1
|
Srivastava T, Tyagi D, Fatima S, Sathyan MTV, Raj R, Sharma A, Chaturvedi M, Sinha M, Shishodia SK, Kumar D, Sharma SK, Shankar J, Satish A, Priya S. A natural small molecule-mediated inhibition of alpha-synuclein aggregation leads to neuroprotection in Caenorhabditis elegans. J Neurochem 2024; 168:1640-1654. [PMID: 37429595 DOI: 10.1111/jnc.15907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 05/16/2023] [Accepted: 06/04/2023] [Indexed: 07/12/2023]
Abstract
Small molecules are being explored intensively for their applications as therapeutic molecules in the management of metabolic and neurological disorders. The natural small molecules can inhibit protein aggregation and underlying cellular pathogenesis of neurodegenerative diseases involving multi-factorial mechanisms of action. Certain natural small molecular inhibitors of pathogenic protein aggregation are highly efficient and have shown promising therapeutic potential. In the present study, Shikonin (SHK), a natural plant-based naphthoquinone has been investigated for its aggregation inhibition activity against α-synuclein (α-syn) and the neuroprotective potential in Caenorhabditis elegans (C. elegans). SHK significantly inhibited aggregation of α-syn at sub-stochiometric concentrations, delayed the linear lag phase and growth kinetics of seeded and unseeded α-syn aggregation. The binding of SHK to the C-terminus of α-syn maintained α-helical and disordered secondary structures with reduced beta-sheet content and complexity of aggregates. Further, in C. elegans transgenic PD models, SHK significantly reduced α-syn aggregation, improved locomotor activity and prevented dopaminergic (DA) neuronal degeneration, indicating the neuroprotective role of SHK. The present study highlights the potential of natural small molecules in the prevention of protein aggregation that may further be explored for their therapeutic efficacy in the management of protein aggregation and neurodegenerative diseases.
Collapse
Affiliation(s)
- Tulika Srivastava
- Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Divya Tyagi
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
- Ecotoxicology Laboratory, Environmental Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Lucknow, India
| | - Siraj Fatima
- Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Malur Thirumalesh Vishnu Sathyan
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
- Ecotoxicology Laboratory, Environmental Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Lucknow, India
| | - Ritu Raj
- Department of Advanced Spectroscopy and Imaging, Centre of Biomedical Research (CBMR), Lucknow, India
| | - Aniket Sharma
- Food, Drug and Chemical Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Lucknow, India
- Department of Animal Science, College of Agriculture and Natural Sciences, University of Wyoming, Laramie, Wyoming, USA
| | - Minal Chaturvedi
- Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Meetali Sinha
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
- Computational Toxicology Facility, Toxicoinformatics Research Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR) Vishvigyan Bhawan, Lucknow, India
| | - Sonia Kumari Shishodia
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Solan, India
- University Institute of Biotechnology (UIBT), Chandigarh University, Mohali, India
| | - Dinesh Kumar
- Department of Advanced Spectroscopy and Imaging, Centre of Biomedical Research (CBMR), Lucknow, India
| | - Sandeep K Sharma
- Food, Drug and Chemical Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Lucknow, India
| | - Jata Shankar
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Solan, India
| | - Aruna Satish
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
- Ecotoxicology Laboratory, Environmental Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Lucknow, India
| | - Smriti Priya
- Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
2
|
Correlation between Perturbation of Redox Homeostasis and Antibiofilm Capacity of Phytochemicals at Non-Lethal Concentrations. Antioxidants (Basel) 2022; 11:antiox11122451. [PMID: 36552659 PMCID: PMC9774353 DOI: 10.3390/antiox11122451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/05/2022] [Accepted: 12/08/2022] [Indexed: 12/15/2022] Open
Abstract
Biofilms are the multicellular lifestyle of microorganisms and are present on potentially every type of biotic or abiotic surface. Detrimental biofilms are generally targeted with antimicrobial compounds. Phytochemicals at sub-lethal concentrations seem to be an exciting alternative strategy to control biofilms, as they are less likely to impose selective pressure leading to resistance. This overview gathers the literature on individual phytocompounds rather than on extracts of which the use is difficult to reproduce. To the best of our knowledge, this is the first review to target only individual phytochemicals below inhibitory concentrations against biofilm formation. We explored whether there is an overall mechanism that can explain the effects of individual phytochemicals at sub-lethal concentrations. Interestingly, in all experiments reported here in which oxidative stress was investigated, a modest increase in intracellular reactive oxygen species was reported in treated cells compared to untreated specimens. At sub-lethal concentrations, polyphenolic substances likely act as pro-oxidants by disturbing the healthy redox cycle and causing an accumulation of reactive oxygen species.
