1
|
Sun W, Ma S, Meng D, Wang C, Zhang J. Advances in research on the intestinal microbiota in the mechanism and prevention of colorectal cancer (Review). Mol Med Rep 2025; 31:133. [PMID: 40116116 PMCID: PMC11948985 DOI: 10.3892/mmr.2025.13498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 02/19/2025] [Indexed: 03/23/2025] Open
Abstract
The intestinal microbiota represents a diverse population that serves a key role in colorectal cancer (CRC) and its treatment outcomes. Advancements in sequencing have revealed notable shifts in microbial composition and diversity among individuals with CRC. Concurrently, animal models have elucidated the involvement of specific microbes such as Lactobacillus fragilis, Escherichia coli and Fusobacterium nucleatum in the progression of CRC. The present review aimed to highlight contributions of intestinal microbiota to the pathogenesis of CRC, the effects of traditional treatments on intestinal microbiota and the potential for microbiota modulation as a therapeutic strategy for CRC.
Collapse
Affiliation(s)
- Weitong Sun
- College of Pharmacy, Jiamusi University, Jiamusi, Heilongjiang 154000, P.R. China
| | - Shize Ma
- College of Pharmacy, Jiamusi University, Jiamusi, Heilongjiang 154000, P.R. China
| | - Dongdong Meng
- Department of Medical Services, Xuzhou Morning Star Women's and Children's Hospital, Xuzhou, Jiangsu 221000, P.R. China
| | - Chaoxing Wang
- College of Pharmacy, Jiamusi University, Jiamusi, Heilongjiang 154000, P.R. China
| | - Jinbo Zhang
- College of Pharmacy, Jiamusi University, Jiamusi, Heilongjiang 154000, P.R. China
| |
Collapse
|
2
|
Binienda A, Fichna J. Current understanding of free fatty acids and their receptors in colorectal cancer treatment. Nutr Res 2024; 127:133-143. [PMID: 38943731 DOI: 10.1016/j.nutres.2024.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/29/2024] [Accepted: 05/29/2024] [Indexed: 07/01/2024]
Abstract
Colorectal cancer (CRC) is one of the leading causes of cancer-related death. Currently, dietary factors are being emphasized in the pathogenesis of CRC. There is strong evidence that fatty acids (FAs) and free FA receptors (FFARs) are involved in CRC. This comprehensive review discusses the role of FAs and their receptors in CRC pathophysiology, development, and treatment. In particular, butyrate and n-3 polyunsaturated fatty acids have been found to exert anticancer properties by, among others, inhibiting proliferation and metastasis and inducing apoptosis in tumor cells. Consequently, they are used in conjunction with conventional therapies. Furthermore, FFAR gene expression is down-regulated in CRC, suggesting their suppressive character. Recent studies showed that the FFAR4 agonist, GW9508, can inhibit tumor growth. In conclusion, natural as well as synthetic FFAR ligands are considered promising candidates for CRC therapy.
Collapse
Affiliation(s)
- Agata Binienda
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| | - Jakub Fichna
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Lodz, Poland.
| |
Collapse
|
3
|
Asghar A, Chohan TA, Khurshid U, Saleem H, Mustafa MW, Khursheed A, Alafnan A, Batul R, Bin Break MK, Almansour K, Anwar S. A systematic review on understanding the mechanistic pathways and clinical aspects of natural CDK inhibitors on cancer progression.: Unlocking cellular and biochemical mechanisms. Chem Biol Interact 2024; 393:110940. [PMID: 38467339 DOI: 10.1016/j.cbi.2024.110940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/03/2024] [Accepted: 03/04/2024] [Indexed: 03/13/2024]
Abstract
Cell division, differentiation, and controlled cell death are all regulated by phosphorylation, a key biological function. This mechanism is controlled by a variety of enzymes, with cyclin-dependent kinases (CDKs) being particularly important in phosphorylating proteins at serine and threonine sites. CDKs, which contain 20 unique components, serve an important role in regulating vital physiological functions such as cell cycle progression and gene transcription. Methodologically, an extensive literature search was performed using reputable databases such as PubMed, Google Scholar, Scopus, and Web of Science. Keywords encompassed "cyclin kinase," "cyclin dependent kinase inhibitors," "CDK inhibitors," "natural products," and "cancer therapy." The inclusion criteria, focused on relevance, publication date, and language, ensured a thorough representation of the most recent research in the field, encompassing articles published from January 2015 to September 2023. Categorization of CDKs into those regulating transcription and those orchestrating cell cycle phases provides a comprehensive understanding of their diverse functions. Ongoing clinical trials featuring CDK inhibitors, notably CDK7 and CDK4/6 inhibitors, illuminate their promising potential in various cancer treatments. This review undertakes a thorough investigation of CDK inhibitors derived from natural (marine, terrestrial, and peptide) sources. The aim of this study is to provide a comprehensive comprehension of the chemical classifications, origins, target CDKs, associated cancer types, and therapeutic applications.
