1
|
Helm MM, Alaba T, Klimis-Zacas D, Izuora K, Basu A. Effect of Dietary Berry Supplementation on Antioxidant Biomarkers in Adults with Cardiometabolic Risks: A Systematic Review of Clinical Trials. Antioxidants (Basel) 2023; 12:1182. [PMID: 37371912 DOI: 10.3390/antiox12061182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 05/29/2023] [Accepted: 05/29/2023] [Indexed: 06/29/2023] Open
Abstract
Cardiometabolic conditions are closely associated with inflammation and oxidative stress. Dietary berries may serve as a beneficial nutrition intervention to address the features of cardiometabolic dysfunction and associated oxidative stress. The high antioxidant status of dietary berries may increase antioxidant capacity and reduce biomarkers of oxidative stress. This systematic review was conducted to investigate these effects of dietary berries. The search was conducted using PubMed, Cochrane Library, Web of Science, and citation searching. Through this search we identified 6309 articles and 54 were included in the review. Each study's risk of bias was assessed using the 2019 Cochrane Methods' Risk of Bias 2 tool. Antioxidant and oxidative stress outcomes were evaluated, and the magnitude of effect was calculated using Cohen's d. A range of effectiveness was reported in the included studies and the quality of the studies differed between the parallel and crossover trials. Considering the inconsistency in reported effectiveness, future investigations are warranted to determine the acute and sustained reductions of oxidative stress biomarkers from dietary berry intake (PROSPERO registration# CRD42022374654).
Collapse
Affiliation(s)
- Macy M Helm
- Department of Kinesiology and Nutrition Sciences, School of Integrated Health Sciences, University of Nevada, Las Vegas, NV 89154, USA
| | - Tolu Alaba
- School of Food and Agriculture, University of Maine, Orono, ME 04469, USA
- Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, ME 04469, USA
| | - Dorothy Klimis-Zacas
- School of Food and Agriculture, University of Maine, Orono, ME 04469, USA
- Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, ME 04469, USA
| | - Kenneth Izuora
- Section of Endocrinology, Department of Internal Medicine, University of Nevada, Las Vegas, NV 89102, USA
| | - Arpita Basu
- Department of Kinesiology and Nutrition Sciences, School of Integrated Health Sciences, University of Nevada, Las Vegas, NV 89154, USA
| |
Collapse
|
3
|
Ayoub-Charette S, Chiavaroli L, Liu Q, Khan TA, Zurbau A, Au-Yeung F, Cheung A, Ahmed A, Lee D, Choo VL, Blanco Mejia S, de Souza RJ, Wolever TM, Leiter LA, Kendall CW, Jenkins DJ, Sievenpiper JL. Different Food Sources of Fructose-Containing Sugars and Fasting Blood Uric Acid Levels: A Systematic Review and Meta-Analysis of Controlled Feeding Trials. J Nutr 2021; 151:2409-2421. [PMID: 34087940 PMCID: PMC8349131 DOI: 10.1093/jn/nxab144] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 04/11/2021] [Accepted: 04/21/2021] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Although fructose as a source of excess calories increases uric acid, the effect of the food matrix is unclear. OBJECTIVES To assess the effects of fructose-containing sugars by food source at different levels of energy control on uric acid, we conducted a systematic review and meta-analysis of controlled trials. METHODS MEDLINE, Embase, and the Cochrane Library were searched (through 11 January 2021) for trials ≥ 7 days. We prespecified 4 trial designs by energy control: substitution (energy-matched replacement of sugars in diets); addition (excess energy from sugars added to diets); subtraction (energy from sugars subtracted from diets); and ad libitum (energy from sugars freely replaced in diets) designs. Independent reviewers (≥2) extracted data and assessed the risk of bias. Grading of Recommendations, Assessment, Development, and Evaluation was used to assess the certainty of evidence. RESULTS We included 47 trials (85 comparisons; N = 2763) assessing 9 food sources [sugar-sweetened beverages (SSBs), sweetened dairy, fruit drinks, 100% fruit juice, fruit, dried fruit, sweets and desserts, added nutritive sweetener, and mixed sources] across 4 energy control levels in predominantly healthy, mixed-weight adults. Total fructose-containing sugars increased uric acid levels in substitution trials (mean difference, 0.16 mg/dL; 95% CI: 0.06-0.27 mg/dL; P = 0.003), with no effect across the other energy control levels. There was evidence of an interaction by food source: SSBs and sweets and desserts increased uric acid levels in the substitution design, while SSBs increased and 100% fruit juice decreased uric acid levels in addition trials. The certainty of evidence was high for the increasing effect of SSBs in substitution and addition trials and the decreasing effect of 100% fruit juice in addition trials and was moderate to very low for all other comparisons. CONCLUSIONS Food source more than energy control appears to mediate the effects of fructose-containing sugars on uric acid. The available evidence provides reliable indications that SSBs increase and 100% fruit juice decreases uric acid levels. More high-quality trials of different food sources are needed. This trial was registered at clinicaltrials.gov as NCT02716870.
