Xinyu Peng
- Beijing Energy Conservation & Sustainable Urban and Rural Development Provincial and Ministry Co-construction Collaboration Innovation Center, Beijing, 100044, China
| | - Ziyang Zhang
- Key Laboratory of Urban Stormwater System and Water Environment, Ministry of Education, Beijing University of Civil Engineering and Architecture, Beijing, 102616, China.
| | - Hongrui Chen
- CRRC Environmental Science & Technology Cooperation, Beijing, 100067, China
| | - Xiaoxian Zhang
- China Tiegong Investment & Construction Group Co. Ltd, China
| | - Xiaoran Zhang
- Key Laboratory of Urban Stormwater System and Water Environment, Ministry of Education, Beijing University of Civil Engineering and Architecture, Beijing, 102616, China
| | - Chaohong Tan
- Beijing Engineering Research Center of Sustainable Urban Sewage System Construction and Risk Control, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
| | - Xiaojuan Bai
- Key Laboratory of Urban Stormwater System and Water Environment, Ministry of Education, Beijing University of Civil Engineering and Architecture, Beijing, 102616, China
| | - Yongwei Gong
- Key Laboratory of Urban Stormwater System and Water Environment, Ministry of Education, Beijing University of Civil Engineering and Architecture, Beijing, 102616, China
| | - Haiyan Li
- Beijing Energy Conservation & Sustainable Urban and Rural Development Provincial and Ministry Co-construction Collaboration Innovation Center, Beijing, 100044, China
| |
Collapse
|
2
|
Kordkatooli E, Bacha K, Villaume S, Dorey S, Monboisse JC, Brassart-Pasco S, Mbakidi JP, Bouquillon S. L-Rhamnose and Phenolic Esters-Based Monocatenar and Bolaform Amphiphiles: Eco-Compatible Synthesis and Determination of Their Antioxidant, Eliciting and Cytotoxic Properties. Molecules 2023; 28:5154. [PMID: 37446816 DOI: 10.3390/molecules28135154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/13/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
Symmetrical and dissymmetrical bolaforms were prepared with good to high yields from unsaturated L-rhamnosides and phenolic esters (ferulic, phloretic, coumaric, sinapic and caffeic) using two eco-compatible synthetic strategies involving glycosylation, enzymatic synthesis and cross-metathesis under microwave activation. The plant-eliciting activity of these new compounds was investigated in Arabidopsis model plants. We found that the monocatenar rhamnosides and bolaforms activate the plant immune system with a response depending on the carbon chain length and the nature of the hydrophilic heads. Their respective antioxidant activities were also evaluated, as well as their cytotoxic properties on dermal cells for cosmetic uses. We showed that phenolic ester-based compounds present good antioxidant activities and that their cytotoxicity is low. These properties are also dependent on the carbon chains used.
Collapse
Affiliation(s)
- Emad Kordkatooli
- Molecular Chemistry Reims Institute UMR CNRS 7312, Reims Champagne-Ardenne University, Boîte n° 44, B.P. 1039, 51687 Reims, France
| | - Katia Bacha
- Molecular Chemistry Reims Institute UMR CNRS 7312, Reims Champagne-Ardenne University, Boîte n° 44, B.P. 1039, 51687 Reims, France
| | - Sandra Villaume
- RIBP-USC INRAE 1488, Université de Reims Champagne-Ardenne Reims, 51100 Reims, France
| | - Stephan Dorey
- RIBP-USC INRAE 1488, Université de Reims Champagne-Ardenne Reims, 51100 Reims, France
| | - Jean-Claude Monboisse
- Laboratoire de Biochimie Médicale et de Biologie Moléculaire, UMR CNRS/URCA 7369-Reims Champagne Ardenne University, UFR Médecine, 51 Rue Cognacq Jay, 51095 Reims, France
| | - Sylvie Brassart-Pasco
- Laboratoire de Biochimie Médicale et de Biologie Moléculaire, UMR CNRS/URCA 7369-Reims Champagne Ardenne University, UFR Médecine, 51 Rue Cognacq Jay, 51095 Reims, France
| | - Jean-Pierre Mbakidi
- Molecular Chemistry Reims Institute UMR CNRS 7312, Reims Champagne-Ardenne University, Boîte n° 44, B.P. 1039, 51687 Reims, France
| | - Sandrine Bouquillon
- Molecular Chemistry Reims Institute UMR CNRS 7312, Reims Champagne-Ardenne University, Boîte n° 44, B.P. 1039, 51687 Reims, France
| |
Collapse
|
3
|
Studies on the surface properties and microaggregates of cationic/anionic surfactant mixtures based on sulfonate gemini surfactant. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.114431] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|