1
|
Taheri A, Khandaker MU, Moradi F, Bradley DA. A simulation study on the radiosensitization properties of gold nanorods. Phys Med Biol 2024; 69:045029. [PMID: 38286017 DOI: 10.1088/1361-6560/ad2380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 01/29/2024] [Indexed: 01/31/2024]
Abstract
Objective. Gold nanorods (GNRs) have emerged as versatile nanoparticles with unique properties, holding promise in various modalities of cancer treatment through drug delivery and photothermal therapy. In the rapidly evolving field of nanoparticle radiosensitization (NPRS) for cancer therapy, this study assessed the potential of gold nanorods as radiosensitizing agents by quantifying the key features of NPRS, such as secondary electron emission and dose enhancement, using Monte Carlo simulations.Approach. Employing the TOPAS track structure code, we conducted a comprehensive evaluation of the radiosensitization behavior of spherical gold nanoparticles and gold nanorods. We systematically explored the impact of nanorod geometry (in particular size and aspect ratio) and orientation on secondary electron emission and deposited energy ratio, providing validated results against previously published simulations.Main results. Our findings demonstrate that gold nanorods exhibit comparable secondary electron emission to their spherical counterparts. Notably, nanorods with smaller surface-area-to-volume ratios (SA:V) and alignment with the incident photon beam proved to be more efficient radiosensitizing agents, showing superiority in emitted electron fluence. However, in the microscale, the deposited energy ratio (DER) was not markedly influenced by the SA:V of the nanorod. Additionally, our findings revealed that the geometry of gold nanoparticles has a more significant impact on the emission of M-shell Auger electrons (with energies below 3.5 keV) than on higher-energy electrons.Significance. This research investigated the radiosensitization properties of gold nanorods, positioning them as promising alternatives to the more conventionally studied spherical gold nanoparticles in the context of cancer research. With increasing interest in multimodal cancer therapy, our findings have the potential to contribute valuable insights into the perspective of gold nanorods as effective multipurpose agents for synergistic photothermal therapy and radiotherapy. Future directions may involve exploring alternative metallic nanorods as well as further optimizing the geometry and coating materials, opening new possibilities for more effective cancer treatments.
Collapse
Affiliation(s)
- Ali Taheri
- Applied Physics and Radiation Technologies Group, CCDCU, School of Engineering and Technology, Sunway University, 47500 Bandar Sunway, Selangor, Malaysia
| | - Mayeen Uddin Khandaker
- Applied Physics and Radiation Technologies Group, CCDCU, School of Engineering and Technology, Sunway University, 47500 Bandar Sunway, Selangor, Malaysia
- Faculty of Graduate Studies, Daffodil International University, Daffodil Smart City, Birulia, Savar, Dhaka 1216, Bangladesh
| | - Farhad Moradi
- Fibre Optics Research Centre, Faculty of Engineering, Multimedia University, Jalan Multimedia 63100, Cyberjaya, Malaysia
| | - David Andrew Bradley
- Applied Physics and Radiation Technologies Group, CCDCU, School of Engineering and Technology, Sunway University, 47500 Bandar Sunway, Selangor, Malaysia
- School of Mathematics and Physics, University of Surrey, Guildford, GU2 7XH, United Kingdom
| |
Collapse
|
2
|
Kouri MA, Spyratou E, Kalkou ME, Patatoukas G, Angelopoulou E, Tremi I, Havaki S, Gorgoulis VG, Kouloulias V, Platoni K, Efstathopoulos EP. Nanoparticle-Mediated Radiotherapy: Unraveling Dose Enhancement and Apoptotic Responses in Cancer and Normal Cell Lines. Biomolecules 2023; 13:1720. [PMID: 38136591 PMCID: PMC10742116 DOI: 10.3390/biom13121720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/21/2023] [Accepted: 11/28/2023] [Indexed: 12/24/2023] Open
Abstract
Cervical cancer remains a pressing global health concern, necessitating advanced therapeutic strategies. Radiotherapy, a fundamental treatment modality, has faced challenges such as targeted dose deposition and radiation exposure to healthy tissues, limiting optimal outcomes. To address these hurdles, nanomaterials, specifically gold nanoparticles (AuNPs), have emerged as a promising avenue. This study delves into the realm of cervical cancer radiotherapy through the meticulous exploration of AuNPs' impact. Utilizing ex vivo experiments involving cell lines, this research dissected intricate radiobiological interactions. Detailed scrutiny of cell survival curves, dose enhancement factors (DEFs), and apoptosis in both cancer and normal cervical cells revealed profound insights. The outcomes showcased the substantial enhancement of radiation responses in cancer cells following AuNP treatment, resulting in heightened cell death and apoptotic levels. Significantly, the most pronounced effects were observed 24 h post-irradiation, emphasizing the pivotal role of timing in AuNPs' efficacy. Importantly, AuNPs exhibited targeted precision, selectively impacting cancer cells while preserving normal cells. This study illuminates the potential of AuNPs as potent radiosensitizers in cervical cancer therapy, offering a tailored and efficient approach. Through meticulous ex vivo experimentation, this research expands our comprehension of the complex dynamics between AuNPs and cells, laying the foundation for their optimized clinical utilization.
