1
|
Morphological and chemical composition of particulate matter in buses exhaust. Toxicol Rep 2018; 6:120-125. [PMID: 30671347 PMCID: PMC6327065 DOI: 10.1016/j.toxrep.2018.12.002] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 12/03/2018] [Accepted: 12/07/2018] [Indexed: 12/17/2022] Open
Abstract
Particle size distribution is divided in two groups, particles sized under 50 μm and particles within the range of 100–1000 μm. Soot particles are represented by amorphous carbon, while in 5% of cases structured carbon particles is found. According to RAMAN spectra, large particles are carbon agglomerates of irregular form. Samples contained metals hazardous to organisms such as Al, Cd, Cr, Cu, Fe, Mg, Ni, Pb and Zn. Buses running on diesel fuel are the source of emission of predominantly large particles.
This research article investigates the particulate matter originated from the exhaust emissions of 20 bus models, within the territory of Vladivostok, Russian Federation. The majority of evaluated buses (17 out of 20) had emissions of large particles with sizes greater than 400 μm, which account for more than 80% of all measured particles. The analysis of the elemental composition showed that the exhaust emissions contained Al, Cd, Cu, Fe, Mg, Ni, Pb, and Zn, with the concentration of Zn prevailing in all samples by two to three orders of magnitude higher than the concentrations of the other elements.
Collapse
|
2
|
Øvrevik J, Refsnes M, Låg M, Brinchmann BC, Schwarze PE, Holme JA. Triggering Mechanisms and Inflammatory Effects of Combustion Exhaust Particles with Implication for Carcinogenesis. Basic Clin Pharmacol Toxicol 2017; 121 Suppl 3:55-62. [PMID: 28001342 DOI: 10.1111/bcpt.12746] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Accepted: 12/06/2016] [Indexed: 12/11/2022]
Abstract
A number of biological responses may contribute to the carcinogenic effects of combustion-derived particulate matter (CPM). Here, we focus on mechanisms that trigger CPM-induced pro-inflammatory responses. Inflammation has both genotoxic and non-genotoxic implications and is considered to play a central role in development of various health outcome associated with CPM exposure, including cancer. Chronic, low-grade inflammation may cause DNA damage through a persistent increased level of reactive oxygen species (ROS) produced and released by activated immune cells. Moreover, a number of pro-inflammatory cytokines and chemokines display mitogenic, motogenic, morphogenic and/or angiogenic properties and may therefore contribute to tumour growth and metastasis. The key triggering events involved in activation of pro-inflammatory responses by CPM and soluble CPM components can be categorized into (i) formation of ROS and oxidative stress, (ii) interaction with the lipid layer of cellular membranes, (iii) activation of receptors, ion channels and transporters on the cell surface and (iv) interactions with intracellular molecular targets including receptors such as the aryl hydrocarbon receptor (AhR). In particular, we will elucidate the effects of diesel exhaust particles (DEP) using human lung epithelial cells as a model system.
