1
|
Milan KL, Ramkumar KM. Regulatory mechanisms and pathological implications of CYP24A1 in Vitamin D metabolism. Pathol Res Pract 2024; 264:155684. [PMID: 39488987 DOI: 10.1016/j.prp.2024.155684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 09/23/2024] [Accepted: 10/25/2024] [Indexed: 11/05/2024]
Abstract
CYP24A1 is a crucial gene within the cytochrome P450 superfamily, responsible for encoding the enzyme 25-hydroxyvitamin D3-24-hydroxylase. This enzyme is involved in the catabolism of 1,25-dihydroxyvitamin D3, the biologically active form of vitamin D3, by hydroxylating its side chain. Through this process, CYP24A1 tightly regulates the bioavailability and physiological impact of vitamin D3 in the body. Dysregulation of CYP24A1, particularly its overexpression, has been increasingly associated with the progression of various diseases, including cancers, autoimmune disorders, and chronic inflammatory conditions. Elevated levels of CYP24A1 can lead to excessive degradation of vitamin D3, resulting in diminished levels of this critical hormone, which is essential for calcium homeostasis, immune function, and cellular proliferation. This review explores into the structural characteristics of CYP24A1, exploring how it influences its enzymatic activity. Furthermore, it examines the expression patterns of CYP24A1 across different diseases, emphasizing the enzyme's role in disease pathology. The review also discusses the regulatory mechanisms governing CYP24A1 expression, including genetic mutations, epigenetic modifications, and metabolite-mediated regulation. By understanding these mechanisms, the review provides insight into the potential therapeutic strategies that could target CYP24A1, aiming to alleviate its overexpression and restore vitamin D3 balance in disease states.
Collapse
Affiliation(s)
- K L Milan
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603 203, India
| | - K M Ramkumar
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603 203, India.
| |
Collapse
|
2
|
Jin Q, Wang F, Ye W, Wang Q, Xu S, Jiang S, Li X, Yue M, Yu D, Jin M, Fu A, Li W. Compound Bacillus improves eggshell quality and egg metabolites of hens by promoting the metabolism balance of calcium and phosphorus and uterine cell proliferation. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2024; 19:355-369. [PMID: 39640545 PMCID: PMC11617893 DOI: 10.1016/j.aninu.2024.04.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 04/11/2024] [Accepted: 04/23/2024] [Indexed: 12/07/2024]
Abstract
Probiotics have beneficial effects on improving egg quality, but there is little research about the effect of probiotics on metabolite composition, and the mechanisms are not yet fully understood. The aim of this study was to investigate the potential mechanisms by which compound Bacillus improves egg quality and metabolite composition. A total of 20,000 Jingfen No. 6 laying hens at 381 d old were randomly divided into two treatments: control group with a basal diet, and the basal diet with 5 × 108 CFU/kg compound Bacillus supplementation (Ba) group. The trial lasted eight weeks. The results showed that compound Bacillus improved the gloss and strength of eggshells and reduced the ratio of sand-shell eggs by 23.8%. Specifically, the effective layer of eggshell was thicker and its calcite column was closely connected. Compound Bacillus increased the contents of beneficial fatty acids in the egg yolk, and lipids and lipid-like molecules in the albumen (P < 0.01), while decreased the contents of total cholesterol, triglycerides, and benzene ring compounds in the egg yolk and organic oxygen compounds in the albumen (P < 0.01). In addition, the compound Bacillus increased the calcium absorption in the duodenum by up-regulating the expression of transporters and serum hormone synergism (P < 0.05), and promoted metabolic balance of calcium and phosphorus. Simultaneously, uterine transcriptome showed that the expression of ChaC glutathione specific gamma-glutamylcyclotransferase 1 (CHAC1), glycoprotein-N-acetylgalactosamine 3-beta-galactosyltransferase 1 (C1GALT1), phosphatidylinositol-4-phosphate 5-kinase type 1 beta (PIP5K1B), methylenetetrahydrofolate dehydrogenase 2 (MTHFD2), brain enriched myelin associated protein 1 (BCAS1), and squalene epoxidase (SQLE) genes were increased (P < 0.01), indicating that nutrient metabolism activity was enhanced. The expression of the BCAS1, C1GALT1, KLF transcription factor 13 (KLF13), and leucine rich repeat neuronal 1 (LRRN1) was increased (P < 0.01), indicating that the cell proliferation was enhanced, which slowed uterus aging. In conclusion, compound Bacillus improved the eggshell strength and metabolite composition in the egg by promoting metabolic balance of calcium and phosphorus, cell proliferation, and nutrient metabolism in the uterus.