Collapse
|
3
|
Chen C, Yu LT, Cheng BR, Xu JL, Cai Y, Jin JL, Feng RL, Xie L, Qu XY, Li D, Liu J, Li Y, Cui XY, Lu JJ, Zhou K, Lin Q, Wan J. Promising Therapeutic Candidate for Myocardial Ischemia/Reperfusion Injury: What Are the Possible Mechanisms and Roles of Phytochemicals? Front Cardiovasc Med 2022; 8:792592. [PMID: 35252368 PMCID: PMC8893235 DOI: 10.3389/fcvm.2021.792592] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 12/29/2021] [Indexed: 12/12/2022] Open
Abstract
Percutaneous coronary intervention (PCI) is one of the most effective reperfusion strategies for acute myocardial infarction (AMI) despite myocardial ischemia/reperfusion (I/R) injury, causing one of the causes of most cardiomyocyte injuries and deaths. The pathological processes of myocardial I/R injury include apoptosis, autophagy, and irreversible cell death caused by calcium overload, oxidative stress, and inflammation. Eventually, myocardial I/R injury causes a spike of further cardiomyocyte injury that contributes to final infarct size (IS) and bound with hospitalization of heart failure as well as all-cause mortality within the following 12 months. Therefore, the addition of adjuvant intervention to improve myocardial salvage and cardiac function calls for further investigation. Phytochemicals are non-nutritive bioactive secondary compounds abundantly found in Chinese herbal medicine. Great effort has been put into phytochemicals because they are often in line with the expectations to improve myocardial I/R injury without compromising the clinical efficacy or to even produce synergy. We summarized the previous efforts, briefly outlined the mechanism of myocardial I/R injury, and focused on exploring the cardioprotective effects and potential mechanisms of all phytochemical types that have been investigated under myocardial I/R injury. Phytochemicals deserve to be utilized as promising therapeutic candidates for further development and research on combating myocardial I/R injury. Nevertheless, more studies are needed to provide a better understanding of the mechanism of myocardial I/R injury treatment using phytochemicals and possible side effects associated with this approach.