Collapse
Affiliation(s)
- Johan Øvrevik
- Department of Air Pollution and Noise, Domain for Infection Control and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Magne Refsnes
- Department of Air Pollution and Noise, Domain for Infection Control and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Marit Låg
- Department of Air Pollution and Noise, Domain for Infection Control and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Bendik C Brinchmann
- Department of Air Pollution and Noise, Domain for Infection Control and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Per E Schwarze
- Department of Air Pollution and Noise, Domain for Infection Control and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Jørn A Holme
- Department of Air Pollution and Noise, Domain for Infection Control and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| |
Collapse
|
3
|
Øvrevik J, Refsnes M, Låg M, Holme JA, Schwarze PE. Activation of Proinflammatory Responses in Cells of the Airway Mucosa by Particulate Matter: Oxidant- and Non-Oxidant-Mediated Triggering Mechanisms. Biomolecules 2015; 5:1399-440. [PMID: 26147224 PMCID: PMC4598757 DOI: 10.3390/biom5031399] [Citation(s) in RCA: 156] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 06/16/2015] [Accepted: 06/16/2015] [Indexed: 12/23/2022] Open
Abstract
Inflammation is considered to play a central role in a diverse range of disease outcomes associated with exposure to various types of inhalable particulates. The initial mechanisms through which particles trigger cellular responses leading to activation of inflammatory responses are crucial to clarify in order to understand what physico-chemical characteristics govern the inflammogenic activity of particulate matter and why some particles are more harmful than others. Recent research suggests that molecular triggering mechanisms involved in activation of proinflammatory genes and onset of inflammatory reactions by particles or soluble particle components can be categorized into direct formation of reactive oxygen species (ROS) with subsequent oxidative stress, interaction with the lipid layer of cellular membranes, activation of cell surface receptors, and direct interactions with intracellular molecular targets. The present review focuses on the immediate effects and responses in cells exposed to particles and central down-stream signaling mechanisms involved in regulation of proinflammatory genes, with special emphasis on the role of oxidant and non-oxidant triggering mechanisms. Importantly, ROS act as a central second-messenger in a variety of signaling pathways. Even non-oxidant mediated triggering mechanisms are therefore also likely to activate downstream redox-regulated events.
Collapse
Affiliation(s)
- Johan Øvrevik
- Department of Air Pollution and Noise, Division of Environmental Medicine, Norwegian Institute of Public Health, P.O. Box 4404 Nydalen, N-0403 Oslo, Norway.
| | - Magne Refsnes
- Department of Air Pollution and Noise, Division of Environmental Medicine, Norwegian Institute of Public Health, P.O. Box 4404 Nydalen, N-0403 Oslo, Norway.
| | - Marit Låg
- Department of Air Pollution and Noise, Division of Environmental Medicine, Norwegian Institute of Public Health, P.O. Box 4404 Nydalen, N-0403 Oslo, Norway.
| | - Jørn A Holme
- Department of Air Pollution and Noise, Division of Environmental Medicine, Norwegian Institute of Public Health, P.O. Box 4404 Nydalen, N-0403 Oslo, Norway.
| | - Per E Schwarze
- Department of Air Pollution and Noise, Division of Environmental Medicine, Norwegian Institute of Public Health, P.O. Box 4404 Nydalen, N-0403 Oslo, Norway.
| |
Collapse
|
4
|
Kyjovska ZO, Jacobsen NR, Saber AT, Bengtson S, Jackson P, Wallin H, Vogel U. DNA strand breaks, acute phase response and inflammation following pulmonary exposure by instillation to the diesel exhaust particle NIST1650b in mice. Mutagenesis 2015; 30:499-507. [DOI: 10.1093/mutage/gev009] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
|
5
|
Early postnatal, but not late, exposure to chemical ambient pollutant 1,2-naphthoquinone increases susceptibility to pulmonary allergic inflammation at adulthood. Arch Toxicol 2014; 88:1589-605. [PMID: 24554396 DOI: 10.1007/s00204-014-1212-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Accepted: 02/03/2014] [Indexed: 02/07/2023]
Abstract
High diesel exhaust particle levels are associated with increased health effects; however, knowledge on the impact of its chemical contaminant 1,2-naphthoquinone (1,2-NQ) is limited. We investigated whether postnatal and adult exposures to 1,2-NQ influence allergic reaction and the roles of innate and adaptive immunity. Male neonate (6 days) and adult (56 days) C57Bl/6 mice were exposed to 1,2-NQ (100 nM; 15 min) for 3 days, and on day 59, they were sensitized and later challenged with ovalbumin (OVA). Airway hyper-responsiveness (AHR) and production of cytokines, immunoglobulin E (IgE) and leukotriene B4 (LTB4) were measured in the airways. Postnatal exposure to 1,2-NQ activated dendritic cells in splenocytes by increasing expressing cell surface molecules (e.g., CD11c). Co-exposure to OVA effectively polarized T helper (Th) type 2 (Th2) by secreting Th2-mediated cytokines. Re-stimulation with unspecific stimuli (PMA and ionomycin) generated a mixed Th1 (CD4(+)/IFN-γ(+)) and Th17 (CD4(+)/IL-17(+)) phenotype in comparison with the vehicle-matched group. Postnatal exposure to 1,2-NQ did not induce eosinophilia in the airways at adulthood, although it evoked neutrophilia and exacerbated OVA-induced eosinophilia, Th2 cytokines, IgE and LTB4 production without affecting AHR and mast cell degranulation. At adulthood, 1,2-NQ exposure evoked neutrophilia and increased Th1/Th2 cytokine levels, but failed to affect OVA-induced eosinophilia. In conclusion, postnatal exposure to 1,2-NQ increases the susceptibility to antigen-induced asthma. The mechanism appears to be dependent on increased expression of co-stimulatory molecules, which leads to cell presentation amplification, Th2 polarization and enhanced LTB4, humoral response and Th1/Th2 cytokines. These findings may be useful for future investigations on treatments focused on pulmonary illnesses observed in children living in heavy polluted areas.
