1
|
Eshelli M, Qader MM, Jambi EJ, Hursthouse AS, Rateb ME. Current Status and Future Opportunities of Omics Tools in Mycotoxin Research. Toxins (Basel) 2018; 10:E433. [PMID: 30373184 PMCID: PMC6267353 DOI: 10.3390/toxins10110433] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 10/20/2018] [Accepted: 10/24/2018] [Indexed: 12/12/2022] Open
Abstract
Mycotoxins are toxic secondary metabolites of low molecular weight produced by filamentous fungi, such as Aspergillus, Fusarium, and Penicillium spp. Mycotoxins are natural contaminants of agricultural commodities and their prevalence may increase due to global warming. Dangerous mycotoxins cause a variety of health problems not only for humans, but also for animals. For instance, they possess carcinogenic, immunosuppressive, hepatotoxic, nephrotoxic, and neurotoxic effects. Hence, various approaches have been used to assess and control mycotoxin contamination. Significant challenges still exist because of the complex heterogeneous nature of food composition. The potential of combined omics approaches such as metabolomics, genomics, transcriptomics, and proteomics would contribute to our understanding about pathogen fungal crosstalk as well as strengthen our ability to identify, isolate, and characterise mycotoxins pre and post-harvest. Multi-omics approaches along with advanced analytical tools and chemometrics provide a complete annotation of such metabolites produced before/during the contamination of crops. We have assessed the merits of these individual and combined omics approaches and their promising applications to mitigate the issue of mycotoxin contamination. The data included in this review focus on aflatoxin, ochratoxin, and patulin and would be useful as benchmark information for future research.
Collapse
Affiliation(s)
- Manal Eshelli
- School of Computing, Engineering, & Physical Sciences, University of the West of Scotland, Paisley PA1 2BE, UK.
- Food Science and Technology Department, Faculty of Agriculture, University of Tripoli, Tripoli 13538, Libya.
| | - M Mallique Qader
- School of Computing, Engineering, & Physical Sciences, University of the West of Scotland, Paisley PA1 2BE, UK.
- National Institute of Fundamental Studies, Hantana Road, Kandy 20000, Sri Lanka.
| | - Ebtihaj J Jambi
- Biochemistry Department, Faculty of Science, Girls Section, King Abdulaziz University, Jeddah 21551, Saudi Arabia.
| | - Andrew S Hursthouse
- School of Computing, Engineering, & Physical Sciences, University of the West of Scotland, Paisley PA1 2BE, UK.
| | - Mostafa E Rateb
- School of Computing, Engineering, & Physical Sciences, University of the West of Scotland, Paisley PA1 2BE, UK.
| |
Collapse
|
2
|
Müller V, Bonacci G, Batthyany C, Amé MV, Carrari F, Gieco J, Asis R. Peanut Seed Cultivars with Contrasting Resistance to Aspergillus parasiticus Colonization Display Differential Temporal Response of Protease Inhibitors. PHYTOPATHOLOGY 2017; 107:474-482. [PMID: 27841959 DOI: 10.1094/phyto-09-16-0346-r] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Significant efforts are being made to minimize aflatoxin contamination in peanut seeds and one possible strategy is to understand and exploit the mechanisms of plant defense against fungal infection. In this study we have identified and characterized, at biochemical and molecular levels, plant protease inhibitors (PPIs) produced in peanut seeds of the resistant PI 337394 and the susceptible Forman cultivar during Aspergillus parasiticus colonization. With chromatographic methods and 2D-electrophoresis-mass spectrometry we have isolated and identified four variants of Bowman-Birk trypsin inhibitor (BBTI) and a novel Kunitz-type protease inhibitor (KPI) produced in response to A. parasiticus colonization. KPI was detected only in the resistant cultivar, while BBTI was produced in the resistant cultivar in a higher concentration than susceptible cultivar and with different isoforms. The kinetic expression of KPI and BBTI genes along with trypsin inhibitory activity was analyzed in both cultivars during infection. In the susceptible cultivar an early PPI activity response was associated with BBTI occurrence. Meanwhile, in the resistant cultivar a later response with a larger increase in PPI activity was associated with BBTI and KPI occurrence. The biological significance of PPI in seed defense against fungal infection was analyzed and linked to inhibitory properties on enzymes released by the fungus during infection, and to the antifungal effect of KPI.