Collapse
Affiliation(s)
- Sabrina Ayoub-Charette
- Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Toronto 3D Knowledge Synthesis and Clinical Trials Unit, Clinical Nutrition and Risk Factor Modification Centre, St. Michael's Hospital, Toronto, Ontario, Canada
| | - Laura Chiavaroli
- Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Toronto 3D Knowledge Synthesis and Clinical Trials Unit, Clinical Nutrition and Risk Factor Modification Centre, St. Michael's Hospital, Toronto, Ontario, Canada
| | - Qi Liu
- Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Toronto 3D Knowledge Synthesis and Clinical Trials Unit, Clinical Nutrition and Risk Factor Modification Centre, St. Michael's Hospital, Toronto, Ontario, Canada
| | - Tauseef Ahmad Khan
- Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Toronto 3D Knowledge Synthesis and Clinical Trials Unit, Clinical Nutrition and Risk Factor Modification Centre, St. Michael's Hospital, Toronto, Ontario, Canada
| | - Andreea Zurbau
- Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Toronto 3D Knowledge Synthesis and Clinical Trials Unit, Clinical Nutrition and Risk Factor Modification Centre, St. Michael's Hospital, Toronto, Ontario, Canada
- INQUIS Clinical Research Ltd. (formerly Glycemic Index Laboratories, Inc.),
Toronto, Ontario, Canada
| | - Fei Au-Yeung
- Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Toronto 3D Knowledge Synthesis and Clinical Trials Unit, Clinical Nutrition and Risk Factor Modification Centre, St. Michael's Hospital, Toronto, Ontario, Canada
- INQUIS Clinical Research Ltd. (formerly Glycemic Index Laboratories, Inc.), Toronto, Ontario, Canada
| | - Annette Cheung
- Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Toronto 3D Knowledge Synthesis and Clinical Trials Unit, Clinical Nutrition and Risk Factor Modification Centre, St. Michael's Hospital, Toronto, Ontario, Canada
| | - Amna Ahmed
- Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Toronto 3D Knowledge Synthesis and Clinical Trials Unit, Clinical Nutrition and Risk Factor Modification Centre, St. Michael's Hospital, Toronto, Ontario, Canada
| | - Danielle Lee
- Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Toronto 3D Knowledge Synthesis and Clinical Trials Unit, Clinical Nutrition and Risk Factor Modification Centre, St. Michael's Hospital, Toronto, Ontario, Canada
| | - Vivian L Choo
- Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Toronto 3D Knowledge Synthesis and Clinical Trials Unit, Clinical Nutrition and Risk Factor Modification Centre, St. Michael's Hospital, Toronto, Ontario, Canada
- Department of Family and Community Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Sonia Blanco Mejia
- Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Toronto 3D Knowledge Synthesis and Clinical Trials Unit, Clinical Nutrition and Risk Factor Modification Centre, St. Michael's Hospital, Toronto, Ontario, Canada
| | - Russell J de Souza
- Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Toronto 3D Knowledge Synthesis and Clinical Trials Unit, Clinical Nutrition and Risk Factor Modification Centre, St. Michael's Hospital, Toronto, Ontario, Canada
- Department of Health Research Methods, Evidence, and Impact, Faculty of Health Sciences, McMaster University, Hamilton, Ontario, Canada
- Population Health Research Institute, Hamilton Health Sciences Corporation, Hamilton, Ontario, Canada
| | - Thomas Ms Wolever
- Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Toronto 3D Knowledge Synthesis and Clinical Trials Unit, Clinical Nutrition and Risk Factor Modification Centre, St. Michael's Hospital, Toronto, Ontario, Canada
