1
|
Civelek E, Karaman EF, Özden S, Uydeş Doğan BS, Kaleli Durman D. Effect of Pioglitazone on Endoplasmic Reticulum Stress and Autophagy Response in the Perivascular Adipose Tissue of Type 2 Diabetic Rats. PPAR Res 2025; 2025:9645836. [PMID: 40160239 PMCID: PMC11952917 DOI: 10.1155/ppar/9645836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 02/26/2025] [Indexed: 04/02/2025] Open
Abstract
Perivascular adipose tissue (PVAT) plays a crucial role in vascular homeostasis. Recent studies in adipose tissue demonstrated that endoplasmic reticulum (ER) stress and autophagy are activated in Type 2 diabetes mellitus (T2DM), while the precise role of ER stress and autophagy in PVAT is unclear. We aimed to investigate the possible influence of pioglitazone on ER stress and autophagy response in PVAT of T2DM rats. T2DM was induced by high-fat diet/low-dose streptozotocin (HFD/STZ) in male Wistar rats (8-10 weeks), and pioglitazone (20 mg/kg/p.o.) was administered for 6 weeks. Changes in biochemical parameters (nonfasting glucose, total cholesterol, and triglyceride) were verified in blood samples. ER stress-related (ATF4, CHOP, and GRP78) and autophagy-related (MAP1LC3B/LC3-II, BECN-1/Beclin, and SQSTM1/p62) gene expression levels in thoracic PVAT were measured by RT-PCR. Pioglitazone treatment reversed the increased nonfasting glucose and triglyceride levels in T2DM. ER stress and autophagy responses were significantly increased in PVAT of T2DM rats. Pioglitazone increased ER stress-related GRP78 gene expression while decreasing autophagy-related MAP1LC3B and BECN-1 gene expression levels in T2DM. Interestingly, SQSTM1 gene expression levels were increased by pioglitazone in the control and T2DM groups. The current study provides original findings regarding the effects of pioglitazone on ER stress and autophagy response in PVAT of HFD/STZ-induced T2DM rats. Pioglitazone treatment in T2DM increased GRP78 and SQSTM1 gene expressions, which both play a crucial role in adipocyte differentiation and adipogenesis, besides ER stress and autophagy. Further studies clarifying the adipogenic effect of pioglitazone on PVAT are needed for a better understanding of its effect on the vascular system.
Collapse
Affiliation(s)
- Erkan Civelek
- Department of Pharmacology, Faculty of Pharmacy, Istanbul University, Istanbul, Türkiye
- Graduate School of Health Sciences, Istanbul University, Istanbul, Türkiye
| | - Ecem Fatma Karaman
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Biruni University, Istanbul, Türkiye
| | - Sibel Özden
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Istanbul University, Istanbul, Türkiye
| | - B. Sönmez Uydeş Doğan
- Department of Pharmacology, Faculty of Pharmacy, Istanbul University, Istanbul, Türkiye
| | - Deniz Kaleli Durman
- Department of Pharmacology, Faculty of Pharmacy, Istanbul University, Istanbul, Türkiye
| |
Collapse
|
2
|
Zou C, Zhou Z, Tu Y, Wang W, Chen T, Hu H. Pioglitazone Attenuates Reoxygenation Injury in Renal Tubular NRK-52E Cells Exposed to High Glucose via Inhibiting Oxidative Stress and Endoplasmic Reticulum Stress. Front Pharmacol 2020; 10:1607. [PMID: 32038263 PMCID: PMC6989595 DOI: 10.3389/fphar.2019.01607] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 12/10/2019] [Indexed: 01/15/2023] Open
Abstract
Renal ischemia-reperfusion injury is a major cause of acute kidney injury. In the present study, we investigated the effects of pioglitazone on hypoxia/reoxygenation (H/R) injury in rat renal tubular epithelial cells (RTECs) under normal- (NG) or high-glucose (HG) culture conditions via evaluating oxidative stress and endoplasmic reticulum stress (ERS). The RTECs (NRK-52E cells) were divided into six groups as follows: NG group, HG group, NG + H/R group, HG + H/R group, NG + Pio + H/R group, and HG + Pio + H/R group, among which cells in H/R groups were subjected to 4 h of hypoxia followed by 12 h of reoxygenation. After that, the cells were evaluated using the Cell Counting Kit-8 assay for the determination of their viability and flow cytometry assay for the detection of apoptosis. The levels of superoxide dismutase (SOD), glutathione reductase (GSH), catalase (CAT), and malondialdehyde (MDA) were determined via colorimetric chemical assays. In addition, the expression of ERS-associated proteins, i.e. ATF4, ATF6, GRP78, and CHOP, was determined via western blotting. A HG environment could reduce the viability and increase the apoptotic rate of NRK-52E cells with increased MDA levels and decreased SOD, CAT, and GSH levels, and upregulate the expression of ERS-associated proteins, i.e. ATF4, ATF6, and GRP78. H/R injury could further aggravate changes in the above indicators, but pioglitazone could significantly reverse such changes and alleviate cell injury. Thus, Pioglitazone exhibits a cytoprotective effect on RTECs against H/R injury under NG or HG culture conditions by inhibiting oxidative stress and ERS.