Collapse
Affiliation(s)
- Maria Anthi Kouri
- 2nd Department of Radiology, Medical School, Attikon University Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece; (M.A.K.); (E.S.); (G.P.); (V.K.); (K.P.)
- Medical Physics Program, Department of Physics and Applied Physics, Kennedy College of Sciences, University of Massachusetts Lowell, 265 Riverside St., Lowell, MA 01854, USA
| | - Ellas Spyratou
- 2nd Department of Radiology, Medical School, Attikon University Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece; (M.A.K.); (E.S.); (G.P.); (V.K.); (K.P.)
- Physics Department, School of Applied Mathematical and Physical Sciences, National Technical University of Athens, Iroon Polytechniou 9, 15780 Athens, Greece
| | - Maria-Eleni Kalkou
- Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Str., 11527 Athens, Greece;
| | - Georgios Patatoukas
- 2nd Department of Radiology, Medical School, Attikon University Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece; (M.A.K.); (E.S.); (G.P.); (V.K.); (K.P.)
| | - Evangelia Angelopoulou
- 2nd Department of Pathology, School of Medicine, Attikon University Hospital, National and Kapodistrian University of Athens, 12462 Athens, Greece;
| | - Ioanna Tremi
- Molecular Carcinogenesis Group, Department of Histology and Embryology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (I.T.); (S.H.); (V.G.G.)
| | - Sophia Havaki
- Molecular Carcinogenesis Group, Department of Histology and Embryology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (I.T.); (S.H.); (V.G.G.)
| | - Vassilis G. Gorgoulis
- Molecular Carcinogenesis Group, Department of Histology and Embryology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (I.T.); (S.H.); (V.G.G.)
- Biomedical Research Foundation, Academy of Athens, 11527 Athens, Greece
- Ninewells Hospital and Medical School, University of Dundee, Dundee DD1 9SY, UK
- Faculty Institute for Cancer Sciences, Manchester Academic Health Sciences Centre, University of Manchester, Manchester M20 4GJ, UK
- Faculty of Health and Medical Sciences, University of Surrey, Surrey GU2 7YH, UK
| | - Vassilis Kouloulias
- 2nd Department of Radiology, Medical School, Attikon University Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece; (M.A.K.); (E.S.); (G.P.); (V.K.); (K.P.)
| | - Kalliopi Platoni
- 2nd Department of Radiology, Medical School, Attikon University Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece; (M.A.K.); (E.S.); (G.P.); (V.K.); (K.P.)
| | - Efstathios P. Efstathopoulos
- 2nd Department of Radiology, Medical School, Attikon University Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece; (M.A.K.); (E.S.); (G.P.); (V.K.); (K.P.)