- INQUIS Clinical Research Ltd. (formerly Glycemic Index Laboratories, Inc.), Toronto, Ontario, Canada
- Division of Endocrinology and Metabolism, Department of Medicine, St. Michael's Hospital, Toronto, Ontario, Canada
- Department of Medicine, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Lawrence A Leiter
- Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Toronto 3D Knowledge Synthesis and Clinical Trials Unit, Clinical Nutrition and Risk Factor Modification Centre, St. Michael's Hospital, Toronto, Ontario, Canada
- Division of Endocrinology and Metabolism, Department of Medicine, St. Michael's Hospital, Toronto, Ontario, Canada
- Department of Medicine, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada
| | - Cyril Wc Kendall
- Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Toronto 3D Knowledge Synthesis and Clinical Trials Unit, Clinical Nutrition and Risk Factor Modification Centre, St. Michael's Hospital, Toronto, Ontario, Canada
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - David Ja Jenkins
- Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Toronto 3D Knowledge Synthesis and Clinical Trials Unit, Clinical Nutrition and Risk Factor Modification Centre, St. Michael's Hospital, Toronto, Ontario, Canada
- Division of Endocrinology and Metabolism, Department of Medicine, St. Michael's Hospital, Toronto, Ontario, Canada
- Department of Medicine, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada
| | - John L Sievenpiper
- Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Toronto 3D Knowledge Synthesis and Clinical Trials Unit, Clinical Nutrition and Risk Factor Modification Centre, St. Michael's Hospital, Toronto, Ontario, Canada
- Division of Endocrinology and Metabolism, Department of Medicine, St. Michael's Hospital, Toronto, Ontario, Canada
- Department of Medicine, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada
| |
Collapse
|
5
|
Gawron-Skarbek A, Guligowska A, Prymont-Przymińska A, Nowak D, Kostka T. Plasma and Salivary Non-Urate Total Antioxidant Capacity Does Not Depend on Dietary Vitamin C, E, or β-Carotene Intake in Older Subjects. Molecules 2018; 23:molecules23040983. [PMID: 29690623 PMCID: PMC6017164 DOI: 10.3390/molecules23040983] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 04/17/2018] [Accepted: 04/21/2018] [Indexed: 02/07/2023] Open
Abstract
The native Total Antioxidant Capacity (TAC) of plasma and saliva is generally determined by uric acid (UA). Several studies have assessed the impact of habitual dietary antioxidative vitamin intake on TAC, but it remains unknown whether it influences Non-Urate Total Antioxidant Capacity (Nu-TAC), i.e., TAC after enzymatic UA elimination. The purpose of this study was to assess whether the intake of antioxidative vitamins C, E, and β-carotene, provided with usual daily food rations, affects plasma and salivary Nu-TAC. The study involved 56 older subjects (aged 66.9 ± 4.3 years), divided into two age- and sex-matched groups: group 1 (n = 28), with lower combined vitamin C, E, and β-carotene intake, and group 2 (n = 28), with higher intake. A 24 h dietary recall was obtained from each individual. Nu-TAC was assessed simultaneously with two methods in plasma (Ferric Reducing Ability of Plasma—Nu-FRAP, 2.2-diphenyl-1-picryl-hydrazyl—Nu-DPPH) and in saliva (Nu-FRAS and Nu-DPPHS test). No differences were found in the Nu-TAC parameters between the groups, either in plasma (Nu-FRAP, Nu-DPPH) or in saliva (Nu-FRAS, Nu-DPPHS) (p > 0.05). No plasma or salivary Nu-TAC indices correlated with dietary vitamin C, E, or β-carotene intake or with other nutrients. Habitual, not extra-supplemented dietary intake does not significantly affect plasma or salivary Nu-TAC.
