1
|
Sun Y, Xiao L, Chen L, Wang X. Doxorubicin-Induced Cardiac Remodeling: Mechanisms and Mitigation Strategies. Cardiovasc Drugs Ther 2025:10.1007/s10557-025-07673-6. [PMID: 40009315 DOI: 10.1007/s10557-025-07673-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/16/2025] [Indexed: 02/27/2025]
Abstract
BACKGROUND The therapeutic prowess of doxorubicin in oncology is marred by its cardiotoxic consequences, manifesting as cardiac remodeling. Pathophysiological alterations triggered by doxorubicin include inflammatory cascades, fibrotic tissue deposition, vascular and valvular changes, and finally cardiomyopathy. These multifarious consequences collectively orchestrate the deterioration of cardiac architecture and function. METHOD By charting the molecular underpinnings and remedial prospects, this review aspires to contribute a novel perspective using latest publications to the ongoing quest for cardioprotection in cancer therapy. RESULTS AND DISCUSSION Experimental analyses demonstrate the pivotal roles of oxidative stress and subsequent necrosis and apoptosis of cardiomyocytes, muscle cells, endothelial cells, and small muscle cells in different parts of the heart. In addition, severe and unusual infiltration of macrophages, mast cells, and neutrophils can amplify oxidative damage and subsequent impacts such as chronic inflammatory responses, vascular and valvular remodeling, and fibrosis. These modifications can render cardiomyopathy, ischemia, heart attack, and other disorders. In an endeavor to counteract these ramifications, a spectrum of emerging adjuvants and strategies are poised to fortify the heart against doxorubicin's deleterious effects. CONCLUSION The compendium of mitigation tactics such as innovative pharmacological agents hold the potential to attenuate the cardiotoxic burden.
Collapse
Affiliation(s)
- Yanna Sun
- Department of Cardiology, The First Affiliated of Zhengzhou University, Zhengzhou City Henan Province, 450052, China
| | - Lili Xiao
- Department of Cardiology, The First Affiliated of Zhengzhou University, Zhengzhou City Henan Province, 450052, China
| | - Linlin Chen
- Department of Cardiology, The First Affiliated of Zhengzhou University, Zhengzhou City Henan Province, 450052, China
| | - Xiaofang Wang
- Department of Cardiology, The First Affiliated of Zhengzhou University, Zhengzhou City Henan Province, 450052, China.
| |
Collapse
|
2
|
Gupta J, Almulla AF, Jalil AT, Jasim NY, Aminov Z, Alsaikhan F, Ramaiah P, Chinnasamy L, Jawhar ZH. Melatonin in Chemo/Radiation Therapy; Implications for Normal Tissues Sparing and Tumor Suppression: An Updated Review. Curr Med Chem 2025; 32:511-538. [PMID: 37916636 DOI: 10.2174/0109298673262122231011172100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/20/2023] [Accepted: 09/01/2023] [Indexed: 11/03/2023]
Abstract
Resistance to therapy and the toxicity of normal tissue are the major problems for efficacy associated with chemotherapy and radiotherapy. Drug resistance is responsible for most cases of mortality associated with cancer. Furthermore, their side effects can decrease the quality of life for surviving patients. An enhancement in the tumor response to therapy and alleviation of toxic effects remain unsolved challenges. One of the interesting topics is the administration of agents with low toxicity to protect normal tissues and/or sensitize cancers to chemo/radiotherapy. Melatonin is a natural body hormone that is known as a multitasking molecule. Although it has antioxidant properties, a large number of experiments have uncovered interesting effects of melatonin that can increase the therapeutic efficacy of chemo/radiation therapy. Melatonin can enhance anticancer therapy efficacy through various mechanisms, cells such as the immune system, and modulation of cell cycle and death pathways, tumor suppressor genes, and also through suppression of some drug resistance mediators. However, melatonin may protect normal tissues through the suppression of inflammation, fibrosis, and massive oxidative stress in normal cells and tissues. In this review, we will discuss the distinct effects of melatonin on both tumors and normal tissues. We review how melatonin may enhance radio/chemosensitivity of tumors while protecting normal tissues such as the lung, heart, gastrointestinal system, reproductive system, brain, liver, and kidney.