Collapse
|
6
|
Totlandsdal AI, Øvrevik J, Cochran RE, Herseth JI, Bølling AK, Låg M, Schwarze P, Lilleaas E, Holme JA, Kubátová A. The occurrence of polycyclic aromatic hydrocarbons and their derivatives and the proinflammatory potential of fractionated extracts of diesel exhaust and wood smoke particles. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2014; 49:383-96. [PMID: 24345236 DOI: 10.1080/10934529.2014.854586] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Exposure to combustion emissions, including diesel engine exhaust and wood smoke particles (DEPs and WSPs), has been associated with inflammatory responses. To investigate the possible role of polycyclic aromatic hydrocarbons (PAHs) and PAH-derivatives, the DEPs and WSPs methanol extracts were fractionated by solid phase extraction (SPE), and the fractions were analyzed for more than ∼120 compounds. The pro-inflammatory effects of the fractionated extracts were characterized by exposure of bronchial epithelial lung cells (BEAS-2B). Both native DEPs and WSPs caused a concentration-dependent increase in IL-6 and IL-8 release and cytotoxicity. This is consistent with the finding of a rather similar total content of PAHs and PAH-derivatives. Yet, the samples differed in specific components, suggesting that different species contribute to the toxicological response in these two types of particles. The majority of the IL-6 release and cytotoxicity was induced upon exposure to the most polar (methanol) SPE fraction of extracts from both samples. In these fractions hydroxy-PAHs, carboxy-PAHs were observed along with nitro-amino-PAHs in DEP. However, the biological effects induced by the polar fractions could not be attributed only to the occurrence of PAH-derivatives. The present findings indicate a need for further characterization of organic extracts, beyond an extensive analysis of commonly suspected PAH and PAH-derivatives. Supplemental materials are available for this article. Go to the publisher's online edition of Journal of Environmental Science and Health, Part A, to view the supplemental file.
Collapse
Affiliation(s)
- Annike I Totlandsdal
- a Department of Air Pollution and Noise, Division of Environmental Medicine , Norwegian Institute of Public Health , Oslo , Norway
| | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Inflammation-related effects of diesel engine exhaust particles: studies on lung cells in vitro. BIOMED RESEARCH INTERNATIONAL 2013; 2013:685142. [PMID: 23509760 PMCID: PMC3586454 DOI: 10.1155/2013/685142] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Revised: 01/04/2013] [Accepted: 01/15/2013] [Indexed: 01/17/2023]
Abstract
Diesel exhaust and its particles (DEP) have been under scrutiny for health effects in humans. In the development of these effects inflammation is regarded as a key process. Overall, in vitro studies report similar DEP-induced changes in markers of inflammation, including cytokines and chemokines, as studies in vivo. In vitro studies suggest that soluble extracts of DEP have the greatest impact on the expression and release of proinflammatory markers. Main DEP mediators of effects have still not been identified and are difficult to find, as fuel and engine technology developments lead to continuously altered characteristics of emissions. Involved mechanisms remain somewhat unclear. DEP extracts appear to comprise components that are able to activate various membrane and cytosolic receptors. Through interactions with receptors, ion channels, and phosphorylation enzymes, molecules in the particle extract will trigger various cell signaling pathways that may lead to the release of inflammatory markers directly or indirectly by causing cell death. In vitro studies represent a fast and convenient system which may have implications for technology development. Furthermore, knowledge regarding how particles elicit their effects may contribute to understanding of DEP-induced health effects in vivo, with possible implications for identifying susceptible groups of people and effect biomarkers.
