1
|
Jung G, Lee J, Kim S. Integrated deep learning approach for generating cross-polarized images and analyzing skin melanin and hemoglobin distributions. Biomed Eng Lett 2024; 14:1355-1364. [PMID: 39465115 PMCID: PMC11502720 DOI: 10.1007/s13534-024-00409-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 06/16/2024] [Accepted: 07/15/2024] [Indexed: 10/29/2024] Open
Abstract
Cross-polarized images are beneficial for skin pigment analysis due to the enhanced visualization of melanin and hemoglobin regions. However, the required imaging equipment can be bulky and optically complex. Additionally, preparing ground truths for training pigment analysis models is labor-intensive. This study aims to introduce an integrated approach for generating cross-polarized images and creating skin melanin and hemoglobin maps without the need for ground truth preparation for pigment distributions. We propose a two-component approach: a cross-polarized image generation module and a skin analysis module. Three generative adversarial networks (CycleGAN, pix2pix, and pix2pixHD) are compared for creating cross-polarized images. The regression analysis network for skin analysis is trained with theoretically reconstructed ground truths based on the optical properties of pigments. The methodology is evaluated using the VISIA VAESTRO clinical system. The cross-polarized image generation module achieved a peak signal-to-noise ratio of 35.514 dB. The skin analysis module demonstrated correlation coefficients of 0.942 for hemoglobin and 0.922 for melanin. The integrated approach yielded correlation coefficients of 0.923 for hemoglobin and 0.897 for melanin, respectively. The proposed approach achieved a reasonable correlation with the professional system using actually captured images, offering a promising alternative to existing professional equipment without the need for additional optical instruments or extensive ground truth preparation.
Collapse
Affiliation(s)
- Geunho Jung
- AI R&D center, lululab Inc., Seoul, 06054 Republic of Korea
| | - Jongha Lee
- AI R&D center, lululab Inc., Seoul, 06054 Republic of Korea
| | - Semin Kim
- AI R&D center, lululab Inc., Seoul, 06054 Republic of Korea
| |
Collapse
|
2
|
Abstract
Disorders of hyperpigmentation are common and challenging conditions which can arise due to a myriad of etiologic factors. Many of them can present across skin types but are more common in skin of color individuals with Fitzpatrick skin types III-VI. Facial hyperpigmentation, in particular, can have a significant impact on the quality of life of affected individuals due to its increased visibility. This article provides a comprehensive review of disorders of facial hyperpigmentation including epidemiology, pathogenesis, diagnostic considerations, and treatment approaches for these conditions.
Collapse
Affiliation(s)
- Nicole C Syder
- Department of Dermatology, Keck School of Medicine of University of Southern California, Keck School of Medicine, University of Southern California, 830 South Flower Street, Suite 100, Los Angeles, CA 90017, USA
| | - Claudia Quarshie
- Department of Dermatology, Keck School of Medicine of University of Southern California, Keck School of Medicine, University of Southern California, 830 South Flower Street, Suite 100, Los Angeles, CA 90017, USA
| | - Nada Elbuluk
- Department of Dermatology, Keck School of Medicine of University of Southern California, Keck School of Medicine, University of Southern California, 830 South Flower Street, Suite 100, Los Angeles, CA 90017, USA.
| |
Collapse
|
3
|
Liu W, Chen Q, Xia Y. New Mechanistic Insights of Melasma. Clin Cosmet Investig Dermatol 2023; 16:429-442. [PMID: 36817641 PMCID: PMC9936885 DOI: 10.2147/ccid.s396272] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 01/10/2023] [Indexed: 02/16/2023]
Abstract
Melasma is a common acquired disorder of pigmentation that negatively impacts quality of life. Present treatments show poor therapeutic effect with frequent recurrence. This in large part is due to the currently limited understanding of the disease's etiology. It is urgent to elucidate the pathogenesis of melasma to further the discovery of new therapeutic strategies. Recent studies show that melasma is triggered or aggravated by a variety of factors, including genetic susceptibility, ultraviolet radiation, and sex hormone dysregulation. Ultraviolet B radiation upregulates the expression of several melanocyte-specific genes and stimulates the release of key factors that participate in the synthesis of melanin. There is a significant increase in melanin in both the epidermal and dermal layers of affected skin, possibly due to abnormalities in crosstalk between the melanocytes and other cells. Melanogenesis is regulated through various signaling networks including the Wnt/β-catenin, PI3K/Akt, cAMP/PKA, and SCF/c-kit-mediated signaling pathways. In addition, inflammatory mediators, oxidative stress, neuroactive molecules, sebocytes, etc, have also been proved to be related to the pathogenesis of melasma. This review provides a comprehensive update on the current understanding of the pathogenesis of melasma.