Collapse
Affiliation(s)
- Andleeb Asghar
- Institute of Pharmaceutical Sciences (IPS), University of Veterinary and Animal Sciences (UVAS), Lahore, Pakistan
| | - Tahir Ali Chohan
- Institute of Pharmaceutical Sciences (IPS), University of Veterinary and Animal Sciences (UVAS), Lahore, Pakistan.
| | - Umair Khurshid
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, The Islamia University of Bahawalpur, 63100 Bahawalpur, Pakistan
| | - Hammad Saleem
- Institute of Pharmaceutical Sciences (IPS), University of Veterinary and Animal Sciences (UVAS), Lahore, Pakistan.
| | - Mian Waqar Mustafa
- Department of Pharmacy, Forman Christian College University, Lahore, Pakistan
| | - Anjum Khursheed
- Department of Pharmacy, Grand Asian University, Sialkot, Pakistan
| | - Ahmed Alafnan
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Ha'il, Saudi Arabia
| | - Rahila Batul
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Ha'il, Ha'il, Saudi Arabia
| | - Mohammed Khaled Bin Break
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Ha'il, Ha'il, Saudi Arabia
| | - Khaled Almansour
- Department of Pharmaceutics, College of Pharmacy, University of Ha'il, Ha'il, Saudi Arabia
| | - Sirajudheen Anwar
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Ha'il, Saudi Arabia
| |
Collapse
|
4
|
Elango A, Nesam VD, Sukumar P, Lawrence I, Radhakrishnan A. Postbiotic butyrate: role and its effects for being a potential drug and biomarker to pancreatic cancer. Arch Microbiol 2024; 206:156. [PMID: 38480544 DOI: 10.1007/s00203-024-03914-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/17/2024] [Accepted: 02/26/2024] [Indexed: 04/16/2024]
Abstract
Postbiotics are produced by microbes and have recently gained importance in the field of oncology due to their beneficial effects to the host, effectiveness against cancer cells, and their ability to suppress inflammation. In particular, butyrate dominates over all other postbiotics both in quantity and anticancer properties. Pancreatic cancer (PC), being one of the most malignant and lethal cancers, reported a decreased 5-year survival rate in less than 10% of the patients. PC causes an increased mortality rate due to its inability to be detected at an early stage but still a promising strategy for its diagnosis has not been achieved yet. It is necessary to diagnose Pancreatic cancer before the metastatic progression stage. The available blood biomarkers lack accurate and proficient diagnostic results. Postbiotic butyrate is produced by gut microbiota such as Rhuminococcus and Faecalibacterium it is involved in cell signalling pathways, autophagy, and cell cycle regulation, and reduction in butyrate concentration is associated with the occurrence of pancreatic cancer. The postbiotic butyrate is a potential biomarker that could detect PC at an early stage, before the metastatic progression stage. Thus, this review focused on the gut microbiota butyrate's role in pancreatic cancer and the immuno-suppressive environment, its effects on histone deacetylase and other immune cells, microbes in major butyrate synthesis pathways, current biomarkers in use for Pancreatic Cancer.
Collapse
Affiliation(s)
- Abinaya Elango
- Department of Pharmacology, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, Chengalpattu, Tamil Nadu, 603103, India
| | - Vineeta Debbie Nesam
- Department of Pharmacology, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, Chengalpattu, Tamil Nadu, 603103, India
| | - Padmaja Sukumar
- Department of Pharmacology, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, Chengalpattu, Tamil Nadu, 603103, India
| | - Infancia Lawrence
- Priyadharshani Research and Development, Kelambakkam, Chengalpattu, Tamil Nadu, 603103, India
| | - Arunkumar Radhakrishnan
- Department of Pharmacology, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, Chengalpattu, Tamil Nadu, 603103, India.