Collapse
Affiliation(s)
- Virginia Müller
- First, second, fourth, and seventh authors: Departamento de Bioquímica/CIBICI, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Haya de la Torre interseccion Medina Allende, Ciudad Universitaria, CP5000, Córdoba, Argentina; third author: Unidad de Bioquímica y Proteómica Analítica, Institut Pasteur de Montevideo; fifth author: Instituto de Biotecnología, Instituto Nacional de Tecnología Agropecuaria, Hurlingham, Buenos Aires, Argentina; and sixth author: Instituto Nacional de Tecnología Agropecuaria, Estación Experimental Manfredi, Córdoba, Argentina
| | - Gustavo Bonacci
- First, second, fourth, and seventh authors: Departamento de Bioquímica/CIBICI, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Haya de la Torre interseccion Medina Allende, Ciudad Universitaria, CP5000, Córdoba, Argentina; third author: Unidad de Bioquímica y Proteómica Analítica, Institut Pasteur de Montevideo; fifth author: Instituto de Biotecnología, Instituto Nacional de Tecnología Agropecuaria, Hurlingham, Buenos Aires, Argentina; and sixth author: Instituto Nacional de Tecnología Agropecuaria, Estación Experimental Manfredi, Córdoba, Argentina
| | - Carlos Batthyany
- First, second, fourth, and seventh authors: Departamento de Bioquímica/CIBICI, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Haya de la Torre interseccion Medina Allende, Ciudad Universitaria, CP5000, Córdoba, Argentina; third author: Unidad de Bioquímica y Proteómica Analítica, Institut Pasteur de Montevideo; fifth author: Instituto de Biotecnología, Instituto Nacional de Tecnología Agropecuaria, Hurlingham, Buenos Aires, Argentina; and sixth author: Instituto Nacional de Tecnología Agropecuaria, Estación Experimental Manfredi, Córdoba, Argentina
| | - María V Amé
- First, second, fourth, and seventh authors: Departamento de Bioquímica/CIBICI, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Haya de la Torre interseccion Medina Allende, Ciudad Universitaria, CP5000, Córdoba, Argentina; third author: Unidad de Bioquímica y Proteómica Analítica, Institut Pasteur de Montevideo; fifth author: Instituto de Biotecnología, Instituto Nacional de Tecnología Agropecuaria, Hurlingham, Buenos Aires, Argentina; and sixth author: Instituto Nacional de Tecnología Agropecuaria, Estación Experimental Manfredi, Córdoba, Argentina
| | - Fernando Carrari
- First, second, fourth, and seventh authors: Departamento de Bioquímica/CIBICI, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Haya de la Torre interseccion Medina Allende, Ciudad Universitaria, CP5000, Córdoba, Argentina; third author: Unidad de Bioquímica y Proteómica Analítica, Institut Pasteur de Montevideo; fifth author: Instituto de Biotecnología, Instituto Nacional de Tecnología Agropecuaria, Hurlingham, Buenos Aires, Argentina; and sixth author: Instituto Nacional de Tecnología Agropecuaria, Estación Experimental Manfredi, Córdoba, Argentina
| | - Jorge Gieco
- First, second, fourth, and seventh authors: Departamento de Bioquímica/CIBICI, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Haya de la Torre interseccion Medina Allende, Ciudad Universitaria, CP5000, Córdoba, Argentina; third author: Unidad de Bioquímica y Proteómica Analítica, Institut Pasteur de Montevideo; fifth author: Instituto de Biotecnología, Instituto Nacional de Tecnología Agropecuaria, Hurlingham, Buenos Aires, Argentina; and sixth author: Instituto Nacional de Tecnología Agropecuaria, Estación Experimental Manfredi, Córdoba, Argentina
| | - Ramón Asis
- First, second, fourth, and seventh authors: Departamento de Bioquímica/CIBICI, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Haya de la Torre interseccion Medina Allende, Ciudad Universitaria, CP5000, Córdoba, Argentina; third author: Unidad de Bioquímica y Proteómica Analítica, Institut Pasteur de Montevideo; fifth author: Instituto de Biotecnología, Instituto Nacional de Tecnología Agropecuaria, Hurlingham, Buenos Aires, Argentina; and sixth author: Instituto Nacional de Tecnología Agropecuaria, Estación Experimental Manfredi, Córdoba, Argentina
| |
Collapse
|
3
|