Collapse
Affiliation(s)
- Cong Zou
- Department of Endocrinology, the Fourth Affiliated Hospital of Nanchang University, Nanchang, China
| | - Zhiyu Zhou
- Department of Pathology, College of Traditional Chinese Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Yunming Tu
- Department of Endocrinology, the Fourth Affiliated Hospital of Nanchang University, Nanchang, China
| | - Weichao Wang
- Department of Urology, the Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Tongchang Chen
- Department of Urology, the Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Honglin Hu
- Department of Urology, the Second Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
3
|
Elshazly S, Soliman E. PPAR gamma agonist, pioglitazone, rescues liver damage induced by renal ischemia/reperfusion injury. Toxicol Appl Pharmacol 2019; 362:86-94. [PMID: 30393147 DOI: 10.1016/j.taap.2018.10.022] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Revised: 10/16/2018] [Accepted: 10/24/2018] [Indexed: 01/09/2023]
Abstract
Remote organ damage is the major cause of death in patients with acute kidney injury (AKI) due to renal ischemia reperfusion (IR). Liver is one of the vital organs which are profoundly affected by AKI. The present study aims to investigate the role of peroxisome proliferator activator receptor gamma (PPARγ) in liver damage induced by IR injury in rats. Renal IR was induced by right nephrectomy, occlusion of left renal pedicle for 45 min to induce ischemia, and then reperfusion for 6 or 24 h. The PPARγ agonist, pioglitazone, was given orally for 7 days before renal IR procedure. Animals receiving pioglitazone showed improvement in renal and hepatic functions when compared to IR groups. Renal IR increased renal, hepatic and serum levels of tumor necrosis factor-α (TNF-α) and induced apoptotic cell death in liver. These effects were diminished with pioglitazone. In addition, pioglitazone reduced renal IR-induced oxidative stress in liver. Pioglitazone reduced malondialdehyde (MDA) content and NADPH oxidase mRNA expression and induced further increase in nuclear factor erythroid 2-related factor 2 (Nrf2) expression when compared to IR groups. Furthermore, pioglitazone increased the expression of PPARγ target genes such as renal and hepatic PPARγ1 (Pparg1), hepatic hemoxygenase-1 (Hmox1), and hepatic thioredoxin (TRx). Histological profiles for kidney and liver were also ameliorated with pioglitazone. Hence, PPARγ is a potential target to protect liver in patients with renal IR injury.
Collapse
Affiliation(s)
- Shimaa Elshazly
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Eman Soliman
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt.
| |
Collapse
|
4
|
Cui J, Zou JH, Liu L, Shi Y, Qiao WL, Yan CD. Effect of H 2S on gastric ischemia-reperfusion injury in rats. Shijie Huaren Xiaohua Zazhi 2018; 26:1448-1454. [DOI: 10.11569/wcjd.v26.i24.1448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM To assess the effect of H2S on oxidative stress in gastric mucosal injury induced by gastric ischemia-reperfusion (GI-R) in rats.