| |
Collapse
|
5
|
de Castilhos J, Tillmanns K, Blessing J, Laraño A, Borisov V, Stein-Thoeringer CK. Microbiome and pancreatic cancer: time to think about chemotherapy. Gut Microbes 2024; 16:2374596. [PMID: 39024520 PMCID: PMC11259062 DOI: 10.1080/19490976.2024.2374596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 06/26/2024] [Indexed: 07/20/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive cancer characterized by late diagnosis, rapid progression, and a high mortality rate. Its complex biology, characterized by a dense, stromal tumor environment with an immunosuppressive milieu, contributes to resistance against standard treatments like chemotherapy and radiation. This comprehensive review explores the dynamic role of the microbiome in modulating chemotherapy efficacy and outcomes in PDAC. It delves into the microbiome's impact on drug metabolism and resistance, and the interaction between microbial elements, drugs, and human biology. We also highlight the significance of specific bacterial species and microbial enzymes in influencing drug action and the immune response in the tumor microenvironment. Cutting-edge methodologies, including artificial intelligence, low-biomass microbiome analysis and patient-derived organoid models, are discussed, offering insights into the nuanced interactions between microbes and cancer cells. The potential of microbiome-based interventions as adjuncts to conventional PDAC treatments are discussed, paving the way for personalized therapy approaches. This review synthesizes recent research to provide an in-depth understanding of how the microbiome affects chemotherapy efficacy. It focuses on elucidating key mechanisms and identifying existing knowledge gaps. Addressing these gaps is crucial for enhancing personalized medicine and refining cancer treatment strategies, ultimately improving patient outcomes.
Collapse
Affiliation(s)
- Juliana de Castilhos
- Translational Microbiome Research, Internal Medicine I and M3 Research Center, University Hospital Tuebingen, Tübingen, Germany
- Cluster of Excellence “Controlling Microbes to Fight Infections” (CMFI), University of Tuebingen, Tübingen, Germany
| | - Katharina Tillmanns
- Translational Microbiome Research, Internal Medicine I and M3 Research Center, University Hospital Tuebingen, Tübingen, Germany
- Cluster of Excellence “Controlling Microbes to Fight Infections” (CMFI), University of Tuebingen, Tübingen, Germany
| | - Jana Blessing
- Translational Microbiome Research, Internal Medicine I and M3 Research Center, University Hospital Tuebingen, Tübingen, Germany
- Cluster of Excellence “Controlling Microbes to Fight Infections” (CMFI), University of Tuebingen, Tübingen, Germany
| | - Arnelyn Laraño
- Translational Microbiome Research, Internal Medicine I and M3 Research Center, University Hospital Tuebingen, Tübingen, Germany
- Cluster of Excellence “Controlling Microbes to Fight Infections” (CMFI), University of Tuebingen, Tübingen, Germany
| | - Vadim Borisov
- Translational Microbiome Research, Internal Medicine I and M3 Research Center, University Hospital Tuebingen, Tübingen, Germany
- Cluster of Excellence “Controlling Microbes to Fight Infections” (CMFI), University of Tuebingen, Tübingen, Germany
| | - Christoph K. Stein-Thoeringer
- Translational Microbiome Research, Internal Medicine I and M3 Research Center, University Hospital Tuebingen, Tübingen, Germany
- Cluster of Excellence “Controlling Microbes to Fight Infections” (CMFI), University of Tuebingen, Tübingen, Germany
| |
Collapse
|
6
|
Chen Y, Wang X, Ye Y, Ren Q. Gut microbiota in cancer: insights on microbial metabolites and therapeutic strategies. Med Oncol 2023; 41:25. [PMID: 38129370 DOI: 10.1007/s12032-023-02249-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 11/11/2023] [Indexed: 12/23/2023]
Abstract
In recent years, the role of gut microbiota in cancer treatment has attracted substantial attention. It is now well established that gut microbiota and its metabolites significantly contribute to the incidence, treatment, and prognosis of various cancers. This review provides a comprehensive review on the pivotal role of gut microbiota and their metabolites in cancer initiation and progression. Furthermore, it evaluates the impact of gut microbiota on the efficacy and associated side effects of anticancer therapies, including radiotherapy, chemotherapy, and immunotherapy, thus emphasizing the clinical importance of gut microbiota reconstitution in cancer treatment.