Collapse
Affiliation(s)
- Jitendra Gupta
- Institute of Pharmaceutical Research, GLA University, Mathura, Pin Code 281406, U.P., India
| | - Abbas F Almulla
- Medical Laboratory Technology Department, College of Medical Technology, The Islamic University, Najaf, Iraq
| | - Abduladheem Turki Jalil
- Medical Laboratories Techniques Department, Al-Mustaqbal University College, Babylon, Hilla, 51001, Iraq
| | | | - Zafar Aminov
- Department of Public Health and Healthcare Management, Samarkand State Medical University, 18 Amir Temur Street, Samarkand, Uzbekistan
- Department of Scientific Affairs, Tashkent State Dental Institute, 103 Makhtumkuli Str., Tashkent, Uzbekistan
| | - Fahad Alsaikhan
- College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj, Saudi Arabia
| | | | | | - Zanko Hassan Jawhar
- Department of Medical Laboratory Science, College of Health Sciences, Lebanese French University, Erbil, Kurdistan Region, Iraq
- Clinical Biochemistry Department, College of Health Sciences, Hawler Medical University, Erbil, Kurdistan Region, Iraq
| |
Collapse
|
3
|
Zhao P, Xia W, Wei J, Feng Y, Xie M, Niu Z, Liu H, Ke S, Liu H, Tang A, He G. An Investigation of the Mechanisms of Radiation-Induced Muscle Injury in a Tree Shrew ( Tupaia belangeri) Model. Dose Response 2022; 20:15593258221082878. [PMID: 35360454 PMCID: PMC8961377 DOI: 10.1177/15593258221082878] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Background Animal models suitable for investigating mechanisms behind radiation-induced
muscle injury are lacking. We developed a tree shrew model of such injury
and investigated pathological changes and mechanisms. Methods Animals were divided into control (n = 5), radiation-induced acute injury (n
= 5), and radiation-induced chronic injury (n = 5) groups. Tensor veli
palatini (TVP) muscles of acute injury and chronic injury groups were
dissected under a microscope at 1 and 24 weeks after radiation therapy,
respectively. TVP muscles were stained with HE and Masson to visualize
pathological changes. ELISA was performed to measure oxidative injury.
RT-qPCR and immunohistochemical staining was performed to measure expression
levels of miR-206 and histone deacetylase 4 (HDAC4). Results Compared to the control group, acute injury group showed a significant
decrease in miR-206 expression (.061 ± .38, P < .05) and a significant
increase in HDAC4 expression (37.05 ± 20.68, P < .05). Chronic injury
group showed a significant decrease in miR-206 expression (.23 ± .19, P <
.05) and a significant increase in HDAC4 expression (9.66 ± 6.12, P
< .05). Discussion A tree shrew model of radiation-induced muscle injury was established by
exposing TVP muscle region to radiation of 20-Gy. Experimental results
indicated that injury caused by radiation persisted despite gradual healing
of the TVP muscle and miR-206 regulatory pathway plays a key role in
regulating radiation-induced muscle injury.
Collapse
Affiliation(s)
- Pengcheng Zhao
- Department of Otolaryngology–Head and Neck Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Ministry of Education, Nanning, China
| | - Wei Xia
- Department of Otolaryngology–Head and Neck Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Ministry of Education, Nanning, China
| | - Jianglian Wei
- Department of Otolaryngology–Head and Neck Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Ministry of Education, Nanning, China
| | - Yiwei Feng
- Department of Otolaryngology–Head and Neck Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Ministry of Education, Nanning, China
| | - Mao Xie
- Department of Otolaryngology–Head and Neck Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Ministry of Education, Nanning, China
| | - Zhijie Niu
- Department of Otolaryngology–Head and Neck Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Ministry of Education, Nanning, China
| | - Heng Liu
- School of Information and Management, Guangxi Medical University, Nanning, China
| | - Shenghui Ke
- Department of Otolaryngology–Head and Neck Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Ministry of Education, Nanning, China
| | - Huayu Liu
- Department of Otolaryngology–Head and Neck Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Ministry of Education, Nanning, China
| | - Anzhou Tang
- Department of Otolaryngology–Head and Neck Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Ministry of Education, Nanning, China
| | - Guangyao He
- Department of Otolaryngology–Head and Neck Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Ministry of Education, Nanning, China
| |
Collapse
|