Collapse
Affiliation(s)
- Qian Jin
- Hainan Institute, Zhejiang University, Yongyou Industry Park, Yazhou Bay Sci-Tech City, Sanya 572000, Hainan Province, China
- Key Laboratory of Animal Molecular Nutrition of Education of Ministry, National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Animal Nutrition and Feed Sciences, College of Animal Sciences, Zhejiang University, Hangzhou 310058, Zhejiang Province, China
| | - Fei Wang
- Key Laboratory of Animal Molecular Nutrition of Education of Ministry, National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Animal Nutrition and Feed Sciences, College of Animal Sciences, Zhejiang University, Hangzhou 310058, Zhejiang Province, China
| | - Weisheng Ye
- Agriculture and Rural Bureau, Yunhe County 323600, Zhejiang Province, China
| | - Qi Wang
- Key Laboratory of Animal Molecular Nutrition of Education of Ministry, National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Animal Nutrition and Feed Sciences, College of Animal Sciences, Zhejiang University, Hangzhou 310058, Zhejiang Province, China
| | - Shujie Xu
- Key Laboratory of Animal Molecular Nutrition of Education of Ministry, National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Animal Nutrition and Feed Sciences, College of Animal Sciences, Zhejiang University, Hangzhou 310058, Zhejiang Province, China
| | - Shaoxiong Jiang
- Agriculture and Rural Bureau, Yunhe County 323600, Zhejiang Province, China
| | - Xiang Li
- Key Laboratory of Animal Molecular Nutrition of Education of Ministry, National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Animal Nutrition and Feed Sciences, College of Animal Sciences, Zhejiang University, Hangzhou 310058, Zhejiang Province, China
| | - Min Yue
- Hainan Institute, Zhejiang University, Yongyou Industry Park, Yazhou Bay Sci-Tech City, Sanya 572000, Hainan Province, China
- Key Laboratory of Animal Molecular Nutrition of Education of Ministry, National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Animal Nutrition and Feed Sciences, College of Animal Sciences, Zhejiang University, Hangzhou 310058, Zhejiang Province, China
| | - Dongyou Yu
- Hainan Institute, Zhejiang University, Yongyou Industry Park, Yazhou Bay Sci-Tech City, Sanya 572000, Hainan Province, China
- Key Laboratory of Animal Molecular Nutrition of Education of Ministry, National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Animal Nutrition and Feed Sciences, College of Animal Sciences, Zhejiang University, Hangzhou 310058, Zhejiang Province, China
| | - Mingliang Jin
- Key Laboratory of Animal Molecular Nutrition of Education of Ministry, National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Animal Nutrition and Feed Sciences, College of Animal Sciences, Zhejiang University, Hangzhou 310058, Zhejiang Province, China
| | - Aikun Fu
- Key Laboratory of Animal Molecular Nutrition of Education of Ministry, National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Animal Nutrition and Feed Sciences, College of Animal Sciences, Zhejiang University, Hangzhou 310058, Zhejiang Province, China
| | - Weifen Li
- Key Laboratory of Animal Molecular Nutrition of Education of Ministry, National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Animal Nutrition and Feed Sciences, College of Animal Sciences, Zhejiang University, Hangzhou 310058, Zhejiang Province, China
| |
Collapse
|
3
|
Vastrad B, Vastrad C. Screening and identification of key biomarkers associated with endometriosis using bioinformatics and next-generation sequencing data analysis. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2024; 25:116. [DOI: 10.1186/s43042-024-00572-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 08/23/2024] [Indexed: 01/04/2025] Open
Abstract
Abstract
Background
Endometriosis is a common cause of endometrial-type mucosa outside the uterine cavity with symptoms such as painful periods, chronic pelvic pain, pain with intercourse and infertility. However, the early diagnosis of endometriosis is still restricted. The purpose of this investigation is to identify and validate the key biomarkers of endometriosis.
Methods
Next-generation sequencing dataset GSE243039 was obtained from the Gene Expression Omnibus database, and differentially expressed genes (DEGs) between endometriosis and normal control samples were identified. After screening of DEGs, gene ontology (GO) and REACTOME pathway enrichment analyses were performed. Furthermore, a protein–protein interaction (PPI) network was constructed and modules were analyzed using the Human Integrated Protein–Protein Interaction rEference database and Cytoscape software, and hub genes were identified. Subsequently, a network between miRNAs and hub genes, and network between TFs and hub genes were constructed using the miRNet and NetworkAnalyst tool, and possible key miRNAs and TFs were predicted. Finally, receiver operating characteristic curve analysis was used to validate the hub genes.