Collapse
|
8
|
Kumamoto T, Tsukue N, Takano H, Takeda K, Oshio S. Fetal exposure to diesel exhaust affects X-chromosome inactivation factor expression in mice. J Toxicol Sci 2013; 38:245-54. [DOI: 10.2131/jts.38.245] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
- Takayuki Kumamoto
- School of Pharmaceutical Science, Ohu University
- Faculty of Pharmaceutical Science, Tokyo University of Science
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology (JST)
| | - Naomi Tsukue
- Faculty of Pharmaceutical Science, Tokyo University of Science
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology (JST)
| | - Hirohisa Takano
- Environmental Health Sciences Division, National Institute for Environmental Studies
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology (JST)
| | - Ken Takeda
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology (JST)
- Faculty of Pharmaceutical Science, Tokyo University of Science
| | - Shigeru Oshio
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology (JST)
- Faculty of Pharmaceutical Science, Tokyo University of Science
- School of Pharmaceutical Science, Ohu University
| |
Collapse
|
9
|
Differential effects of the particle core and organic extract of diesel exhaust particles. Toxicol Lett 2011; 208:262-8. [PMID: 22100492 DOI: 10.1016/j.toxlet.2011.10.025] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Revised: 10/26/2011] [Accepted: 10/27/2011] [Indexed: 12/14/2022]
Abstract
Exposure to diesel engine exhaust particles (DEPs), representing a complex and variable mixture of components, has been associated with lung disease and induction of pro-inflammatory mediators and CYP1A1 expression. The aim of this study was to further characterise DEP-components accounting for these effects. Human bronchial epithelial cells (BEAS-2B) were exposed to either native DEPs, or corresponding methanol DEP-extract or residual DEPs, and investigated with respect to cytotoxicity and expression and release of multiple inflammation-related mediators. Both native DEPs and DEP-extract, but not residual DEPs, induced marked mRNA expression of COX-2, IL-6 and IL-8, as well as cytotoxicity and release of IL-6. However, CYP1A1 was primarily induced by the native and residual DEPs. Overall, the results of near-edge X-ray absorption fine structure (NEXAFS) spectroscopy and gas chromatography with mass spectrometry (GC/MS) analysis of DEP-extracts indicated that the majority of the analysed PAHs and PAH-derivatives were extracted from the particles, but that certain PAH-derivatives, probably their carboxylic isomers, tended to be retained on the residual DEPs. Moreover, it appeared that certain components of the methanol extract may suppress CYP1A1 expression. These results provide insight into how different components of the complex DEP-mixture may be differently involved in DEP-induced pro-inflammatory responses and underscore the importance of identifying and clarifying the roles of active DEP-components in relation to different biological effects.