Collapse
Affiliation(s)
- Cong Chen
- Department of Cardiology, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Lin-Tong Yu
- Department of Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Bai-Ru Cheng
- Department of Cardiology, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Jiang-Lin Xu
- Department of Cardiology, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Yun Cai
- Department of Cardiology, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Jia-Lin Jin
- Department of Cardiology, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Ru-Li Feng
- Department of Cardiology, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Long Xie
- Department of Cardiology, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Xin-Yan Qu
- Department of Cardiology, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Dong Li
- Department of Cardiology, Dongfang Hospital Beijing University of Chinese Medicine, Beijing, China
| | - Jing Liu
- Department of Cardiology, Dongfang Hospital Beijing University of Chinese Medicine, Beijing, China
| | - Yan Li
- Department of Cardiology, Dongfang Hospital Beijing University of Chinese Medicine, Beijing, China
| | - Xiao-Yun Cui
- Department of Cardiology, Dongfang Hospital Beijing University of Chinese Medicine, Beijing, China
| | - Jin-Jin Lu
- Department of Cardiology, Dongfang Hospital Beijing University of Chinese Medicine, Beijing, China
| | - Kun Zhou
- Department of Cardiology, Dongfang Hospital Beijing University of Chinese Medicine, Beijing, China
| | - Qian Lin
- Department of Cardiology, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
- *Correspondence: Qian Lin
| | - Jie Wan
- Department of Cardiology, Dongfang Hospital Beijing University of Chinese Medicine, Beijing, China
- Jie Wan
| |
Collapse
|
4
|
Venkatramani A, Mukherjee S, Kumari A, Panda D. Shikonin impedes phase separation and aggregation of tau and protects SH-SY5Y cells from the toxic effects of tau oligomers. Int J Biol Macromol 2022; 204:19-33. [PMID: 35120943 DOI: 10.1016/j.ijbiomac.2022.01.172] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 01/20/2022] [Accepted: 01/28/2022] [Indexed: 12/22/2022]
Abstract
Tauopathies such as Alzheimer's and Parkinson's diseases involve the abnormal deposition of tau aggregates in the brain and neuronal tissues. We report that a natural naphthoquinone, shikonin, impeded the oligomerization and fibrillization of tau. The compound strongly inhibited heparin, arachidonic acid, and RNA-induced tau aggregation. Atomic force microscopy, dynamic light scattering, SDS-PAGE, and dot blot assays revealed that shikonin diminished tau oligomerization and decreased the mean size of tau oligomers. Transmission electron microscopy and atomic force microscopy analysis further showed that shikonin could suppress tau fibrillization and shorten the tau filaments. Shikonin inhibited tau droplet formation. The compound significantly reduced the aggregation rate of a tryptophan mutant (Y310W-tau) of tau. In addition, shikonin disaggregated preformed tau filaments with a half-maximal disaggregation concentration (DC50) of 6.3 ± 0.4 μM. Pre-treatment of neuroblastoma cells (SH-SY5Y) with shikonin protected the cells from the toxicity induced by tau oligomers and increased their viability. The findings imply that shikonin inhibited several steps in the tau aggregation pathways, especially the early stages, such as liquid-liquid phase separation. Therefore, shikonin is an attractive candidate for developing a therapy against tauopathy.
Collapse
Affiliation(s)
- Anuradha Venkatramani
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Sandipan Mukherjee
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Anuradha Kumari
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Dulal Panda
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India; National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, SAS. Nagar, Mohali 160062, Punjab, India.
| |
Collapse
|
5
|
Chen SY, Gao Y, Sun JY, Meng XL, Yang D, Fan LH, Xiang L, Wang P. Traditional Chinese Medicine: Role in Reducing β-Amyloid, Apoptosis, Autophagy, Neuroinflammation, Oxidative Stress, and Mitochondrial Dysfunction of Alzheimer's Disease. Front Pharmacol 2020; 11:497. [PMID: 32390843 PMCID: PMC7188934 DOI: 10.3389/fphar.2020.00497] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 03/30/2020] [Indexed: 12/19/2022] Open
Abstract
Alzheimer's disease (AD) is a progressive age-related neurodegenerative disease characterized by memory loss and cognitive impairment. The major characteristics of AD are amyloid β plaques, apoptosis, autophagy dysfunction, neuroinflammation, oxidative stress, and mitochondrial dysfunction. These are mostly used as the significant indicators for selecting the effects of potential drugs. It is imperative to explain AD pathogenesis and realize productive treatments. Although the currently used chemical drugs for clinical applications of AD are effective in managing the symptoms, they are inadequate to achieve anticipated preventive or therapeutic outcomes. There are new strategies for treating AD. Traditional Chinese Medicine (TCM) has accumulated thousands of years of experience in treating dementia. Nowadays, numerous modern pharmacological studies have verified the efficacy of many bioactive ingredients isolated from TCM for AD treatment. In this review, representative TCM for the treatment of AD are discussed, and among these herbal medicines, the Lamiaceae family accounts for the highest proportion. It is concluded that monomers and extracts from TCM have potential therapeutic effect for AD treatment.