Results
A total of 958 DEGs, including 479 upregulated genes and 479 downregulated genes, were screened between endometriosis and normal control samples. GO and REACTOME pathway enrichment analyses of the 958 DEGs showed that they were mainly involved in multicellular organismal process, developmental process, signaling by GPCR and muscle contraction. Further analysis of the PPI network and modules identified 10 hub genes, including vcam1, snca, prkcb, adrb2, foxq1, mdfi, actbl2, prkd1, dapk1 and actc1. Possible target miRNAs, including hsa-mir-3143 and hsa-mir-2110, and target TFs, including tcf3 (transcription factor 3) and clock (clock circadian regulator), were predicted by constructing a miRNA-hub gene regulatory network and TF-hub gene regulatory network.
Conclusions
This investigation used bioinformatics techniques to explore the potential and novel biomarkers. These biomarkers might provide new ideas and methods for the early diagnosis, treatment and monitoring of endometriosis.
Collapse
|
4
|
Uga M, Kaneko I, Shiozaki Y, Koike M, Tsugawa N, Jurutka PW, Miyamoto KI, Segawa H. The Role of Intestinal Cytochrome P450s in Vitamin D Metabolism. Biomolecules 2024; 14:717. [PMID: 38927120 PMCID: PMC11201832 DOI: 10.3390/biom14060717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 06/08/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
Vitamin D hydroxylation in the liver/kidney results in conversion to its physiologically active form of 1,25-dihydroxyvitamin D3 [1,25(OH)2D3]. 1,25(OH)2D3 controls gene expression through the nuclear vitamin D receptor (VDR) mainly expressed in intestinal epithelial cells. Cytochrome P450 (CYP) 24A1 is a catabolic enzyme expressed in the kidneys. Interestingly, a recently identified mutation in another CYP enzyme, CYP3A4 (gain-of-function), caused type III vitamin D-dependent rickets. CYP3A are also expressed in the intestine, but their hydroxylation activities towards vitamin D substrates are unknown. We evaluated CYP3A or CYP24A1 activities on vitamin D action in cultured cells. In addition, we examined the expression level and regulation of CYP enzymes in intestines from mice. The expression of CYP3A or CYP24A1 significantly reduced 1,25(OH)2D3-VDRE activity. Moreover, in mice, Cyp24a1 mRNA was significantly induced by 1,25(OH)2D3 in the intestine, but a mature form (approximately 55 kDa protein) was also expressed in mitochondria and induced by 1,25(OH)2D3, and this mitochondrial enzyme appears to hydroxylate 25OHD3 to 24,25(OH)2D3. Thus, CYP3A or CYP24A1 could locally attenuate 25OHD3 or 1,25(OH)2D3 action, and we suggest the small intestine is both a vitamin D target tissue, as well as a newly recognized vitamin D-metabolizing tissue.
Collapse
Affiliation(s)
- Minori Uga
- Department of Applied Nutrition, Tokushima University Graduate School of Biomedical Sciences, Tokushima 770-8503, Japan
| | - Ichiro Kaneko
- Research Institute for Food and Nutritional Sciences, School of Human Science and Environment, University of Hyogo, Hyogo 670-0092, Japan
| | - Yuji Shiozaki
- Department of Applied Nutrition, Tokushima University Graduate School of Biomedical Sciences, Tokushima 770-8503, Japan
| | - Megumi Koike
- Department of Applied Nutrition, Tokushima University Graduate School of Biomedical Sciences, Tokushima 770-8503, Japan
| | - Naoko Tsugawa
- Faculty of Nutrition, Kobe Gakuin University, Hyogo 651-2180, Japan
| | - Peter W. Jurutka
- Mathematical and Natural Sciences, Arizona State University, Glendale, AZ 85306, USA
- College of Medicine, The University of Arizona, Phoenix, AZ 85004, USA
| | - Ken-Ichi Miyamoto
- Department of Applied Nutrition, Tokushima University Graduate School of Biomedical Sciences, Tokushima 770-8503, Japan
- Graduate School of Agriculture, Ryukoku University, Shiga 520-2194, Japan
| | - Hiroko Segawa