Collapse
Affiliation(s)
- Anna Gawron-Skarbek
- Department of Hygiene and Health Promotion, Medical University of Lodz, Hallera St. 1, 90-647 Łódź, Poland.
| | - Agnieszka Guligowska
- Department of Geriatrics, Medical University of Lodz, Pieniny St. 30, 90-993 Łódź, Poland.
| | - Anna Prymont-Przymińska
- Department of General Physiology, Medical University of Lodz, Mazowiecka St. 6/8, 92-215 Łódź, Poland.
| | - Dariusz Nowak
- Department of Clinical Physiology, Medical University of Lodz, Mazowiecka St. 6/8, 92-215 Łódź, Poland.
| | - Tomasz Kostka
- Department of Geriatrics, Medical University of Lodz, Pieniny St. 30, 90-993 Łódź, Poland.
| |
Collapse
|
7
|
Gawron-Skarbek A, Guligowska A, Prymont-Przymińska A, Godala M, Kolmaga A, Nowak D, Szatko F, Kostka T. Dietary Vitamin C, E and β-Carotene Intake Does Not Significantly Affect Plasma or Salivary Antioxidant Indices and Salivary C-Reactive Protein in Older Subjects. Nutrients 2017; 9:nu9070729. [PMID: 28698489 PMCID: PMC5537843 DOI: 10.3390/nu9070729] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 06/29/2017] [Accepted: 07/06/2017] [Indexed: 12/19/2022] Open
Abstract
It is not clear whether habitual dietary intake influences the antioxidant or inflammatory status. The aim of the present study was to assess the impact of antioxidative vitamins C, E, and β-carotene obtained from daily food rations on plasma and salivary Total Antioxidant Capacity (TAC), uric acid and salivary C-reactive protein (CRP). The study involved 80 older subjects (66.9 ± 4.3 years), divided into two groups: group 1 (n = 43) with lower and group 2 (n = 37) with higher combined vitamins C, E and β-carotene intake. A 24-h dietary recall was obtained from each individual. TAC was assessed simultaneously with two methods in plasma (Ferric Reducing Ability of Plasma—FRAP, 2.2-diphenyl-1-picryl-hydrazyl—DPPH) and in saliva (FRAS and DPPHS test). Lower vitamin C intake corresponded to higher FRAS. There were no other correlations between vitamins C, E or β-carotene intake and antioxidant indices. Salivary CRP was not related to any antioxidant indices. FRAS was decreased in group 2 (p < 0.01) but no other group differences for salivary or for plasma antioxidant parameters and salivary CRP were found. Habitual, not extra supplemented dietary intake does not significantly affect plasma or salivary TAC and salivary CRP.
Collapse
Affiliation(s)
- Anna Gawron-Skarbek
- Department of Hygiene and Health Promotion, Medical University of Lodz, Hallera St. 1, Łódź 90-647, Poland.
| | - Agnieszka Guligowska
- Department of Geriatrics, Medical University of Lodz, Pieniny St. 30, Łódź 90-993, Poland.
| | - Anna Prymont-Przymińska
- Department of General Physiology, Medical University of Lodz, Mazowiecka St. 6/8, Łódź 92-215, Poland.
| | - Małgorzata Godala
- Department of Hygiene of Nutrition and Epidemiology, Medical University of Lodz, Hallera St. 1, Łódź 90-647, Poland.
| | - Agnieszka Kolmaga
- Department of Hygiene of Nutrition and Epidemiology, Medical University of Lodz, Hallera St. 1, Łódź 90-647, Poland.
| | - Dariusz Nowak
- Department of Clinical Physiology, Medical University of Lodz, Mazowiecka St. 6/8, Łódź 92-215, Poland.
| | - Franciszek Szatko
- Department of Hygiene and Health Promotion, Medical University of Lodz, Hallera St. 1, Łódź 90-647, Poland.
| | - Tomasz Kostka
- Department of Geriatrics, Medical University of Lodz, Pieniny St. 30, Łódź 90-993, Poland.
| |
Collapse
|