| |
Collapse
|
3
|
Fathy MM, Elfiky AA, Bashandy YS, Hamdy MM, Elgharib AM, Ibrahim IM, Kamal RT, Mohamed AS, Rashad AM, Ahmed OS, Elkaramany Y, Abdelaziz YS, Amin FG, Eid JI. An insight into synthesis and antitumor activity of citrate and gallate stabilizing gold nanospheres. Sci Rep 2023; 13:2749. [PMID: 36797452 PMCID: PMC9935520 DOI: 10.1038/s41598-023-29821-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 02/10/2023] [Indexed: 02/18/2023] Open
Abstract
Both gallic and citrate are well-established antioxidants that show promise as new selective anti-cancer drugs. Gold nanoparticles (AuNPs) as well can be developed as flexible and nontoxic nano-carriers for anti-cancer drugs. This article evaluating the efficiency and biocompatibility of gallic acid and citrate capping gold nanoparticles to be used as anti-cancer drug. The biosafety and therapeutic efficiency of prepared nano-formulations were tested on Hela and normal BHK cell line. Gold nanospheres coated with citrate and gallate were synthesized via wet chemical reduction method. The prepared nano-formulations, citrate and gallate coated gold nanospheres (Cit-AuNPs and Ga-AuNPs), were characterized with respect to their morphology, FTIR spectra, and physical properties. In addition, to assess their cytotoxicity, cell cycle arrest and flow cytometry to measure biological response were performed. Cit-Au NPs and Ga-Au NPs were shown to significantly reduce the viability of Hela cancer cells. Both G0/G cell cycle arrest and comet assay results showed that genotoxic effect was induced in Hela cells by Cit-Au NPs and Ga-Au NPs. The results of this study showed that Cit-Au NPs and Ga-AuNPs inhibit the growth of metastatic cervical cancer cells, which could have therapeutic implications.
Collapse
Affiliation(s)
- Mohamed M. Fathy
- grid.7776.10000 0004 0639 9286Biophysics Department, Faculty of Science, Cairo University, Giza, Egypt
| | - Abdo A. Elfiky
- grid.7776.10000 0004 0639 9286Biophysics Department, Faculty of Science, Cairo University, Giza, Egypt
| | - Yousef S. Bashandy
- grid.7776.10000 0004 0639 9286Biotechnology and Biomolecular Chemistry Department, Cairo University, Giza, Egypt
| | - Mayar M. Hamdy
- grid.7776.10000 0004 0639 9286Biotechnology and Biomolecular Chemistry Department, Cairo University, Giza, Egypt
| | - Ahmed M. Elgharib
- grid.7776.10000 0004 0639 9286Biophysics Department, Faculty of Science, Cairo University, Giza, Egypt
| | - Ibrahim M. Ibrahim
- grid.7776.10000 0004 0639 9286Biophysics Department, Faculty of Science, Cairo University, Giza, Egypt
| | - Rana T. Kamal
- grid.7776.10000 0004 0639 9286Biotechnology and Biomolecular Chemistry Department, Cairo University, Giza, Egypt
| | - Ahmed S. Mohamed
- grid.7776.10000 0004 0639 9286Biophysics Department, Faculty of Science, Cairo University, Giza, Egypt
| | - Anan M. Rashad
- grid.7776.10000 0004 0639 9286Biotechnology and Biomolecular Chemistry Department, Cairo University, Giza, Egypt
| | - Ola S. Ahmed
- grid.7776.10000 0004 0639 9286Virology and Immunology Unit, Cancer Biology Department, National Cancer Institute, Cairo University, Giza, Egypt
| | - Yomna Elkaramany
- grid.7776.10000 0004 0639 9286Biotechnology and Biomolecular Chemistry Department, Cairo University, Giza, Egypt
| | - Youssef S. Abdelaziz
- grid.7776.10000 0004 0639 9286Botany and Microbiology Department, Faculty of Science, Cairo University, Giza, Egypt
| | - Fatma G. Amin
- grid.7155.60000 0001 2260 6941Physics Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Jehane I. Eid
- grid.7776.10000 0004 0639 9286Zoology Department, Faculty of Science, Cairo University, Giza, Egypt
| |
Collapse
|
4
|
Quantification of Nanoscale Dose Enhancement in Gold Nanoparticle-Aided External Photon Beam Radiotherapy. Cancers (Basel) 2022; 14:cancers14092167. [PMID: 35565296 PMCID: PMC9102439 DOI: 10.3390/cancers14092167] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/22/2022] [Accepted: 04/23/2022] [Indexed: 01/27/2023] Open