- Department of Applied Nutrition, Tokushima University Graduate School of Biomedical Sciences, Tokushima 770-8503, Japan
| |
Collapse
|
5
|
Milan KL, Jayasuriya R, Harithpriya K, Anuradha M, Ramkumar KM. MicroRNA-125b regulates vitamin D resistance by targeting CYP24A1 in the progression of gestational diabetes mellitus. J Steroid Biochem Mol Biol 2024; 239:106475. [PMID: 38350553 DOI: 10.1016/j.jsbmb.2024.106475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 01/25/2024] [Accepted: 01/30/2024] [Indexed: 02/15/2024]
Abstract
Vitamin D deficiency is prevalent in pregnancy and has been associated with increased occurrences of preeclampsia, cesarean delivery, neonatal bacterial vaginosis, and gestational diabetes. CYP24A1, recognized as a key factor in vitamin D metabolism homeostasis, encodes 24-hydroxylase responsible for converting 25(OH)D3 and 1,25(OH)2D3 into inactive metabolites. Recently, we have reported CYP24A1 overexpression in patients with gestational diabetes mellitus (GDM) and trophoblast cells exposed to hyperglycemia. In this study, we explored miRNA-mediated regulation of CYP24A1 in GDM progression, validating our findings through silencing experiments in a trophoblast cell line. In silico tools identified miR-125b-5p as a putative target of CYP24A1. Expression analysis revealed downregulation of miR-125b-5p in blood samples from early GDM and GDM compared to healthy pregnant women, positively correlating with vitamin D levels. Hyperglycemic exposure in human trophoblastic cell lines (BeWo) decreased miR-125b-5p expression, concomitant with an increase in CYP24A1. To confirm the regulatory role of miR-125b on CYP24A1, we transfected BeWo cells with antimiR-125b or miR-125b mimic. AntimiR-125b transfection heightened CYP24A1 levels, while miR-125b mimic overexpression resulted in decreased CYP24A1 expression. These findings establish miR-125b as a regulator of CYP24A1. To explore the influence of miR-125b on vitamin D metabolism, trophoblast cells overexpressing miR-125b were treated with 0.1 and 1 µM calcitriol. Hyperglycemic conditions exhibited a reduction in CYP24A1 levels. Collectively, our results indicate that miR-125b may regulate vitamin D metabolism by targeting CYP24A1, contributing to GDM progression. These findings may pave the way for understanding vitamin D resistance in concurrent GDM development and identifying novel miRNAs targeting CYP24A1.
Collapse
Affiliation(s)
- K L Milan
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India
| | - Ravichandran Jayasuriya
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India
| | - Kannan Harithpriya
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India
| | - M Anuradha
- Department of Obstetrics & Gynaecology, SRM Medical College Hospital and Research Centre, Kattankulathur 603203, Tamil Nadu, India
| | - Kunka Mohanram Ramkumar
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India.
| |
Collapse
|
6
|
Huang HY, Lin TW, Hong ZX, Lim LM. Vitamin D and Diabetic Kidney Disease. Int J Mol Sci 2023; 24:ijms24043751. [PMID: 36835159 PMCID: PMC9960850 DOI: 10.3390/ijms24043751] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 01/28/2023] [Accepted: 02/09/2023] [Indexed: 02/16/2023] Open
Abstract
Vitamin D is a hormone involved in many physiological processes. Its active form, 1,25(OH)2D3, modulates serum calcium-phosphate homeostasis and skeletal homeostasis. A growing body of evidence has demonstrated the renoprotective effects of vitamin D. Vitamin D modulates endothelial function, is associated with podocyte preservation, regulates the renin-angiotensin-aldosterone system, and has anti-inflammatory effects. Diabetic kidney disease (DKD) is a leading cause of end-stage kidney disease worldwide. There are numerous studies supporting vitamin D as a renoprotector, potentially delaying the onset of DKD. This review summarizes the findings of current research on vitamin D and its role in DKD.