METHODS GI-R was induced in rats by clamping the celiac artery for 30 min followed by 1 h reperfusion. Based on this, the rats were intraperitoneally pre-injected with different concentrations of NaHS for 14 d. Image J software and HE staining were employed to analyze the gastric mucosal damage area and deep damage, respectively. Oxidative stress indexes of the gastric mucosa were detected using commercial kits and Western blot.
RESULTS The effects of different concentrations of NaHS on gastric mucosal injury induced by GI-R were different. Pretreatment with 10 μmol/L NaHS significantly reduced the area and depth of gastric mucosal injury induced by GI-R, with no effect on plasma H2S. Compared with the GI-R group, pretreatment with NaHS significantly decreased the levels of malondialdehyde and H2O2 as well as the expression of XOD, gp91phox, and p67phox, but increased the level of reduced glutathione and the activity of SOD.
CONCLUSION Exogenous H2S can protect the gastric mucosa by reducing oxidative stress induced by GI-R.
Collapse
Affiliation(s)
- Jie Cui
- Department of Physiology, Xuzhou Medical University, Xuzhou 221004, Jiangsu Province, China,National Demonstration Center for Experiment Basic Medical Science Education (Xuzhou Medical University), Xuzhou 221004, Jiangsu Province, China
| | - Ji-He Zou
- Department of Physiology, Xuzhou Medical University, Xuzhou 221004, Jiangsu Province, China,Northeast International Hospital, Shenyang 110000, Liaoning Province, China
| | - Lei Liu
- Department of Physiology, Xuzhou Medical University, Xuzhou 221004, Jiangsu Province, China
| | - Yue Shi
- Department of Physiology, Xuzhou Medical University, Xuzhou 221004, Jiangsu Province, China,National Demonstration Center for Experiment Basic Medical Science Education (Xuzhou Medical University), Xuzhou 221004, Jiangsu Province, China
| | - Wei-Li Qiao
- Department of Physiology, Xuzhou Medical University, Xuzhou 221004, Jiangsu Province, China,National Demonstration Center for Experiment Basic Medical Science Education (Xuzhou Medical University), Xuzhou 221004, Jiangsu Province, China
| | - Chang-Dong Yan
- Department of Physiology, Xuzhou Medical University, Xuzhou 221004, Jiangsu Province, China,National Demonstration Center for Experiment Basic Medical Science Education (Xuzhou Medical University), Xuzhou 221004, Jiangsu Province, China
| |
Collapse
|
5
|
Spassov SG, Faller S, Hummel M, Helo K, Ihle A, Ryter SW, Strosing KM, Hoetzel A. Hydrogen Sulfide Confers Lung Protection During Mechanical Ventilation via Cyclooxygenase 2, 15-deoxy Δ12,14-Prostaglandin J2, and Peroxisome Proliferator-Activated Receptor Gamma. Crit Care Med 2017; 45:e849-e857. [PMID: 28445238 DOI: 10.1097/ccm.0000000000002440] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
OBJECTIVES Hydrogen sulfide reduces ventilator-induced lung injury in mice. Here, we have examined the underlying mechanisms of hydrogen sulfide-mediated lung protection and determined the involvement of cyclooxygenase 2, 15-deoxy Δ-prostaglandin J2, and peroxisome proliferator-activated receptor gamma in this response. DESIGN Randomized, experimental study. SETTING University medical center research laboratory. SUBJECTS C57BL/6 mice and in vitro cell catheters. INTERVENTIONS The effects of hydrogen sulfide were analyzed in a mouse ventilator-induced lung injury model in vivo as well as in a cell stretch model in vitro in the absence or presence of hydrogen sulfide. The physiologic relevance of our findings was confirmed using pharmacologic inhibitors of cyclooxygenase 2 and peroxisome proliferator-activated receptor gamma. MEASUREMENTS AND MAIN RESULTS Mechanical ventilation caused significant lung inflammation and injury that was prevented in the presence of hydrogen sulfide. Hydrogen sulfide-mediated protection was associated with induction of cyclooxygenase 2 and increases of its product 15-deoxy Δ-prostaglandin J2 as well as cyclooxygenase 2/15-deoxy Δ-prostaglandin J2-dependent activation of peroxisome proliferator-activated receptor gamma. Hydrogen sulfide-dependent effects were mainly observed in macrophages. Applied mechanical stretch to RAW 264.7 macrophages resulted in increased expression of interleukin receptor 1 messenger RNA and release of macrophage inflammatory protein-2. In contrast, incubation of stretched macrophages with sodium hydrosulfide prevented the inflammatory response dependent on peroxisome proliferator-activated receptor gamma activity. Finally, application of a specific peroxisome proliferator-activated receptor gamma inhibitor abolished hydrogen sulfide-mediated protection in ventilated animals. CONCLUSIONS One hydrogen sulfide-triggered mechanism in the protection against ventilator-induced lung injury involves cyclooxygenase 2/15-deoxy Δ-prostaglandin J2-dependent activation of peroxisome proliferator-activated receptor gamma and macrophage activity.