Collapse
Affiliation(s)
- Yalan Chen
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, 730000, Gansu Province, China
- Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou, 730000, Gansu Province, China
| | - Xibin Wang
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, 730000, Gansu Province, China
- Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou, 730000, Gansu Province, China
| | - Yuwei Ye
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, 730000, Gansu Province, China
- Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou, 730000, Gansu Province, China
- Gansu Province Clinical Research Center for Digestive Diseases, Lanzhou University, Lanzhou, 730000, Gansu Province, China
| | - Qian Ren
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, 730000, Gansu Province, China.
- Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou, 730000, Gansu Province, China.
- Gansu Province Clinical Research Center for Digestive Diseases, Lanzhou University, Lanzhou, 730000, Gansu Province, China.
| |
Collapse
|
7
|
Dong Y, Zhang K, Wei J, Ding Y, Wang X, Hou H, Wu J, Liu T, Wang B, Cao H. Gut microbiota-derived short-chain fatty acids regulate gastrointestinal tumor immunity: a novel therapeutic strategy? Front Immunol 2023; 14:1158200. [PMID: 37122756 PMCID: PMC10140337 DOI: 10.3389/fimmu.2023.1158200] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 03/17/2023] [Indexed: 05/02/2023] Open
Abstract
Tumor immune microenvironment (TIME), a tumor-derived immune component, is proven to be closely related to the development, metastasis, and recurrence of tumors. Gut microbiota and its fermented-metabolites short-chain fatty acids (SCFAs) play a critical role in maintaining the immune homeostasis of gastrointestinal tumors. Consisting mainly of acetate, propionate, and butyrate, SCFAs can interact with G protein-coupled receptors 43 of T helper 1 cell or restrain histone deacetylases (HDACs) of cytotoxic T lymphocytes to exert immunotherapy effects. Studies have shed light on SCFAs can mediate the differentiation and function of regulatory T cells, as well as cytokine production in TIME. Additionally, SCFAs can alter epigenetic modification of CD8+ T cells by inhibiting HDACs to participate in the immune response process. In gastrointestinal tumors, the abundance of SCFAs and their producing bacteria is significantly reduced. Direct supplementation of dietary fiber and probiotics, or fecal microbiota transplantation to change the structure of gut microbiota can both increase the level of SCFAs and inhibit tumor development. The mechanism by which SCFAs modulate the progression of gastrointestinal tumors has been elucidated in this review, aiming to provide prospects for the development of novel immunotherapeutic strategies.
Collapse
|
8
|
Kaźmierczak-Siedlecka K, Marano L, Merola E, Roviello F, Połom K. Sodium butyrate in both prevention and supportive treatment of colorectal cancer. Front Cell Infect Microbiol 2022; 12:1023806. [PMID: 36389140 PMCID: PMC9643746 DOI: 10.3389/fcimb.2022.1023806] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 10/05/2022] [Indexed: 07/21/2023] Open
Abstract
Accumulating evidence suggests that selected microbiota-derived metabolites play a significant role in both tumor prevention and supportive treatment of cancer. Short-chain fatty acids (SCFAs), i.e., mainly acetate, proprionate, and butyrate, are one of them. Nowadays, it is known that butyrate is a key microbial metabolite. Therefore, in the current review, we focused on butyrate and sodium butyrate (NaB) in the context of colorectal cancer. Notably, butyrate is characterized by a wide range of beneficial properties/activities. Among others, it influences the function of the immune system, maintains intestinal barrier integrity, positively affects the efficiency of anti-cancer treatment, and may reduce the risk of mucositis induced by chemotherapy. Taking into consideration these facts, we analyzed NaB (which is a salt of butyric acid) and its impact on gut microbiota as well as anti-tumor activity by describing molecular mechanisms. Overall, NaB is available as, for instance, food with special medical purposes (depending on the country's regulation), and its administration seems to be a promising option for colorectal cancer patients.
Collapse
Affiliation(s)
| | - Luigi Marano
- Department of Surgical Oncology, University of Siena, Siena, Italy
| | - Elvira Merola
- Department of Surgical Oncology, University of Siena, Siena, Italy
| | - Franco Roviello
- Department of Surgical Oncology, University of Siena, Siena, Italy
| | - Karol Połom
- Department of Surgical Oncology, Medical University of Gdansk, Gdansk, Poland
| |
Collapse
|