Collapse
Affiliation(s)
- Ho-Yin Huang
- Department of Pharmacy, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Ting-Wei Lin
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Zi-Xuan Hong
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Lee-Moay Lim
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Correspondence: ; Tel.: +886-7-3121101-7351; Fax: +886-7-3228721
| |
Collapse
|
7
|
Elkhwanky MS, Kummu O, Hakkola J. Streptozotocin-induced Diabetes Represses Hepatic CYP2R1 Expression but Induces Vitamin D 25-Hydroxylation in Male Mice. Endocrinology 2022; 163:6582260. [PMID: 35524739 PMCID: PMC9155637 DOI: 10.1210/endocr/bqac060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Indexed: 11/19/2022]
Abstract
Vitamin D deficiency [ie, low plasma 25-hydroxyvitamin D (25-OH-D)] associates with the prevalence of metabolic diseases including type 1 diabetes; however, the molecular mechanisms are incompletely understood. Recent studies have indicated that both fasting and metabolic diseases suppress the cytochrome P450 (CYP) 2R1, the major hepatic vitamin D 25-hydroxylase. We specifically studied the effect of a mouse model of type 1 diabetes on the regulation of Cyp2r1 and vitamin D status. We show that streptozotocin-induced diabetes in mice suppresses the expression of the Cyp2r1 in the liver. While insulin therapy normalized the blood glucose levels in the diabetic mice, it did not rescue the diabetes-induced suppression of Cyp2r1. Similar regulation of Cyp2r1 was observed also in the kidney. Plasma 25-OH-D level was not decreased and was, in contrast, higher after 4 and 8 weeks of diabetes. Furthermore, the vitamin D 25-hydroxylase activity was increased in the livers of the diabetic mice, suggesting compensation of the Cyp2r1 repression by other vitamin D 25-hydroxylase enzymes. Cyp27b1, the vitamin D 1α-hydroxylase, expression in the kidney and the plasma 1α,25-dihydroxyvitamin D level were higher after 4 weeks of diabetes, while both were normalized after 13 weeks. In summary, these results indicate that in the mouse model of type 1 diabetes suppression of hepatic Cyp2r1 expression does not result in reduced hepatic vitamin D 25-hydroxylase activity and vitamin D deficiency. This may be due to induction of other vitamin D 25-hydroxylase enzymes in response to diabetes.
Collapse
Affiliation(s)
- Mahmoud-Sobhy Elkhwanky
- Research Unit of Biomedicine, Pharmacology and Toxicology, University of Oulu, Oulu, Finland
- Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland
- Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Outi Kummu
- Research Unit of Biomedicine, Pharmacology and Toxicology, University of Oulu, Oulu, Finland
- Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland
- Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Jukka Hakkola
- Correspondence: Jukka Hakkola, MD, PhD, Research Unit of Biomedicine, Pharmacology and Toxicology, University of Oulu, POB 5000, FI-90014 University of Oulu, Finland.
| |
Collapse
|
8
|
Naidoo K, Ngubane PS, Khathi A. Investigating the Effects of Diet-Induced Pre-Diabetes on the Functioning of Calcium-Regulating Organs in Male Sprague Dawley Rats: Effects on Selected Markers. Front Endocrinol (Lausanne) 2022; 13:914189. [PMID: 35898447 PMCID: PMC9309376 DOI: 10.3389/fendo.2022.914189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 06/10/2022] [Indexed: 11/13/2022] Open
Abstract
Derangements to the functioning of calcium-regulating organs have been associated with type 2 diabetes mellitus (T2DM), a condition preceded by pre-diabetes. Type 2 diabetes has shown to promote renal calcium wastage, intestinal calcium malabsorption and increased bone resorption. However, the changes to the functioning of calcium-regulating organs in pre-diabetes are not known. Subsequently, the effects of diet-induced pre-diabetes on the functioning of calcium-regulating organs in a rat model for pre-diabetes was investigated in this study. Male Sprague Dawley rats were separated into two groups (n=6, each group): non-pre-diabetic (NPD) group and a diet-induced pre-diabetic (DIPD) group for 20 weeks. After the experimental period, postprandial glucose and HOMA-IR were analysed in addition to plasma and urinary calcium concentrations. Gene expressions of intestinal vitamin D (VDR), intestinal calbindin-D9k, renal 1-alpha hydroxylase and renal transient receptor potential vanilloid 5 (TRPV5) expressions in addition to plasma osteocalcin and urinary deoxypyridinoline concentrations were analysed at week 20. The results demonstrated significantly increased concentrations of postprandial glucose, HOMA-IR and urinary calcium in addition to unchanged plasma calcium levels in the DIPD group by comparison to NPD. Renal TRPV5, renal 1-alpha hydroxylase, intestinal VDR and intestinal calbindin-D9k expressions were increased in the DIPD group by comparison to NPD. Furthermore, plasma osteocalcin levels were increased and urine deoxypyridinoline levels were decreased in the DIPD group by comparison to NPD. These observations may suggest that calcium-regulating organs compensate for the changes to calcium homeostasis by inducing increased renal calcium reabsorption, increased intestinal calcium absorption and decreased bone resorption followed by increased bone formation.