Bhatnagar-Mathur P, Sunkara S, Bhatnagar-Panwar M, Waliyar F, Sharma KK. Biotechnological advances for combating Aspergillus flavus and aflatoxin contamination in crops. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2015; 234:119-132. [PMID: 25804815 DOI: 10.1016/j.plantsci.2015.02.009] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Revised: 02/17/2015] [Accepted: 02/18/2015] [Indexed: 06/04/2023]
Abstract
Aflatoxins are toxic, carcinogenic, mutagenic, teratogenic and immunosuppressive byproducts of Aspergillus spp. that contaminate a wide range of crops such as maize, peanut, and cotton. Aflatoxin not only affects crop production but renders the produce unfit for consumption and harmful to human and livestock health, with stringent threshold limits of acceptability. In many crops, breeding for resistance is not a reliable option because of the limited availability of genotypes with durable resistance to Aspergillus. Understanding the fungal/crop/environment interactions involved in aflatoxin contamination is therefore essential in designing measures for its prevention and control. For a sustainable solution to aflatoxin contamination, research must be focused on identifying and improving knowledge of host-plant resistance factors to aflatoxin accumulation. Current advances in genetic transformation, proteomics, RNAi technology, and marker-assisted selection offer great potential in minimizing pre-harvest aflatoxin contamination in cultivated crop species. Moreover, developing effective phenotyping strategies for transgenic as well as precision breeding of resistance genes into commercial varieties is critical. While appropriate storage practices can generally minimize post-harvest aflatoxin contamination in crops, the use of biotechnology to interrupt the probability of pre-harvest infection and contamination has the potential to provide sustainable solution.
Collapse
Affiliation(s)
- Pooja Bhatnagar-Mathur
- Genetic Transformation Laboratory, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru 502324, Telangana, India.
| | - Sowmini Sunkara
- Genetic Transformation Laboratory, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru 502324, Telangana, India
| | - Madhurima Bhatnagar-Panwar
- Genetic Transformation Laboratory, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru 502324, Telangana, India
| | - Farid Waliyar
- Genetic Transformation Laboratory, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru 502324, Telangana, India
| | - Kiran Kumar Sharma
- Genetic Transformation Laboratory, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru 502324, Telangana, India
| |
Collapse
|
4
|
Warburton ML, Williams WP, Hawkins L, Bridges S, Gresham C, Harper J, Ozkan S, Mylroie JE, Shan X. A public platform for the verification of the phenotypic effect of candidate genes for resistance to aflatoxin accumulation and Aspergillus flavus infection in maize. Toxins (Basel) 2011; 3:754-65. [PMID: 22069738 PMCID: PMC3202859 DOI: 10.3390/toxins3070754] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2011] [Revised: 06/10/2011] [Accepted: 06/15/2011] [Indexed: 12/03/2022] Open
Abstract
A public candidate gene testing pipeline for resistance to aflatoxin accumulation or Aspergillus flavus infection in maize is presented here. The pipeline consists of steps for identifying, testing, and verifying the association of selected maize gene sequences with resistance under field conditions. Resources include a database of genetic and protein sequences associated with the reduction in aflatoxin contamination from previous studies; eight diverse inbred maize lines for polymorphism identification within any maize gene sequence; four Quantitative Trait Loci (QTL) mapping populations and one association mapping panel, all phenotyped for aflatoxin accumulation resistance and associated phenotypes; and capacity for Insertion/Deletion (InDel) and SNP genotyping in the population(s) for mapping. To date, ten genes have been identified as possible candidate genes and put through the candidate gene testing pipeline, and results are presented here to demonstrate the utility of the pipeline.