Collapse
Affiliation(s)
- Wei Liu
- Department of Dermatology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, 710004, People’s Republic of China
| | - Qin Chen
- Department of Dermatology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, 710004, People’s Republic of China
| | - Yumin Xia
- Department of Dermatology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, 710004, People’s Republic of China,Correspondence: Yumin Xia, Department of Dermatology, The Second Affiliated Hospital of Xi’an Jiaotong University, 157 Xiwu Road, Xi’an, 710004, People’s Republic of China, Tel +86 29 87679969, Fax +86 29 87678425, Email
| |
Collapse
|
4
|
Chen P, Tang S, Li M, Wang D, Chen C, Qiu Y, Fang Z, Zhang H, Gao H, Weng H, Hu K, Lin J, Lin Q, Tan Y, Li S, Chen J, Chen L, Chen X. Single-Cell and Spatial Transcriptomics Decodes Wharton's Jelly-Derived Mesenchymal Stem Cells Heterogeneity and a Subpopulation with Wound Repair Signatures. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2204786. [PMID: 36504438 PMCID: PMC9896049 DOI: 10.1002/advs.202204786] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 11/18/2022] [Indexed: 06/17/2023]
Abstract
The highly heterogeneous characteristics of Wharton's jelly mesenchymal stem cells (WJ-MSCs) may be responsible for the poor clinical outcomes and poor reproducibility of treatments based on WJ-MSCs. Exploration of WJ-MSC heterogeneity with multimodal single-cell technologies will aid in establishing accurate MSC subtyping and developing screening protocols for dominant functional subpopulations. Here, the characteristics of WJ-MSCs are systematically analyzed by single cell and spatial transcriptome sequencing. Single-cell transcriptomics analysis identifies four WJ-MSC subpopulations, namely proliferative_MSCs, niche-supporting_MSCs, metabolism-related_MSCs and biofunctional-type_MSCs. Furthermore, the transcriptome, cellular heterogeneity, and cell-state trajectories of these subpopulations are characterized. Intriguingly, the biofunctional-type MSCs (marked by S100A9, CD29, and CD142) selected in this study exhibit promising wound repair properties in vitro and in vivo. Finally, by integrating omics data, it has been found that the S100A9+ CD29+ CD142+ subpopulation is more enriched in the fetal segment of the umbilical cord, suggesting that this subpopulation deriving from the fetal segment may have potential for developing into an ideal therapeutic agent for wound healing. Overall, the presented study comprehensively maps the heterogeneity of WJ-MSCs and provides an essential resource for future development of WJ-MSC-based drugs.