Collapse
|
9
|
Zou Y, Guo B, Yu S, Wang D, Qiu L, Jiang Y. Effect of vitamin D supplementation on glycose homeostasis and islet function in vitamin D deficient or insufficient diabetes and prediabetes: a systematic review and meta-analysis. J Clin Biochem Nutr 2021; 69:229-237. [PMID: 34857984 PMCID: PMC8611361 DOI: 10.3164/jcbn.20-165] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Accepted: 10/25/2020] [Indexed: 11/25/2022] Open
Abstract
Objective of the present study was to evaluate the effect of vitamin D supplementation on glycose homeostasis, islet function, and diabetes progress. Literatures were searched via electronic databases, websites, and previous reviews from the earliest available time to the end of May 2020. Randomized controlled trials initially designed for diabetes and prediabetes with 25-dihydroxyvitamin D [25(OH)D]<30 ng/ml were included. All data were analyzed and presented based on the Cochrane guidelines and PRISMA guidelines. In total, 27 articles (n = 1,932) were enrolled in this study. Vitamin D supplementation significantly improved fasting blood glucose, postprandial blood glucose, and quantitative insulin sensitivity check index in diabetes and prediabetes with baseline 25(OH)D<30 ng/ml. Higher percentages regressing from prediabetes to normal glucose status [1.60 (1.19, 2.17), p = 0.002, n = 564] and lower percentage progressing from prediabetes to diabetes [0.68 (0.36, 1.27), p = 0.23, n = 569] were found in the supplementation group. The positive effects of vitamin D supplementation on body mass index, waist, HDL-C, LDL-C, and CRP were also demonstrated. In conclusion, modest improvements in vitamin D supplementation on short-term glycose homeostasis, insulin sensitivity, and disease development in diabetes and prediabetes with 25(OH)D<30 ng/ml were demonstrated, but more research needs to be conducted in the future to support the clinical application. (Register ID: CRD42020186004)
Collapse
Affiliation(s)
- Yutong Zou
- Department of Laboratory Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, No. 1 Shuaifu Yuan, Dongcheng District, Beijing 100730, China
| | - Bo Guo
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, No. 1 Shuaifu Yuan, Dongcheng District, Beijing 100730, China
| | - Songlin Yu
- Department of Laboratory Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, No. 1 Shuaifu Yuan, Dongcheng District, Beijing 100730, China
| | - Danchen Wang
- Department of Laboratory Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, No. 1 Shuaifu Yuan, Dongcheng District, Beijing 100730, China
| | - Ling Qiu
- Department of Laboratory Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, No. 1 Shuaifu Yuan, Dongcheng District, Beijing 100730, China
| | - Yu Jiang
- Department of Epidemiology and Biostatistics, School of Population Medicine and Public Health, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 9 Dongdan Santiao, Dongcheng District, Beijing 100730, China
| |
Collapse
|
10
|
Seong JM, Park CE, Gi MY, Cha JA, Moon AE, Lee JH, Sung HH, Lim JH, Oh SH, Chung CH, Seo EK, Yoon H. Gender difference in the relationship between anemia and vitamin D in Korean adults: the fifth Korea National Health and Nutrition Examination Survey. J Clin Biochem Nutr 2021; 69:299-304. [PMID: 34857993 PMCID: PMC8611370 DOI: 10.3164/jcbn.21-26] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 03/30/2021] [Indexed: 11/22/2022] Open
Abstract
This study was conducted to assess the relationship between vitamin D deficiency and anemia, by gender, in Korean adults. The data of 16,060 adults were analyzed (men, 6,840; premenopausal women, 4,916; postmenopausal women, 4,340) from the fifth Korean National Health and Nutrition Examination Survey (KNHANES V) (2010–2012). There were several key findings. First, after adjusting for related variables, the odds ratio (OR) of anemia [hemoglobin (Hb) <13 g/dl in men or Hb <12 g/dl in women] using the vitamin D normal group {25-hydroxyvitamin [25(OH)D] ≥15.0 ng/ml} as reference, was significant for the vitamin D deficient group [25(OH)D <15.0 ng/ml] in the overall population [OR, 1.310; 95% confidence interval (CI), 1.168–1.470]. Second, the OR of anemia, using the vitamin D normal group as reference, was significant for the vitamin D deficient group in premenopausal women (OR, 1.293; 95% CI, 1.105–1.513). However, vitamin D deficiency in the vitamin D normal group in men (OR, 1.093; 95% CI, 0.806–1.484) and postmenopausal women (OR, 1.130; 95% CI, 0.906–1.409) was not significant. In conclusion, Vitamin D deficiency is positively associated with anemia in premenopausal women, but not in men and postmenopausal women.