Collapse
Affiliation(s)
- Shi-Yu Chen
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yue Gao
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jia-Yi Sun
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xian-Li Meng
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Dong Yang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lin-Hong Fan
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Li Xiang
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ping Wang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
6
|
Shi X, Zhen L, Ding H, Chen J, Zhang S, Fu Y. Role of ATP-sensitive potassium channels and inflammatory response of basilar artery smooth muscle cells in subarachnoid hemorrhage of rabbit and immune-modulation by shikonin. Food Chem Toxicol 2019; 134:110804. [PMID: 31505234 DOI: 10.1016/j.fct.2019.110804] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 08/17/2019] [Accepted: 09/04/2019] [Indexed: 02/02/2023]
Abstract
OBJECTIVE To investigate the role of inflammatory response, oxidative damage and changes of ATP-sensitive potassium channels (sKATP) in basilar artery (BA) smooth muscle cells (SMCS) of rabbits in subarachnoid hemorrhage (SAH) model. METHODS Time course studies on inflammatory response by real-time PCR, oxidative process and function of isolated basilar artery after SAH in New Zealand White rabbits were performed. Basilar artery smooth muscle cells (BASMCs) in each group were obtained and whole-cell patch-clamp technique was applied to record cell membrane capacitance and KATP currents. The morphologies of basal arteries were analyzed. Protective effect of shikonin were also determine by same parameters. RESULTS Inflammatory cytokines levels were highest at 24h compare to 72h after SAH whereas the oxidative damage and cell death marker were at highest peak at 72h. Oxidative damage peak coincided with significant alterations in cell membrane capacitance, KATP currents and morphological changes in basilar arteries. Shikokin pretreatment attenuated early inflammatory response at 24h and associated oxidative damage at 72h. Finally, shikonin attenuated morphological changes in basilar arteries and dysfunction. CONCLUSION Currents of ATP-sensitive potassium channels in basilar smooth muscle cells decreased after SAH by putative oxidative modification from immediate inflammatory response and can be protected by shikonin pretreatment.
Collapse
Affiliation(s)
- Xianqing Shi
- Intensive Care Unit, Guizhou Provincial People's Hospital, Guiyang, Guizhou Province, 550002, China.
| | - Lirong Zhen
- Intensive Care Unit, Guizhou Provincial People's Hospital, Guiyang, Guizhou Province, 550002, China
| | - Hao Ding
- Intensive Care Unit, Guizhou Provincial Orthopedics Hospital, Guiyang, Guizhou Province, 550007, China
| | - Jing Chen
- Intensive Care Unit, Guizhou Provincial People's Hospital, Guiyang, Guizhou Province, 550002, China
| | - Songsong Zhang
- Intensive Care Unit, Guizhou Provincial People's Hospital, Guiyang, Guizhou Province, 550002, China
| | - Yongjian Fu
- Intensive Care Unit, Guizhou Provincial People's Hospital, Guiyang, Guizhou Province, 550002, China
| |
Collapse
|
7
|
Figat R, Zgadzaj A, Geschke S, Sieczka P, Pietrosiuk A, Sommer S, Skrzypczak A. Cytotoxicity and antigenotoxicity evaluation of acetylshikonin and shikonin. Drug Chem Toxicol 2018; 44:140-147. [PMID: 30574814 DOI: 10.1080/01480545.2018.1536710] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Shikonin (SH) is used as a red pigment for food coloring and cosmetics, and has cytotoxic activity towards cancer cells. However, due to strong toxicity SH has limited potential as an anticancer drug. Acetylshikonin (ASH) is one of the SH derivatives with promising anticancer potential. In present study, we attempted to evaluate and compare the cytotoxicity of SH and ASH towards a normal cell line (V79) and in addition to evaluate their antigenotoxic activity. The evaluation was made with the use of the set of cytotoxicity assays with V79 line and the micronucleus test in vitro performed using clinafloxacin (CLFX), ethyl methanesulfonate (EMS) as direct genotoxins and cyclophosphamide (CPA) as indirect genotoxin. For CPA and EMS the simultaneous protocol was used and for CLFX three different variants were performed: pretreatment, simultaneous, and post-treatment. A higher cytotoxic effect was observed for SH. The EC50 values obtained for SH were approximately twofold lower compared to that of ASH. Moreover, ASH exhibited an antigenotoxic potential against CPA-induced genotoxicity, whereas SH has no activity. However, ASH increased the EMS-induced genotoxicity, when SH exhibited no effect. Both compounds decreased the genotoxicity of CLFX in pretreatment and simultaneous protocol. Based on the results of the present study it can be concluded that ASH is less cytotoxic than SH to normal cells and has comparable antigenotoxic potential.