Collapse
|
5
|
Piętowska Z, Nowicka D, Szepietowski JC. Understanding Melasma-How Can Pharmacology and Cosmetology Procedures and Prevention Help to Achieve Optimal Treatment Results? A Narrative Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph191912084. [PMID: 36231404 PMCID: PMC9564742 DOI: 10.3390/ijerph191912084] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/14/2022] [Accepted: 09/15/2022] [Indexed: 05/06/2023]
Abstract
Melasma is a chronic skin condition that involves the overproduction of melanin in areas exposed to ultraviolet radiation. Melasma treatment is long-term and complicated with recurrence and resistance to treatment. The pathogenesis of melasma is highly complex with multiple pathologies occurring outside of the skin pigment cells. It includes photoaging, excessive melanogenesis, an increased number of mast cells, increased vascularization, and basement membrane damage. In addition, skin lesions related to melasma and their surrounding skin have nearly 300 genes differentially expressed from healthy skin. Traditionally, melasma was treated with topical agents, including hydroquinone, tretinoin, glucocorticosteroids and various formulations; however, the current approach includes the topical application of a variety of substances, chemical peels, laser and light treatments, mesotherapy, microneedling and/or the use of systemic therapy. The treatment plan for patients with melasma begins with the elimination of risk factors, strict protection against ultraviolet radiation, and the topical use of lightening agents. Hyperpigmentation treatment alone can be ineffective unless combined with regenerative methods and photoprotection. In this review, we show that in-depth knowledge associated with proper communication and the establishment of a relationship with the patient help to achieve good adherence and compliance in this long-term, time-consuming and difficult procedure.
Collapse
Affiliation(s)
- Zuzanna Piętowska
- Department of Dermatology, Venereology and Allergology, Wrocław Medical University, 50-368 Wrocław, Poland
| | - Danuta Nowicka
- Department of Dermatology, Venereology and Allergology, Wrocław Medical University, 50-368 Wrocław, Poland
- Faculty of Physiotherapy, Wroclaw University of Health and Sport Sciences, 51-612 Wrocław, Poland
- Correspondence:
| | - Jacek C. Szepietowski
- Department of Dermatology, Venereology and Allergology, Wrocław Medical University, 50-368 Wrocław, Poland
| |
Collapse
|
6
|
Bahri R, Kiss O, Prise I, Garcia-Rodriguez KM, Atmoko H, Martínez-Gómez JM, Levesque MP, Dummer R, Smith MP, Wellbrock C, Bulfone-Paus S. Human Melanoma-Associated Mast Cells Display a Distinct Transcriptional Signature Characterized by an Upregulation of the Complement Component 3 That Correlates With Poor Prognosis. Front Immunol 2022; 13:861545. [PMID: 35669782 PMCID: PMC9163391 DOI: 10.3389/fimmu.2022.861545] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 03/23/2022] [Indexed: 11/13/2022] Open
Abstract
Cutaneous melanoma is one of the most aggressive human malignancies and shows increasing incidence. Mast cells (MCs), long-lived tissue-resident cells that are particularly abundant in human skin where they regulate both innate and adaptive immunity, are associated with melanoma stroma (MAMCs). Thus, MAMCs could impact melanoma development, progression, and metastasis by secreting proteases, pro-angiogenic factors, and both pro-inflammatory and immuno-inhibitory mediators. To interrogate the as-yet poorly characterized role of human MAMCs, we have purified MCs from melanoma skin biopsies and performed RNA-seq analysis. Here, we demonstrate that MAMCs display a unique transcriptome signature defined by the downregulation of the FcεRI signaling pathway, a distinct expression pattern of proteases and pro-angiogenic factors, and a profound upregulation of complement component C3. Furthermore, in melanoma tissue, we observe a significantly increased number of C3+ MCs in stage IV melanoma. Moreover, in patients, C3 expression significantly correlates with the MC-specific marker TPSAB1, and the high expression of both markers is linked with poorer melanoma survival. In vitro, we show that melanoma cell supernatants and tumor microenvironment (TME) mediators such as TGF-β, IL-33, and IL-1β induce some of the changes found in MAMCs and significantly modulate C3 expression and activity in MCs. Taken together, these data suggest that melanoma-secreted cytokines such as TGF-β and IL-1β contribute to the melanoma microenvironment by upregulating C3 expression in MAMCs, thus inducing an MC phenotype switch that negatively impacts melanoma prognosis.