Collapse
Affiliation(s)
- Jeong Min Seong
- Department of Dental Hygiene, College of Health Science, Kangwon National University, Samcheok-si, Gangwon-do, 25949, South Korea
| | - Chang Eun Park
- Department of Biomedical Laboratory Science, Namseoul University, Cheonan-si, Chungcheongnam-do, 31020, South Korea
| | - Mi Young Gi
- Department of Nursing, Christian College of Nursing, Gwangju, 61662, South Korea
| | - Ju Ae Cha
- Department of Nursing, Chunnam Technouniversity, Gokseong-gun, Jeollanam-do, 57500, South Korea
| | - Ae Eun Moon
- Department of Dental Hygiene, Honam University, Gwangju, 62399, South Korea
| | - Jun Ho Lee
- Department of Clinical Laboratory Science, Wonkwang Health Science University, 514, Iksan-daero, Iksan-si, Jeollabuk-do, 54538, South Korea
| | - Hyun Ho Sung
- Department of Clinical Laboratory Science, Dongnam Health University, Suwonsi, Gyeonggi-do, 16328, South Korea
| | - Jae Heon Lim
- Department of Physiotherapy, Wonkwang Health Science University, 514, Iksan-daero, Iksan-si, Jeollabuk-do, 54538, South Korea
| | - Suk Hee Oh
- Department of Nursing, Jeonbuk Science College, 509, Jeongeupsa-ro, Jeongeup-si, Jeollabuk-do, 56204, South Korea
| | - Chong Hee Chung
- Department of Nursing, Jeonbuk Science College, 509, Jeongeupsa-ro, Jeongeup-si, Jeollabuk-do, 56204, South Korea
| | - Eun Kyung Seo
- Department of Nursing, Jeonbuk Science College, 509, Jeongeupsa-ro, Jeongeup-si, Jeollabuk-do, 56204, South Korea
| | - Hyun Yoon
- Department of Clinical Laboratory Science, Wonkwang Health Science University, 514, Iksan-daero, Iksan-si, Jeollabuk-do, 54538, South Korea
| |
Collapse
|
11
|
Kim C, Choe H, Park J, Kim G, Kim K, Jeon HJ, Moon JK, Kim MJ, Lee SE. Molecular mechanisms of developmental toxicities of azoxystrobin and pyraclostrobin toward zebrafish (Danio rerio) embryos: Visualization of abnormal development using two transgenic lines. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 270:116087. [PMID: 33234374 DOI: 10.1016/j.envpol.2020.116087] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 10/22/2020] [Accepted: 11/12/2020] [Indexed: 06/11/2023]
Abstract
Azoxystrobin (AZ) and pyraclostrobin (PY) are strobilurin fungicides that inhibit fungal mitochondrial respiration. In this study, a representative model, zebrafish (Danio rerio), was used as a test species for acute and developmental toxicity. Survival and malformation rates were observed only PY-treated embryos, with an LC50 value of 77.75 ppb accompanied by a dramatic decrease in hatching rate, while AZ did not show great mortality. Morphological changes were observed in PY-treated embryos with the occurrence of pericadial edema at 25 ppb. A delay in growth was observed after treatment with pyraclostrobin at 50 ppb. Use of genetically engineered Tg(cmlc:EGFP) allowed fluorescence observation during heart development. PY interfered with normal heart development via upregulation of the nppa gene responsible for the expression of natriuretic peptides. Heart function was dramatically reduced as indicated by reduced heart rates. Increased expression of the nppa gene was also seen in AZ-treated embryos. The expression level of cyp24a1 was also up-regulated, while ugt1a1 and sult1st6 were down-regulated after treatment of zebrafish embryos with AZ or PY. Overall, strobilurin fungicides might inhibit normal heart formation and function within the range of concentrations tested.