Abstract
The recent progress in Nanotechnology has introduced Gold Nanoparticles (AuNPs) as promising radiosensitizing agents in radiation oncology. This work aims to estimate dose enhancement due to the presence of AuNPs inside an irradiated water region through Monte Carlo calculations. The GATE platform was used to simulate 6 MV photon histories generated from a TrueBeam® linear accelerator with and without a Flattening Filter (FF) and model AuNPs clusters. The AuNPs size, concentration and distribution pattern were examined. To investigate different clinical irradiation conditions, the effect of field size, presence of FF and placement of AuNPs in water were evaluated. The range of Dose Enhancement Factors (DEF = DoseAu/DoseWater) calculated in this study is 0.99 ± 0.01-1.26 ± 0.02 depending on photon beam quality, distance from AuNPs surface, AuNPs size and concentration and pattern of distribution. The highest DEF is reported for irradiation using un-flattened photon beams and at close distances from AuNPs. The obtained findings suggest that dose deposition could be increased in regions that represent whole cells or subcellular targets (mitochondria, cell nucleus, etc.). Nevertheless, further and consistent research is needed in order to make a step toward AuNP-aided radiotherapy in clinical practice.
Collapse
|
5
|
Kiseleva M, Omar MM, Boisselier É, Selivanova SV, Fortin MA. A Three-Dimensional Printable Hydrogel Formulation for the Local Delivery of Therapeutic Nanoparticles to Cervical Cancer. ACS Biomater Sci Eng 2022; 8:1200-1214. [PMID: 35226460 DOI: 10.1021/acsbiomaterials.1c01399] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Cervical cancer is the fourth most common malignancy among women. Compared to other types of cancer, therapeutic agents can be administrated locally at the mucosal vaginal membrane. Thermosensitive gels have been developed over the years for contraception or for the treatment of bacterial, fungal, and sexually transmitted infections. These formulations often carry therapeutic nanoparticles and are now being considered in the arsenal of tools for oncology. They can also be three-dimensionally (3D) printed for a better geometrical adjustment to the anatomy of the patient, thus enhancing the local delivery treatment. In this study, a localized delivery system composed of a Pluronic F127-alginate hydrogel with efficient nanoparticle (NP) release properties was prepared for intravaginal application procedures. The kinetics of hydrogel degradation and its NP releasing properties were demonstrated with ultrasmall gold nanoparticles (∼80% of encapsulated AuNPs released in 48 h). The mucoadhesive properties of the hydrogel formulation were assayed by the periodic acid/Schiff reagent staining, which revealed that 19% of mucins were adsorbed on the gel's surface. The hydrogel formulation was tested for cytocompatibility in three cell lines (HeLa, CRL 2616, and BT-474; no sign of cytotoxicity revealed). The release of AuNPs from the hydrogel and their accumulation in vaginal membranes were quantitatively measured in vitro/ex vivo with positron emission tomography, a highly sensitive modality allowing real-time imaging of nanoparticle diffusion (lag time to start of permeation of 3.3 h, 47% of AuNPs accumulated in the mucosa after 42 h). Finally, the potential of the AuNP-containing Pluronic F127-alginate hydrogel for 3D printing was demonstrated, and the geometrical precision of the 3D printed systems was measured by magnetic resonance imaging (<0.5 mm precision; deviation from the design values <2.5%). In summary, this study demonstrates the potential of Pluronic F127-alginate formulations for the topical administration of NP-releasing gels applied to vaginal wall therapy. This technology could open new possibilities for photothermal and radiosensitizing oncology applications.