Collapse
Affiliation(s)
- Rajia Bahri
- Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
- Division of Musculoskeletal & Dermatological Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Orsolya Kiss
- Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
- Division of Musculoskeletal & Dermatological Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Ian Prise
- Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Karen M. Garcia-Rodriguez
- Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Haris Atmoko
- Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
- Division of Musculoskeletal & Dermatological Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Julia M. Martínez-Gómez
- Department of Dermatology, Skin Cancer Center, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Mitchell P. Levesque
- Department of Dermatology, Skin Cancer Center, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Reinhard Dummer
- Department of Dermatology, Skin Cancer Center, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Michael P. Smith
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Claudia Wellbrock
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Silvia Bulfone-Paus
- Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
- Division of Musculoskeletal & Dermatological Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| |
Collapse
|
7
|
UVB-Induced Secretion of IL-1β Promotes Melanogenesis by Upregulating TYR/TRP-1 Expression In Vitro. BIOMED RESEARCH INTERNATIONAL 2022; 2022:8230646. [PMID: 35572734 PMCID: PMC9106468 DOI: 10.1155/2022/8230646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 04/18/2022] [Indexed: 12/04/2022]
Abstract
Purpose Ultraviolet radiation (UVR) is one of the exogenous stimuli increasing melanogenesis. UV light, especially UVB, is also a potent inducer of epidermal cytokine release. This study is aimed at determining the underlying mechanisms by which UVB-induced cytokines in keratinocytes regulate melanin production in vitro. Methods Expression levels of mRNA for interleukin- (IL-) 1, IL-1β, IL-6, IL-10, IL-17, and tumor necrosis factor-alpha (TNF-α) were measured using RT-qPCR at various time points after UVB irradiation in C57BL/6 mice and HaCaT cells. NaOH lysis and L-dihydroxyphenylalanine (L-DOPA) oxidation method were used to measure melanin content and tyrosinase (TYR) activity, respectively, in melanoma B16 cells. RT-qPCR and Western blot were used to assess mRNA and protein levels of microphthalmia-associated transcription factor (MITF), TYR, tyrosine-related protein-1 (TRP-1), and tyrosine-related protein-2 (TRP-2) in B16 cells. Finally, expression levels of cyclooxygenase-2 (COX-2) mRNA and stem cell factor (SCF) in HaCaT cells were measured following knockdown of IL-1β using siRNA (siIL-1β). Results UVB irradiation increased IL-1β mRNA expression levels in both C57BL/6 mice and HaCaT cells. The melanin content, TYR activity, and expression levels of TYR and TRP-1 were all raised when B16 cells were treated with 4 pg/l of IL-1. Moreover, IL-1β also upregulated the expression levels of SCF and COX-2 in nonirradiated HaCaT cells. Conversely, knockdown of IL-1β attenuated UVB irradiation-induced upregulation of SCF and COX-2 expression in keratinocytes. Conclusions UVB-induced melanogenesis is mediated in part by IL-1β, leading to upregulation of the TYR/TRP1 expression in melanoma B16 cells. IL-1β can also stimulate the expression of COX-2 and SCF in HaCaT cells, which in turn increase melanin synthesis in melanocytes. These results suggest that anti-inflammatory approaches could possibly mitigate UVB-induced hyperpigmentation.
Collapse
|
8
|
Flori E, Mastrofrancesco A, Mosca S, Ottaviani M, Briganti S, Cardinali G, Filoni A, Cameli N, Zaccarini M, Zouboulis CC, Picardo M. Sebocytes contribute to melasma onset. iScience 2022; 25:103871. [PMID: 35252805 PMCID: PMC8891974 DOI: 10.1016/j.isci.2022.103871] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 12/14/2021] [Accepted: 01/28/2022] [Indexed: 12/30/2022] Open
Abstract
Melasma is a hyperpigmentary disorder with photoaging features, whose manifestations appear on specific face areas, rich in sebaceous glands (SGs). To explore the SGs possible contribution to the onset, the expression of pro-melanogenic and inflammatory factors from the SZ95 SG cell line exposed to single or repetitive ultraviolet (UVA) radiation was evaluated. UVA up-modulated the long-lasting production of α-MSH, EDN1, b-FGF, SCF, inflammatory cytokines and mediators. Irradiated SZ95 sebocyte conditioned media increased pigmentation in melanocytes and the expression of senescence markers, pro-inflammatory cytokines, and growth factors regulating melanogenesis in fibroblasts cultures. Cocultures experiments with skin explants confirmed the role of sebocytes on melanogenesis promotion. The analysis on sebum collected from melasma patients demonstrated that in vivo sebocytes from lesional areas express the UVA-activated pathways markers observed in vitro. Our results indicate sebocytes as one of the actors in melasma pathogenesis, inducing prolonged skin cell stimulation, contributing to localized dermal aging and hyperpigmentation.