Collapse
Affiliation(s)
- Ramona Figat
- Department of Environmental Health Sciences, Medical University of Warsaw, Poland
| | - Anna Zgadzaj
- Department of Environmental Health Sciences, Medical University of Warsaw, Poland
| | - Sylwia Geschke
- Department of Environmental Health Sciences, Medical University of Warsaw, Poland
| | - Patrycja Sieczka
- Department of Environmental Health Sciences, Medical University of Warsaw, Poland
| | - Agnieszka Pietrosiuk
- Department of Pharmaceutical Biology and Medicinal Plant Biotechnology, Medical University of Warsaw, Poland
| | - Sylwester Sommer
- Centre for Radiobiology and Biological Dosimetry, Institute of Nuclear Chemistry and Technology, Warsaw, Poland
| | - Agata Skrzypczak
- Department of Environmental Health Sciences, Medical University of Warsaw, Poland
| |
Collapse
|
8
|
RNA-seq transcriptome analysis of breast cancer cell lines under shikonin treatment. Sci Rep 2018; 8:2672. [PMID: 29422643 PMCID: PMC5805692 DOI: 10.1038/s41598-018-21065-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Accepted: 01/29/2018] [Indexed: 12/25/2022] Open
Abstract
Shikonin is a naphthoquinone isolated from the dried root of Lithospermum erythrorhizon, an herb used in Chinese medicine. Although several studies have indicated that shikonin exhibits antitumor activity in breast cancer, the mechanism of action remains unclear. In the present study, we performed transcriptome analysis using RNA-seq and explored the mechanism of action of shikonin in regulating the growth of different types of breast cancer cells. The IC50 of shikonin on MCF-7, SKBR-3 and MDA-MB-231 cells were 10.3 μΜ, 15.0 μΜ, 15.0 μΜ respectively. Our results also demonstrated that shikonin arrests the progression of cell cycle and induces apoptosis in MDA-MB-231 cells. Using RNA-seq transcriptome analysis, we found 38 common genes that significantly express in different types of breast cancer cells under shikonin treatment. In particular, our results indicated that shikonin induces the expression of dual specificity phosphatase (DUSP)-1 and DUSP2 in both RNA and protein levels. In addition, shikonin also inhibits the phosphorylation of JNK and p38, the downstream signaling molecules of DUSP1 and DUSP2. Therefore, our results suggest that shikonin induces the expression of DUSP1 and DUSP2 which consequently switches off JNK and p38 MAPK pathways and causes cell cycle arrest and apoptosis in breast cancer cells.