Collapse
Affiliation(s)
- Sashko G Spassov
- 1Department of Anaesthesiology and Critical Care Medicine, University Medical Center Freiburg, Freiburg, Germany.2Division of Pulmonary and Critical Care Medicine, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medical College, New York, NY
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Mohey V, Singh M, Puri N, Kaur T, Pathak D, Singh AP. Sildenafil obviates ischemia-reperfusion injury-induced acute kidney injury through peroxisome proliferator-activated receptor γ agonism in rats. J Surg Res 2015; 201:69-75. [PMID: 26850186 DOI: 10.1016/j.jss.2015.09.035] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Revised: 09/22/2015] [Accepted: 09/25/2015] [Indexed: 11/25/2022]
Abstract
BACKGROUND Sildenafil is a phosphodiesterase inhibitor used clinically for treating erectile dysfunction. Few studies suggest sildenafil to be a renoprotective agent. The present study investigated the involvement of peroxisome proliferator-activated receptor γ (PPAR-γ) in sildenafil-mediated protection against ischemia-reperfusion-induced acute kidney injury (AKI) in rats. MATERIALS AND METHODS The rats were subjected to ischemia-reperfusion injury (IRI) with 40 min of bilateral renal ischemia followed by reperfusion for 24 h. The renal damage was assessed by measuring creatinine clearance, blood urea nitrogen, plasma uric acid, electrolytes, and microproteinuria in rats. The thiobarbituric acid reactive substances, superoxide anion generation, and reduced glutathione levels were measured to assess oxidative stress in renal tissues. The hematoxylin-eosin staining was carried out to demonstrate histopathologic changes in renal tissues. Sildenafil (0.5 and 1.0 mg/kg, intraperitoneal) was administered 1 h before subjecting the rats to renal IRI. In a separate group, bisphenol A diglycidyl ether (30 mg/kg, intraperitoneal), a PPAR-γ receptor antagonist, was given before sildenafil administration followed by IRI. RESULTS The ischemia-reperfusion demonstrated marked AKI with significant changes in serum and urinary parameters, enhanced oxidative stress, and histopathologic changes in renal tissues. The administration of sildenafil demonstrated significant protection against ischemia-reperfusion-induced AKI. The prior treatment with bisphenol A diglycidyl ether abolished sildenafil-mediated renal protection, thereby confirming involvement of PPAR-γ agonism in the sildenafil-mediated renoprotective effect. CONCLUSIONS It is concluded that sildenafil protects against ischemia-reperfusion-induced AKI through PPAR-γ agonism in rats.
Collapse
Affiliation(s)
- Vinita Mohey
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, India
| | - Manjinder Singh
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, India
| | - Nikkita Puri
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, India
| | - Tajpreet Kaur
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, India; Department of Pharmacology, Khalsa College of Pharmacy, Amritsar, India
| | - Devendra Pathak
- Department of Veterinary Anatomy, Guru Angad Dev Veterinary and Animal Science University, Ludhiana, India
| | - Amrit Pal Singh
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, India.
| |
Collapse
|
7
|
Explicit role of peroxisome proliferator–activated receptor gamma in gallic acid–mediated protection against ischemia-reperfusion–induced acute kidney injury in rats. J Surg Res 2014; 187:631-9. [DOI: 10.1016/j.jss.2013.11.1088] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Revised: 11/05/2013] [Accepted: 11/15/2013] [Indexed: 01/21/2023]
|