Collapse
|
10
|
Jaspers I, Sheridan PA, Zhang W, Brighton LE, Chason KD, Hua X, Tilley SL. Exacerbation of allergic inflammation in mice exposed to diesel exhaust particles prior to viral infection. Part Fibre Toxicol 2009; 6:22. [PMID: 19682371 PMCID: PMC2739151 DOI: 10.1186/1743-8977-6-22] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2009] [Accepted: 08/14/2009] [Indexed: 01/24/2023] Open
Abstract
Background Viral infections and exposure to oxidant air pollutants are two of the most important inducers of asthma exacerbation. Our previous studies have demonstrated that exposure to diesel exhaust increases the susceptibility to influenza virus infections both in epithelial cells in vitro and in mice in vivo. Therefore, we examined whether in the setting of allergic asthma, exposure to oxidant air pollutants enhances the susceptibility to respiratory virus infections, which in turn leads to increased virus-induced exacerbation of asthma. Ovalbumin-sensitized (OVA) male C57BL/6 mice were instilled with diesel exhaust particles (DEP) or saline and 24 hours later infected with influenza A/PR/8. Animals were sacrificed 24 hours post-infection and analyzed for markers of lung injury, allergic inflammation, and pro-inflammatory cytokine production. Results Exposure to DEP or infection with influenza alone had no significant effects on markers of injury or allergic inflammation. However, OVA-sensitized mice that were exposed to DEP and subsequently infected with influenza showed increased levels of eosinophils in lung lavage and tissue. In addition Th2-type cytokines, such as IL-4 and IL-13, and markers of eosinophil chemotaxis, such as CCL11 and CCR3, were increased in OVA-sensitized mice exposed to DEP prior to infection with influenza. These mice also showed increased levels of IL-1α, but not IL-10, RANTES, and MCP-1 in lung homogenates. Conclusion These data suggest that in the setting of allergic asthma, exposure to diesel exhaust could enhance virus-induced exacerbation of allergic inflammation.
Collapse
Affiliation(s)
- Ilona Jaspers
- Department of Pediatrics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.
| | | | | | | | | | | | | |
Collapse
|
11
|
Non-cancer health effects of diesel exhaust: A critical assessment of recent human and animal toxicological literature. Crit Rev Toxicol 2009; 39:195-227. [DOI: 10.1080/10408440802220603] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
12
|
Kambayashi Y, Ogino K, Takemoto K, Imagama T, Takigawa T, Kimura S, Hibino Y, Hitomi Y, Nakamura H. Preparation and Characterization of a Polyclonal Antibody against Brominated Protein. J Clin Biochem Nutr 2008; 44:95-103. [PMID: 19177194 PMCID: PMC2613505 DOI: 10.3164/jcbn.08-196] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2008] [Accepted: 09/26/2008] [Indexed: 12/21/2022] Open
Abstract
(Di)bromotyrosine is formed by the specific reaction of eosinophil peroxidase and can be used as an eosinophil activation marker. In the present study, an antibody for (di)bromotyrosine in proteins was prepared to investigate the pathogenesis of eosinophil-related diseases such as allergic responses. A rabbit polyclonal antibody was raised against brominated keyhole limpet hemocyanin. The specificity of the antiserum was investigated with an enzyme-linked immunosorbent assay (ELISA). The antiserum recognized brominated bovine serum albumin (BSA) and dibromotyrosine-conjugated BSA. The antiserum also reacted with chlorinated BSA and di-iodotyrosine-conjugated BSA. Moreover, the specificity of the antiserum was investigated using competitive ELISA. Dibromotyrosine and di-iodotyrosine inhibited the recognition of brominated BSA by the antiserum. However, the recognition of brominated BSA by the antiserum was not inhibited by bromotyrosine, chlorotyrosine, iodotyrosine, nitrotyrosine, aminotyrosine, phosphotyrosine, or tyrosine. These results suggested that the epitope of the antiserum is dihalogenated tyrosine. Immunohistochemically, the antiserum stained brominated rat eosinophils but not chlorinated or nitrated eosinophils. In conclusion, an antiserum for dihalogenated protein was prepared. It is expected that the antiserum will be useful for the analysis of the pathogenesis of allergic diseases such as asthma and atopic dermatitis.
Collapse
Affiliation(s)
- Yasuhiro Kambayashi
- Department of Environmental and Preventive Medicine, Graduate School of Medical Science, Kanazawa University, 13-1 Takara-machi, Kanazawa 920-8640, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|