Collapse
|
9
|
Yoshida LS, Kakegawa T, Yuda Y, Takano-Ohmuro H. Shikonin changes the lipopolysaccharide-induced expression of inflammation-related genes in macrophages. J Nat Med 2017; 71:723-734. [DOI: 10.1007/s11418-017-1106-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 06/21/2017] [Indexed: 12/01/2022]
|
10
|
Kazumura K, Yoshida LS, Hara A, Tsuchiya H, Morishita N, Kawagishi H, Kakegawa T, Yuda Y, Takano-Ohmuro H. Inhibition of neutrophil superoxide generation by shikonin is associated with suppression of cellular Ca(2+) fluxes. J Clin Biochem Nutr 2016; 59:1-9. [PMID: 27499572 PMCID: PMC4933695 DOI: 10.3164/jcbn.16-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 02/16/2016] [Indexed: 01/21/2023] Open
Abstract
Shikonin, an anti-inflammatory compound of “Shikon”, inhibits the neutrophil superoxide (O2•−) generation by NADPH oxidase 2 (Nox2); however, the mechanisms of how shikonin affects Nox2 activity remained unclear. We aimed to elucidate the relationship between the inhibition of Nox2 activity and influences on intracellular Ca2+ concentration ([Ca2+]i) by shikonin. For this purpose, we used a simultaneous monitoring system for detecting changes in [Ca2+]i (by fluorescence) and O2•− generation (by chemiluminescence) and evaluated the effects of shikonin on neutrophil-like HL-60 cells stimulated with N-formyl-l-methionyl-l-leucyl-l-phenylalanine (fMLP). Since fMLP activates Nox2 by elevation in [Ca2+]i via fluxes such as inositol 1,4,5-trisphosphate-induced Ca2+ release (IICR) and store-operated Ca2+ entry (SOCE), we also evaluated the effects of shikonin on IICR and SOCE. Shikonin dose-dependently inhibited the fMLP-induced elevation in [Ca2+]i and O2•− generation (IC50 values of 1.45 and 1.12 µM, respectively) in a synchronized manner. Analyses of specific Ca2+ fluxes showed that shikonin inhibits IICR and IICR-linked O2•− generation (IC50 values: 0.28 and 0.31 µM for [Ca2+]i and O2•−, respectively), as well as SOCE and SOCE-linked O2•− generation (IC50 values: 0.39 and 0.25 µM for [Ca2+]i and O2•−, respectively). These results suggested that shikonin inhibits the O2•− generation by Nox2 in fMLP-stimulated neutrophils by targeting Ca2+ fluxes such as IICR and SOCE.
Collapse
Affiliation(s)
- Kimiko Kazumura
- Central Research Laboratory, Hamamatsu Photonics K.K., 5000 Hirakuchi, Hamakita-ku, Hamamatsu 434-8601, Japan
| | - Lucia Satiko Yoshida
- Research Institute of Pharmaceutical Sciences, Musashino University, 1-1-20 Shinmachi, Nishitokyo 202-8585, Japan
| | - Akiko Hara
- Central Research Laboratory, Hamamatsu Photonics K.K., 5000 Hirakuchi, Hamakita-ku, Hamamatsu 434-8601, Japan
| | - Hiroshi Tsuchiya
- Central Research Laboratory, Hamamatsu Photonics K.K., 5000 Hirakuchi, Hamakita-ku, Hamamatsu 434-8601, Japan
| | - Naokazu Morishita
- Electron Tube Division, Hamamatsu Photonics K.K., 314-5 Shimokanzo, Iwata 438-0193, Japan
| | - Hirokazu Kawagishi
- Department of Applied Biological Chemistry, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
| | - Tomohito Kakegawa
- Faculty of Pharmaceutical Sciences, Josai International University, 1 Gumyo, Togane 283-8555, Japan
| | - Yasukatsu Yuda
- Research Institute of Pharmaceutical Sciences, Musashino University, 1-1-20 Shinmachi, Nishitokyo 202-8585, Japan
| | - Hiromi Takano-Ohmuro
- Research Institute of Pharmaceutical Sciences, Musashino University, 1-1-20 Shinmachi, Nishitokyo 202-8585, Japan
| |
Collapse
|
11
|
Online screening of nitric oxide scavengers in natural products using high performance liquid chromatography coupled with tandem diode array and fluorescence detection. J Chromatogr A 2015; 1425:106-15. [DOI: 10.1016/j.chroma.2015.10.095] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Revised: 10/27/2015] [Accepted: 10/27/2015] [Indexed: 12/24/2022]
|