Collapse
Affiliation(s)
- Mariia Kiseleva
- Département de Génie des Mines, de la Métallurgie et des Matériaux, Centre de Recherche sur les Matériaux Avancés (CERMA), Université Laval, Québec G1V 0A6, Canada
- Axe Médecine Régénératrice, Centre de Recherche du CHU de Québec - Université Laval, 2705, boul. Laurier (T1-61a), Québec G1V 4G2, Canada
| | - Mahmoud M Omar
- Département de Génie des Mines, de la Métallurgie et des Matériaux, Centre de Recherche sur les Matériaux Avancés (CERMA), Université Laval, Québec G1V 0A6, Canada
- Axe Médecine Régénératrice, Centre de Recherche du CHU de Québec - Université Laval, 2705, boul. Laurier (T1-61a), Québec G1V 4G2, Canada
| | - Élodie Boisselier
- Axe Médecine Régénératrice, Centre de Recherche du CHU de Québec - Université Laval, 2705, boul. Laurier (T1-61a), Québec G1V 4G2, Canada
- Département d'Ophtalmologie, Faculté de Médecine, Centre de Recherche sur les 1022 Matériaux Avancés (CERMA) and CUO-Recherche, Université Laval, Québec G3K 1A3, Canada
| | - Svetlana V Selivanova
- Faculty of Pharmacy, Université Laval, Québec G1V 0A6, Canada
- Axe Oncologie, Centre de Recherche du CHU de Québec - Université Laval, Québec G1R 3S3, Canada
| | - Marc-André Fortin
- Département de Génie des Mines, de la Métallurgie et des Matériaux, Centre de Recherche sur les Matériaux Avancés (CERMA), Université Laval, Québec G1V 0A6, Canada
- Axe Médecine Régénératrice, Centre de Recherche du CHU de Québec - Université Laval, 2705, boul. Laurier (T1-61a), Québec G1V 4G2, Canada
| |
Collapse
|
6
|
Babaei A, Mousavi SM, Ghasemi M, Pirbonyeh N, Soleimani M, Moattari A. Gold nanoparticles show potential in vitro antiviral and anticancer activity. Life Sci 2021; 284:119652. [PMID: 34051217 DOI: 10.1016/j.lfs.2021.119652] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 05/04/2021] [Accepted: 05/17/2021] [Indexed: 12/19/2022]
Abstract
AIMS Gold nanoparticles (AuNPs) have been attracted interests in the various areas of clinical therapeutics. In this study, we investigated the anticancer and antiviral potential activity of AuNPs against influenza A virus and human glioblastoma (GMB) U-87 and U-251 cell lines. MAIN METHODS Gold nanoparticles (AuNPs) were synthesized by citrate reduction method. Then, ultraviolet-visible spectrophotometry (UV-vis spectra) and electron microscopy analysis confirmed the type, size (mean diameter of 17 nm) and distribution of the particles. The AuNPs in vitro antiviral and anticancer effects was evaluated by hemagglutination inhibition (HAI), tissue culture infectious dose 50 (TCID50), real-time PCR, MTT, flow cytometry, and scratch assays. KEY FINDINGS The AuNPs were synthesized in spherical with a mean diameter of 17 ± 2 nm and an absorbance peak at 520 nm. The AuNPs were well tolerable by MDCK cells at concentrations up to 0.5μg/ml and they significantly inhibited the hemagglutination and virus infectivity, particularly when added pre- or during virus infection. Furthermore, anticancer results indicated that AuNPs treatment caused the marked induction of apoptosis and reduced growth and migration capability of U-87 and U-251 cell lines in a time-dependent manner. SIGNIFICANCE The present results suggest that AuNPs provide promising antiviral and anticancer approaches. Further research is needed to fully elucidate the mode of antiviral and anticancer action of AuNPs against influenza virus infection and human glioblastoma cell lines.
Collapse
Affiliation(s)
- Abouzar Babaei
- Department of Bacteriology and Virology, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Virology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Seyed Mahmoud Mousavi
- Department of Parasitology and Mycology, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Marzie Ghasemi
- Department of Biochemistry, School of Medicine, Ahvaz Jundishapur University of Medical Science, Ahvaz, Iran
| | - Neda Pirbonyeh
- Department of Bacteriology and Virology, Shiraz University of Medical Sciences, Shiraz, Iran; Burn and Wound Healing Research Center, Microbiology Department, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Masoud Soleimani
- Department of Hematology and Cell Therapy, Tarbiat Modares University, Tehran, Iran; Nano Medicine and Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Afagh Moattari
- Department of Bacteriology and Virology, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|