Collapse
Affiliation(s)
- Marilyn L. Warburton
- Corn Host Plant Resistance Research Unit, U.S. Department of Agriculture-Agricultural Research Service, MS 39762, USA; (W.P.W.); (L.H.)
| | - William Paul Williams
- Corn Host Plant Resistance Research Unit, U.S. Department of Agriculture-Agricultural Research Service, MS 39762, USA; (W.P.W.); (L.H.)
| | - Leigh Hawkins
- Corn Host Plant Resistance Research Unit, U.S. Department of Agriculture-Agricultural Research Service, MS 39762, USA; (W.P.W.); (L.H.)
| | - Susan Bridges
- Department of Computer Science and Engineering, Mississippi State University, MS 39762, USA; (S.B.); (C.G.); (J.H.)
| | - Cathy Gresham
- Department of Computer Science and Engineering, Mississippi State University, MS 39762, USA; (S.B.); (C.G.); (J.H.)
| | - Jonathan Harper
- Department of Computer Science and Engineering, Mississippi State University, MS 39762, USA; (S.B.); (C.G.); (J.H.)
| | - Seval Ozkan
- Department of Biochemistry, Molecular Biology, Entomology, and Plant Pathology, Mississippi State University, MS 39762, USA; (S.O.); (J.E.M.); (X.S.)
| | - J. Erik Mylroie
- Department of Biochemistry, Molecular Biology, Entomology, and Plant Pathology, Mississippi State University, MS 39762, USA; (S.O.); (J.E.M.); (X.S.)
| | - Xueyan Shan
- Department of Biochemistry, Molecular Biology, Entomology, and Plant Pathology, Mississippi State University, MS 39762, USA; (S.O.); (J.E.M.); (X.S.)
| |
Collapse
|
5
|
Wang T, Zhang E, Chen X, Li L, Liang X. Identification of seed proteins associated with resistance to pre-harvested aflatoxin contamination in peanut (Arachis hypogaea L). BMC PLANT BIOLOGY 2010; 10:267. [PMID: 21118527 PMCID: PMC3095339 DOI: 10.1186/1471-2229-10-267] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2010] [Accepted: 11/30/2010] [Indexed: 05/22/2023]
Abstract
BACKGROUND Pre-harvest infection of peanuts by Aspergillus flavus and subsequent aflatoxin contamination is one of the food safety factors that most severely impair peanut productivity and human and animal health, especially in arid and semi-arid tropical areas. Some peanut cultivars with natural pre-harvest resistance to aflatoxin contamination have been identified through field screening. However, little is known about the resistance mechanism, which has slowed the incorporation of resistance into cultivars with commercially acceptable genetic background. Therefore, it is necessary to identify resistance-associated proteins, and then to recognize candidate resistance genes potentially underlying the resistance mechanism. RESULTS The objective of this study was to identify resistance-associated proteins in response to A. flavus infection under drought stress using two-dimensional electrophoresis with mass spectrometry. To identify proteins involved in the resistance to pre-harvest aflatoxin contamination, we compared the differential expression profiles of seed proteins between a resistant cultivar (YJ-1) and a susceptible cultivar (Yueyou 7) under well-watered condition, drought stress, and A. flavus infection with drought stress. A total of 29 spots showed differential expression between resistant and susceptible cultivars in response to A. flavus attack under drought stress. Among these spots, 12 protein spots that consistently exhibited an altered expression were screened by Image Master 5.0 software and successfully identified by MALDI-TOF MS. Five protein spots, including Oso7g0179400, PII protein, CDK1, Oxalate oxidase, SAP domain-containing protein, were uniquely expressed in the resistant cultivar. Six protein spots including low molecular weight heat shock protein precursor, RIO kinase, L-ascorbate peroxidase, iso-Ara h3, 50 S ribosomal protein L22 and putative 30 S ribosomal S9 were significantly up-regulated in the resistant cultivar challenged by A. flavus under drought stress. A significant decrease or down regulation of trypsin inhibitor caused by A. flavus in the resistant cultivar was also observed. In addition, variations in protein expression patterns for resistant and susceptible cultivars were further validated by real time RT-PCR analysis. CONCLUSION In summary, this study provides new insights into understanding of the molecular mechanism of resistance to pre-harvest aflatoxin contamination in peanut, and will help to develop peanut varieties with resistance to pre-harvested aflatoxin contamination.
Collapse
Affiliation(s)
- Tong Wang
- Gguangdong Key Lab of Biotechnology for Plant Development, College of Life Science, South China Normal University, Guangzhou 510631, China
- Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Erhua Zhang
- Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Xiaoping Chen
- Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Ling Li
- Gguangdong Key Lab of Biotechnology for Plant Development, College of Life Science, South China Normal University, Guangzhou 510631, China
| | - Xuanqiang Liang
- Gguangdong Key Lab of Biotechnology for Plant Development, College of Life Science, South China Normal University, Guangzhou 510631, China
- Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| |
Collapse
|