Collapse
Affiliation(s)
- Enrica Flori
- Laboratory of Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, Rome, Italy
| | - Arianna Mastrofrancesco
- Laboratory of Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, Rome, Italy
| | - Sarah Mosca
- Laboratory of Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, Rome, Italy
| | - Monica Ottaviani
- Laboratory of Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, Rome, Italy
| | - Stefania Briganti
- Laboratory of Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, Rome, Italy
| | - Giorgia Cardinali
- Laboratory of Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, Rome, Italy
| | - Angela Filoni
- Dermatology Department, San Gallicano Dermatological Institute, IRCCS, Rome, Italy
| | - Norma Cameli
- Dermatology Department, San Gallicano Dermatological Institute, IRCCS, Rome, Italy
| | - Marco Zaccarini
- Genetic Research, Molecular Biology and Dermatopathology Unit, San Gallicano Dermatological Institute, IRCCS, Rome, Italy
| | - Christos C Zouboulis
- Departments of Dermatology, Venereology, Allergology and Immunology, Dessau Medical Center, Brandenburg Medical School Theodore Fontane and Faculty of Health Sciences Brandenburg, Dessau, Germany
| | - Mauro Picardo
- Laboratory of Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, Rome, Italy
| |
Collapse
|
9
|
Cassiano DP, Espósito ACC, Hassun KM, Lima MMDDA, Lima EVDA, Miot LDB, Miot HA, Bagatin E. Histological changes in facial melasma after treatment with triple combination cream with or without oral tranexamic acid and/or microneedling, a randomised clinical trial. Indian J Dermatol Venereol Leprol 2022; 88:761-770. [PMID: 35389028 DOI: 10.25259/ijdvl_126_2021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 09/01/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND Melasma is an acquired dyschromia with several histologic alterations in the epidermis, basement membrane and upper dermis. The treatment of melasma is challenging due to the irregular response and chronicity of the disease. To date, there are no curative strategies, largely due to the limited understanding of the intrinsic effects of each treatment. OBJECTIVES The objective of the study was to evaluate the histological changes promoted by triple combination cream, with or without complementary treatment with microneedling and oral tranexamic acid, in the treatment of melasma. METHODS A factorial, randomised, controlled and evaluator-blinded clinical trial was performed involving 64 women with facial melasma, divided in four groups, who underwent 60 days of treatment with triple combination cream alone (control group) or combined with two monthly microneedling sessions (microneedling group), TA 250 mg twice daily (tranexamic acid group), or both tranexamic acid group and microneedling group. The participants underwent biopsy of the area with melasma at inclusion (D1) and D60. The primary outcomes were the variation (D1 × D60) between the variables: Thickness of the epidermis and stratum corneum, stratum corneum compaction and solar elastosis; melanin density in the epidermis and upper dermis; proportion between the extension of the nonintact and intact basement membrane zone; mast cell count in the upper dermis; melanocyte count in the basal layer, pendulum melanocyte count and melanocyte area; immunostaining density of vascular endothelial growth factor; stem cell factor and keratinocyte growth factor. RESULTS One participant in the TG discontinued tranexamic acid due persistent headache; and herpes simplex occurred in three patients after microneedling. The groups showed a 24% (CI95%: 17-35%; P < 0.01) reduction in epidermal melanin density. There was no change in dermal melanin density or the area of melanocytes after treatment. There was an overall 25% (CI95%: 7-42%; P < 0.01) reduction in the number of pendulum melanocytes, especially in the microneedling and tranexamic acid group, that presented a 41% (CI95%: 7-73%; P < 0.01) reduction. The extension of the nonintact basal membrane relative to the intact basal membrane decreased after