Collapse
Affiliation(s)
- Chaeeun Kim
- Department of Integrative Biology, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Hyeseung Choe
- School of Applied Biosciences, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Jungeun Park
- Department of Integrative Biology, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Gayoung Kim
- School of Applied Biosciences, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Kyeongnam Kim
- School of Applied Biosciences, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Hwang-Ju Jeon
- School of Applied Biosciences, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Joon-Kwan Moon
- Department of Plant Life and Environmental Sciences, Hankyong National University, Ansung 17579, Republic of Korea
| | - Myoung-Jin Kim
- School of Applied Biosciences, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Sung-Eun Lee
- Department of Integrative Biology, Kyungpook National University, Daegu, 41566, Republic of Korea; School of Applied Biosciences, Kyungpook National University, Daegu, 41566, Republic of Korea.
| |
Collapse
|
12
|
Lee MS, Chyau CC, Wang CP, Wang TH, Chen JH, Lin HH. Flavonoids Identification and Pancreatic Beta-Cell Protective Effect of Lotus Seedpod. Antioxidants (Basel) 2020; 9:antiox9080658. [PMID: 32722185 PMCID: PMC7466071 DOI: 10.3390/antiox9080658] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 07/07/2020] [Accepted: 07/21/2020] [Indexed: 12/12/2022] Open
Abstract
Oxidative stress is highly associated with the development of diabetes mellitus (DM), especially pancreatic beta-cell injury. Flavonoids derived from plants have caused important attention in the prevention or treatment of DM. Lotus seedpod belongs to a traditional Chinese herbal medicine and has been indicated to possess antioxidant, anti-age, anti-glycative, and hepatoprotective activities. The purpose of this study was to demonstrate the pancreatic beta-cell protective effects of lotus seedpod aqueous extracts (LSE) against oxidative injury. According to HPLC/ESI-MS-MS method, LSE was confirmed to have flavonoids derivatives, especially quercetin-3-glucuronide (Q3G). In vitro, LSE dose-dependently improved the survival and function of rat pancreatic beta-cells (RIN-m5F) from hydrogen peroxide (H2O2)-mediated loss of cell viability, impairment of insulin secretion, and promotion of oxidative stress. LSE showed potential in decreasing the H2O2-induced occurrence of apoptosis. In addition, H2O2-triggered acidic vesicular organelle formation and microtubule-associated protein light chain 3 (LC3)-II upregulation, markers of autophagy, were increased by LSE. Molecular data explored that antiapoptotic and autophagic effects of LSE, comparable to that of Q3G, might receptively be mediated via phospho-Bcl-2-associated death promoter (p-Bad)/B-cell lymphoma 2 (Bcl-2) and class III phosphatidylinositol-3 kinase (PI3K)/LC3-II signal pathway. In vivo, LSE improved the DM symptoms and pancreatic cell injury better than metformin, a drug that is routinely prescribed to treat DM. These data implied that LSE induces the autophagic signaling, leading to protect beta-cells from oxidative stress-related apoptosis and injury.
Collapse
Affiliation(s)
- Ming-Shih Lee
- Department of Medical Laboratory and Biotechnology, Chung Shan Medical University, Taichung City 40201, Taiwan; (M.-S.L.); (C.-P.W.); (T.-H.W.)
- Department of Clinical Laboratory, Chung Shan Medical University Hospital, Taichung City 40201, Taiwan
| | - Charng-Cherng Chyau
- Research Institute of Biotechnology, Hungkuang University, Taichung City 43302, Taiwan;
| | - Chi-Ping Wang
- Department of Medical Laboratory and Biotechnology, Chung Shan Medical University, Taichung City 40201, Taiwan; (M.-S.L.); (C.-P.W.); (T.-H.W.)
- Department of Clinical Laboratory, Chung Shan Medical University Hospital, Taichung City 40201, Taiwan
| | - Ting-Hsuan Wang
- Department of Medical Laboratory and Biotechnology, Chung Shan Medical University, Taichung City 40201, Taiwan; (M.-S.L.); (C.-P.W.); (T.-H.W.)
| | - Jing-Hsien Chen
- Department of Clinical Laboratory, Chung Shan Medical University Hospital, Taichung City 40201, Taiwan
- Department of Nutrition, Chung Shan Medical University, Taichung City 40201, Taiwan
- Correspondence: (J.-H.C.); (H.-H.L.); Tel.: +886-424-730-022 (ext. 12195) (J.-H.C.); +886-424-730-022 (ext. 12410) (H.-H.L.)
| | - Hui-Hsuan Lin
- Department of Medical Laboratory and Biotechnology, Chung Shan Medical University, Taichung City 40201, Taiwan; (M.-S.L.); (C.-P.W.); (T.-H.W.)
- Department of Clinical Laboratory, Chung Shan Medical University Hospital, Taichung City 40201, Taiwan
- Correspondence: (J.-H.C.); (H.-H.L.); Tel.: +886-424-730-022 (ext. 12195) (J.-H.C.); +886-424-730-022 (ext. 12410) (H.-H.L.)
| |
Collapse
|