treatment, especially in microneedling group and microneedling and tranexamic acid group. There was an increase of 13% (CI95%: 5-21%; P = 0.02) in epidermal thickness and 6% (CI95%: 0-22%; P = 0.04) thinning of the stratum corneum in the groups. All groups showed stratum corneum compaction. Solar elastosis improved only in the microneedling group and microneedling and tranexamic acid group. Vascular endothelial growth factor immunostaining increased 14% (CI95%: 4-24%; P = 0.03) in the groups; and stem cell factor increased only in microneedling group. There was no change in the number of mast cells, CD34 and keratinocyte growth factor immunostaining. LIMITATIONS The site of biopsy may not represent all of the facial melasma and the immunohistochemical sensitivity of the cytokines does not have a stoichiometric relationship with proteins. CONCLUSION A greater thickness of the epidermis is associated with melasma bleaching. Dermal melanin seems to have no impact on melasma prognosis. Damage to the skin barrier and stimulus of angiogenesis should be avoided in the treatment of melasma. Microneedling complements the topical treatment of melasma by improving patterns of skin photoaging. Oral tranexamic acid complements the topical treatment of melasma by inhibiting the stem cell factor.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Hélio Amante Miot
- Departamento de Dermatologia e Radioterapia, Botucatu, São Paulo, Brazil
| | | |
Collapse
|
10
|
Saade DS, Maymone MBC, De La Garza H, Secemsky EA, Kennedy KF, Vashi NA. Trends in Use of Prescription Skin Lightening Creams. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:5650. [PMID: 34070485 PMCID: PMC8197474 DOI: 10.3390/ijerph18115650] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/17/2021] [Accepted: 05/24/2021] [Indexed: 12/15/2022]
Abstract
The desire for an even skin tone pervades all cultures and regions of the world. Uniform skin color is considered a sign of beauty and youth. Pigmentation abnormalities can arise idiopathically with genetic predetermination, with injury and environmental exposures, and with advancing age, and can, therefore, be distressing to patients, leading them to seek a variety of treatments with professional assistance. In this short report, we describe the trends in the use of prescription lightening creams, particularly in patients with darker skin types residing in the US. Amongst 404 participants, skin hyperpigmentation had a moderate effect on patients' quality of life, and the most common diagnosis associated with the use of a prescription product was melasma (60.8%). The most common agent prescribed was hydroquinone (62.9%), followed by triple combination cream (31.4%). It is the dermatologist's duty to gauge the effect of the pigmentation disease on patients' life in order to counsel, tailor, and decide on the most appropriate treatment option.
Collapse
Affiliation(s)
- Dana S. Saade
- Department of Dermatology, Boston University School of Medicine, Boston, MA 02118, USA; (D.S.S.); (M.B.C.M.); (H.D.L.G.)
| | - Mayra B. C. Maymone
- Department of Dermatology, Boston University School of Medicine, Boston, MA 02118, USA; (D.S.S.); (M.B.C.M.); (H.D.L.G.)
| | - Henriette De La Garza
- Department of Dermatology, Boston University School of Medicine, Boston, MA 02118, USA; (D.S.S.); (M.B.C.M.); (H.D.L.G.)
| | - Eric A. Secemsky
- Department of Medicine, Division of Cardiology, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA;
| | - Kevin F. Kennedy
- Saint-Luke’s Mid America Heart Institute and University of Missouri-Kansas City School of Medicine, Kansas City, MO 64111, USA;
| | - Neelam A. Vashi
- Department of Dermatology, Boston University School of Medicine, Boston, MA 02118, USA; (D.S.S.); (M.B.C.M.); (H.D.L.G.)
| |
Collapse
|
11
|
Ramezani M, Masnadjam M, Azizi A, Zavattaro E, Khazaei S, Sadeghi M. Evaluation of expression of c-Kit marker (CD117) in patients with squamous cell carcinoma (SCC) and basal cell carcinoma (BCC) of the skin. AIMS MOLECULAR SCIENCE 2021. [DOI: 10.3934/molsci.2021004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
|